UNIQUENESS AND PARAMETER DEPENDENCE OF SOLUTIONS OF FOURTH-ORDER FOUR-POINT NONHOMOGENEOUS BVPS

JIAN-PING SUN, XIAO-YUN WANG

Abstract

In this article, we investigate the fourth-order four-point nonhomogeneous Sturm-Liouville boundary-value problem $$
\begin{gathered} u^{(4)}(t)=f(t, u(t)), \quad t \in[0,1], \\ \alpha u(0)-\beta u^{\prime}(0)=\gamma u(1)+\delta u^{\prime}(1)=0, \\ a u^{\prime \prime}\left(\xi_{1}\right)-b u^{\prime \prime \prime}\left(\xi_{1}\right)=-\lambda, \quad c u^{\prime \prime}\left(\xi_{2}\right)+d u^{\prime \prime \prime}\left(\xi_{2}\right)=-\mu, \end{gathered}
$$ where $0 \leq \xi_{1}<\xi_{2} \leq 1$ and λ and μ are nonnegative parameters. We obtain sufficient conditions for the existence and uniqueness of positive solutions. The dependence of the solution on the parameters λ and μ is also studied.

1. Introduction

Recently, nonhomogeneous boundary-value problems (BVPs for short) have received much attention from many authors. For example, Ma [5, 6] and Kong and Kong [2, 3, 4] studied some second-order multi-point nonhomogeneous BVPs. In particular, Kong and Kong 4 considered the following second-order BVP with nonhomogeneous multi-point boundary condition

$$
\begin{gathered}
u^{\prime \prime}+a(t) f(u)=0, \quad t \in(0,1) \\
u(0)=\sum_{i=1}^{m} a_{i} u\left(t_{i}\right)+\lambda, \quad u(1)=\sum_{i=1}^{m} b_{i} u\left(t_{i}\right)+\mu
\end{gathered}
$$

where λ and μ are nonnegative parameters. They derived some conditions for the above BVP to have a unique solution and then studied the dependence of this solution on the parameters λ and μ. Sun [8] discussed the existence and nonexistence of positive solutions to a class of third-order three-point nonhomogeneous BVP. However, to the best of our knowledge, fewer results on fourth-order nonhomogeneous BVPs can be found in the literature. It is worth mentioning that the authors in [7]

[^0]studied the multiplicity of positive solutions for some fourth-order two-point nonhomogeneous BVP by using a fixed point theorem of cone expansion/compression type.

Being directly inspired by [4], in this paper we are concerned with the nonhomogeneous Sturm-Liouville BVP consisting of the fourth-order differential equation

$$
\begin{equation*}
u^{(4)}(t)=f(t, u(t)), \quad t \in[0,1] \tag{1.1}
\end{equation*}
$$

and the four-point boundary conditions

$$
\begin{gather*}
\alpha u(0)-\beta u^{\prime}(0)=\gamma u(1)+\delta u^{\prime}(1)=0 \tag{1.2}\\
a u^{\prime \prime}\left(\xi_{1}\right)-b u^{\prime \prime \prime}\left(\xi_{1}\right)=-\lambda, \quad c u^{\prime \prime}\left(\xi_{2}\right)+d u^{\prime \prime \prime}\left(\xi_{2}\right)=-\mu, \tag{1.3}
\end{gather*}
$$

where $0 \leq \xi_{1}<\xi_{2} \leq 1$ and λ and μ are nonnegative parameters. We will use the following assumptions:
(A1) $\alpha, \beta, \gamma, \delta, a, b, c$ and d are nonnegative constants with $\beta>0, \delta>0, \rho_{1}:=$ $\alpha \gamma+\alpha \delta+\gamma \beta>0, \rho_{2}:=a d+b c+a c\left(\xi_{2}-\xi_{1}\right)>0,-a \xi_{1}+b>0$ and $c\left(\xi_{2}-1\right)+d>0 ;$
(A2) $f(t, u):[0,1] \times[0,+\infty) \rightarrow[0,+\infty)$ is continuous and monotone increasing in u;
(A3) There exists $0 \leq \theta<1$ such that

$$
f(t, k u) \geq k^{\theta} f(t, u) \quad \text { for all } t \in[0,1], k \in(0,1), u \in[0,+\infty)
$$

We prove the existence and uniqueness of a positive solution for the BVP (1.1)-(1.3) and study the dependence of this solution on the parameters λ and μ.

2. Preliminary lemmas

First, we recall some fundamental definitions.
Definition 2.1. Let X be a Banach space with a norm $\|\cdot\|$.
(1) A nonempty closed convex set $P \subseteq X$ is said to be a cone if $\lambda P \subseteq P$ for all $\lambda \geq 0$ and $P \cap(-P)=\{\mathbf{0}\}$, where $\mathbf{0}$ is the zero element of X;
(2) Every cone P in X defines a partial ordering in X by $u \leq v \Leftrightarrow v-u \in P$;
(3) A cone P is said to be normal if there exists $M>0$ such that $\mathbf{0} \leq u \leq v$ implies $\|u\| \leq M\|v\|$;
(4) A cone P is said to be solid if the interior P^{0} of P is nonempty.

Let P be a solid cone in a real Banach space $X, T: P^{0} \rightarrow P^{0}$ be an operator and $0 \leq \theta<1$. Then T is called a θ-concave operator if

$$
T(k u) \geq k^{\theta} T u \quad \text { for all } k \in(0,1), u \in P^{0}
$$

Next, we state a fixed point theorem, which is our main tool.
Lemma 2.2 ([1]). Assume that P is a normal solid cone in a real Banach space $X, 0 \leq \theta<1$ and $T: P^{0} \rightarrow P^{0}$ is a θ-concave increasing operator. Then T has a unique fixed point in P^{0}.

The following two lemmas are crucial for our main results.
Lemma 2.3. Let $\rho_{1} \neq 0$ and $\rho_{2} \neq 0$. Then for any $h \in C[0,1]$, the $B V P$ consisting of the equation

$$
u^{(4)}(t)=h(t), \quad t \in[0,1]
$$

and the boundary conditions (1.2)-(1.3) has a unique solution

$$
u(t)=\int_{0}^{1} G_{1}(t, s) \int_{\xi_{1}}^{\xi_{2}} G_{2}(s, \tau) h(\tau) d \tau d s+\lambda \Phi(t)+\mu \Psi(t), \quad t \in[0,1]
$$

where

$$
\begin{gathered}
G_{1}(t, s)=\frac{1}{\rho_{1}} \begin{cases}(\alpha s+\beta)(\gamma+\delta-\gamma t), & 0 \leq s \leq t \leq 1 \\
(\alpha t+\beta)(\gamma+\delta-\gamma s), & 0 \leq t \leq s \leq 1\end{cases} \\
G_{2}(t, s)=\frac{1}{\rho_{2}} \begin{cases}\left(a\left(s-\xi_{1}\right)+b\right)\left(c\left(\xi_{2}-t\right)+d\right), & s \leq t, \xi_{1} \leq s \leq \xi_{2}, \\
\left(a\left(t-\xi_{1}\right)+b\right)\left(c\left(\xi_{2}-s\right)+d\right), & t \leq s, \xi_{1} \leq s \leq \xi_{2},\end{cases} \\
\Phi(t)=\frac{1}{\rho_{2}} \int_{0}^{1}\left(c\left(\xi_{2}-s\right)+d\right) G_{1}(t, s) d s, \quad t \in[0,1]
\end{gathered}, \begin{aligned}
& \Psi(t)=\frac{1}{\rho_{2}} \int_{0}^{1}\left(a\left(s-\xi_{1}\right)+b\right) G_{1}(t, s) d s, \quad t \in[0,1]
\end{aligned}
$$

Proof. Let

$$
\begin{equation*}
u^{\prime \prime}(t)=v(t), \quad t \in[0,1] \tag{2.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
v^{\prime \prime}(t)=h(t), \quad t \in[0,1] . \tag{2.2}
\end{equation*}
$$

By (2.1) and (1.2), we know that

$$
\begin{equation*}
u(t)=-\int_{0}^{1} G_{1}(t, s) v(s) d s, \quad t \in[0,1] \tag{2.3}
\end{equation*}
$$

On the other hand, in view of 2.1 and 1.3 , we have

$$
\begin{equation*}
a v\left(\xi_{1}\right)-b v^{\prime}\left(\xi_{1}\right)=-\lambda, c v\left(\xi_{2}\right)+d v^{\prime}\left(\xi_{2}\right)=-\mu \tag{2.4}
\end{equation*}
$$

So, it follows from 2.2 and 2.4 that
$v(t)=-\int_{\xi_{1}}^{\xi_{2}} G_{2}(t, s) h(s) d s+\frac{1}{\rho_{2}}(c \lambda-a \mu) t+\frac{1}{\rho_{2}}\left(\left(a \xi_{1}-b\right) \mu-\left(c \xi_{2}+d\right) \lambda\right), \quad t \in[0,1]$,
which together with 2.3 implies

$$
u(t)=\int_{0}^{1} G_{1}(t, s) \int_{\xi_{1}}^{\xi_{2}} G_{2}(s, \tau) h(\tau) d \tau d s+\lambda \Phi(t)+\mu \Psi(t), \quad t \in[0,1]
$$

Lemma 2.4. Assume (A1). Then
(1) $G_{1}(t, s)>0$ for $t, s \in[0,1]$;
(2) $G_{2}(t, s)>0$ for $t \in[0,1]$ and $s \in\left[\xi_{1}, \xi_{2}\right]$;
(3) $\Phi(t)>0$ and $\Psi(t)>0$ for $t \in[0,1]$.

3. Main result

In the remainder of this article, the following notation will be used:
(1) $(\lambda, \mu) \rightarrow \infty$ if at least one of λ and μ approaches ∞;
(2) $\left(\lambda_{1}, \mu_{1}\right)>\left(\lambda_{2}, \mu_{2}\right)$ if $\lambda_{1} \geq \lambda_{2}$ and $\mu_{1} \geq \mu_{2}$ and at least one of them is strict;
(3) $\left(\lambda_{1}, \mu_{1}\right)<\left(\lambda_{2}, \mu_{2}\right)$ if $\lambda_{1} \leq \lambda_{2}$ and $\mu_{1} \leq \mu_{2}$ and at least one of them is strict;
(4) $(\lambda, \mu) \rightarrow\left(\lambda_{0}, \mu_{0}\right)$ if $\lambda \rightarrow \lambda_{0}$ and $\mu \rightarrow \mu_{0}$.

Our main result is the following theorem. Here, for any $u \in C[0,1]$, we write $\|u\|=\max _{t \in[0,1]}|u(t)|$.

Theorem 3.1. Assume (A1)-(A3). Then the BVP 1.1)-1.3 has a unique positive solution $u_{\lambda, \mu}(t)$ for any $(\lambda, \mu)>(0,0)$. Furthermore, such a solution $u_{\lambda, \mu}(t)$ satisfies the following three properties:
(P1) $\lim _{(\lambda, \mu) \rightarrow \infty}\left\|u_{\lambda, \mu}\right\|=\infty$;
(P2) $u_{\lambda, \mu}(t)$ is strictly increasing in λ and μ; i.e.,

$$
\left(\lambda_{1}, \mu_{1}\right)>\left(\lambda_{2}, \mu_{2}\right)>(0,0) \Longrightarrow u_{\lambda_{1}, \mu_{1}}(t)>u_{\lambda_{2}, \mu_{2}}(t) \text { on }[0,1]
$$

(P3) $u_{\lambda, \mu}(t)$ is continuous in λ and μ; i.e., for any $\left(\lambda_{0}, \mu_{0}\right)>(0,0)$,

$$
(\lambda, \mu) \rightarrow\left(\lambda_{0}, \mu_{0}\right) \Longrightarrow\left\|u_{\lambda, \mu}-u_{\lambda_{0}, \mu_{0}}\right\| \rightarrow 0
$$

Proof. Let $X=C[0,1]$. Then $(X,\|\cdot\|)$ is a Banach space, where $\|\cdot\|$ is defined as usual by the sup norm. Denote $P=\{u \in X: u(t) \geq 0, t \in[0,1]\}$. Then P is a normal solid cone in X with $P^{0}=\{u \in X \mid u(t)>0, t \in[0,1]\}$. For any $(\lambda, \mu)>(0,0)$, if we define an operator $T_{\lambda, \mu}: P^{0} \rightarrow X$ as follows

$$
\begin{equation*}
T_{\lambda, \mu} u(t)=\int_{0}^{1} G_{1}(t, s) \int_{\xi_{1}}^{\xi_{2}} G_{2}(s, \tau) f(\tau, u(\tau)) d \tau d s+\lambda \Phi(t)+\mu \Psi(t) \tag{3.1}
\end{equation*}
$$

then it is not difficult to verify that u is a positive solution of the BVP $(1.1)-(1.3)$ if and only if u is a fixed point of $T_{\lambda, \mu}$.

Now, we prove that $T_{\lambda, \mu}$ has a unique fixed point by using Lemma 2.2
First, in view of Lemma 2.4, we know that $T_{\lambda, \mu}: P^{0} \rightarrow P^{0}$. Next, we claim that $T_{\lambda, \mu}: P^{0} \rightarrow P^{0}$ is a θ-concave operator.

In fact, for any $k \in(0,1)$ and $u \in P^{0}$, it follows from (3.1) and (A3) that

$$
\begin{aligned}
T_{\lambda, \mu}(k u)(t) & =\int_{0}^{1} G_{1}(t, s) \int_{\xi_{1}}^{\xi_{2}} G_{2}(s, \tau) f(\tau, k u(\tau)) d \tau d s+\lambda \Phi(t)+\mu \Psi(t) \\
& \geq k^{\theta} \int_{0}^{1} G_{1}(t, s) \int_{\xi_{1}}^{\xi_{2}} G_{2}(s, \tau) f(\tau, u(\tau)) d \tau d s+\lambda \Phi(t)+\mu \Psi(t) \\
& \geq k^{\theta}\left(\int_{0}^{1} G_{1}(t, s) \int_{\xi_{1}}^{\xi_{2}} G_{2}(s, \tau) f(\tau, u(\tau)) d \tau d s+\lambda \Phi(t)+\mu \Psi(t)\right) \\
& =k^{\theta} T_{\lambda, \mu} u(t), \quad t \in[0,1]
\end{aligned}
$$

which shows that $T_{\lambda, \mu}$ is θ-concave.
Finally, we assert that $T_{\lambda, \mu}: P^{0} \rightarrow P^{0}$ is an increasing operator. Suppose $u, v \in P^{0}$ and $u \leq v$. By (3.1) and (A2), we have

$$
\begin{aligned}
T_{\lambda, \mu} u(t) & =\int_{0}^{1} G_{1}(t, s) \int_{\xi_{1}}^{\xi_{2}} G_{2}(s, \tau) f(\tau, u(\tau)) d \tau d s+\lambda \Phi(t)+\mu \Psi(t) \\
& \leq \int_{0}^{1} G_{1}(t, s) \int_{\xi_{1}}^{\xi_{2}} G_{2}(s, \tau) f(\tau, v(\tau)) d \tau d s+\lambda \Phi(t)+\mu \Psi(t) \\
& =T_{\lambda, \mu} v(t), t \in[0,1]
\end{aligned}
$$

which indicates that $T_{\lambda, \mu}$ is increasing.
Therefore, it follows from Lemma 2.2 that $T_{\lambda, \mu}$ has a unique fixed point $u_{\lambda, \mu} \in$ P^{0}, which is the unique positive solution of the BVP $(1.1)-(1.3)$. The first part of the theorem is proved.

In the rest of the proof, we prove that the solution $u_{\lambda, \mu}$ satisfies the properties (P1), (P2) and (P3). First, for $t \in[0,1]$,

$$
\begin{aligned}
u_{\lambda, \mu}(t) & =T_{\lambda, \mu} u_{\lambda, \mu}(t) \\
& =\int_{0}^{1} G_{1}(t, s) \int_{\xi_{1}}^{\xi_{2}} G_{2}(s, \tau) f\left(\tau, u_{\lambda, \mu}(\tau)\right) d \tau d s+\lambda \Phi(t)+\mu \Psi(t),
\end{aligned}
$$

which together with $\Phi(t)>0$ and $\Psi(t)>0$ for $t \in[0,1]$ implies (P1).
Next, we show (P2). Assume $\left(\lambda_{1}, \mu_{1}\right)>\left(\lambda_{2}, \mu_{2}\right)>(0,0)$. Let

$$
\bar{\chi}=\sup \left\{\chi>0: u_{\lambda_{1}, \mu_{1}}(t) \geq \chi u_{\lambda_{2}, \mu_{2}}(t), t \in[0,1]\right\} .
$$

Then $u_{\lambda_{1}, \mu_{1}}(t) \geq \bar{\chi} u_{\lambda_{2}, \mu_{2}}(t)$ for $t \in[0,1]$. We assert that $\bar{\chi} \geq 1$. Suppose on the contrary that $0<\bar{\chi}<1$. Since $T_{\lambda, \mu}$ is a θ-concave increasing operator, and for given $u \in P^{0}, T_{\lambda, \mu} u$ is strictly increasing in λ and μ, we have

$$
\begin{aligned}
u_{\lambda_{1}, \mu_{1}}(t) & =T_{\lambda_{1}, \mu_{1}} u_{\lambda_{1}, \mu_{1}}(t) \geq T_{\lambda_{1}, \mu_{1}}\left(\bar{\chi} u_{\lambda_{2}, \mu_{2}}\right)(t) \\
& >T_{\lambda_{2}, \mu_{2}}\left(\bar{\chi} u_{\lambda_{2}, \mu_{2}}\right)(t) \\
& \geq(\bar{\chi})^{\theta} T_{\lambda_{2}, \mu_{2}} u_{\lambda_{2}, \mu_{2}}(t)=(\bar{\chi})^{\theta} u_{\lambda_{2}, \mu_{2}}(t) \\
& >\bar{\chi} u_{\lambda_{2}, \mu_{2}}(t), \quad t \in[0,1],
\end{aligned}
$$

which contradicts the definition of $\bar{\chi}$. Thus, we get $u_{\lambda_{1}, \mu_{1}}(t) \geq u_{\lambda_{2}, \mu_{2}}(t)$ for $t \in$ $[0,1]$. And so,

$$
\begin{aligned}
u_{\lambda_{1}, \mu_{1}}(t)= & T_{\lambda_{1}, \mu_{1}} u_{\lambda_{1}, \mu_{1}}(t) \\
>T_{\lambda_{2}, \mu_{2}} u_{\lambda_{2}, \mu_{2}}(t) & =T_{\lambda_{1}, \mu_{1}} u_{\lambda_{2}, \mu_{2}}(t), \quad t \in[0,1]
\end{aligned}
$$

which indicates that $u_{\lambda, \mu}(t)$ is strictly increasing in λ and μ.
Finally, we show (P3). For any given $\left(\lambda_{0}, \mu_{0}\right)>(0,0)$, we first suppose $(\lambda, \mu) \rightarrow$ $\left(\lambda_{0}, \mu_{0}\right)$ with $\left(\lambda_{0} / 2, \mu_{0} / 2\right)<(\lambda, \mu)<\left(\lambda_{0}, \mu_{0}\right)$. From (P2), we have

$$
\begin{equation*}
u_{\lambda, \mu}(t)<u_{\lambda_{0}, \mu_{0}}(t), \quad t \in[0,1] . \tag{3.2}
\end{equation*}
$$

Let

$$
\bar{\sigma}=\sup \left\{\sigma>0: u_{\lambda, \mu}(t) \geq \sigma u_{\lambda_{0}, \mu_{0}}(t), \quad t \in[0,1]\right\}
$$

Then $0<\bar{\sigma}<1$ and $u_{\lambda, \mu}(t) \geq \bar{\sigma} u_{\lambda_{0}, \mu_{0}}(t)$ for $t \in[0,1]$. Define

$$
\omega(\lambda, \mu)= \begin{cases}\min \left\{\frac{\lambda}{\lambda_{0}}, \frac{\mu}{\mu_{0}}\right\}, & \text { if } \lambda_{0} \neq 0 \text { and } \mu_{0} \neq 0 \\ \frac{\mu}{\mu_{0}}, & \text { if } \lambda_{0}=0 \\ \frac{\lambda}{\lambda_{0}}, & \text { if } \mu_{0}=0\end{cases}
$$

then $0<\omega(\lambda, \mu)<1$ and

$$
\begin{aligned}
u_{\lambda, \mu}(t) & =T_{\lambda, \mu} u_{\lambda, \mu}(t) \geq T_{\lambda, \mu}\left(\bar{\sigma} u_{\lambda_{0}, \mu_{0}}\right)(t) \\
& >\omega(\lambda, \mu) T_{\lambda_{0}, \mu_{0}}\left(\bar{\sigma} u_{\lambda_{0}, \mu_{0}}\right)(t) \\
& \geq \omega(\lambda, \mu)(\bar{\sigma})^{\theta} T_{\lambda_{0}, \mu_{0}} u_{\lambda_{0}, \mu_{0}}(t) \\
& =\omega(\lambda, \mu)(\bar{\sigma})^{\theta} u_{\lambda_{0}, \mu_{0}}(t), \quad t \in[0,1]
\end{aligned}
$$

which together with the definition of $\bar{\sigma}$ implies

$$
\omega(\lambda, \mu)(\bar{\sigma})^{\theta} \leq \bar{\sigma}
$$

Thus $\bar{\sigma} \geq(\omega(\lambda, \mu))^{\frac{1}{1-\theta}}$. And so,

$$
\begin{equation*}
u_{\lambda, \mu}(t) \geq \bar{\sigma} u_{\lambda_{0}, \mu_{0}}(t) \geq(\omega(\lambda, \mu))^{\frac{1}{1-\theta}} u_{\lambda_{0}, \mu_{0}}(t), \quad t \in[0,1] . \tag{3.3}
\end{equation*}
$$

In view of (3.2 and (3.3), we have

$$
\left\|u_{\lambda_{0}, \mu_{0}}-u_{\lambda, \mu}\right\| \leq\left(1-(\omega(\lambda, \mu))^{\frac{1}{1-\theta}}\right)\left\|u_{\lambda_{0}, \mu_{0}}\right\|
$$

which together with the fact that $\omega(\lambda, \mu) \rightarrow 1$ as $(\lambda, \mu) \rightarrow\left(\lambda_{0}, \mu_{0}\right)$ shows that

$$
\left\|u_{\lambda_{0}, \mu_{0}}-u_{\lambda, \mu}\right\| \rightarrow 0 \text { as }(\lambda, \mu) \rightarrow\left(\lambda_{0}, \mu_{0}\right)
$$

Similarly, we can also prove that

$$
\left\|u_{\lambda_{0}, \mu_{0}}-u_{\lambda, \mu}\right\| \rightarrow 0
$$

as $(\lambda, \mu) \rightarrow\left(\lambda_{0}, \mu_{0}\right)$ with $(\lambda, \mu)>\left(\lambda_{0}, \mu_{0}\right)$. Hence, (P3) holds. The proof is complete.

References

[1] D. Guo, V. Lakshmikantham; Nonlinear Problems in Abstract Cones, Academic Press, New York, 1988.
[2] L. Kong, Q. Kong; Second-order boundary value problems with nonhomogeneous boundary conditions I, Math. Nachr. 278 (2005) 173-193.
[3] L. Kong, Q. Kong; Second-order boundary value problems with nonhomogeneous boundary conditions II, J. Math. Anal. Appl. 330 (2007) 1393-1411.
[4] L. Kong, Q. Kong; Uniqueness and parameter dependence of solutions of second-order boundary value problems, Appl. Math. Lett. 22 (2009), 1633-1638.
[5] R. Ma; Positive solutions for secone-order three-point boundary value problems, Appl. Math. Lett. 14 (2001) 1-5.
[6] R. Ma; Positive solutions for nonhomogeneous m-point boundary value problems, Comput. Math. Appl. 47 (2004) 689-698.
[7] João Marcos do Ó, Sebastián Lorca, Pedro Ubilla; Multiplicity of solutions for a class of nonhomogeneous fourth-order boundary value problems, Appl. Math. Lett. 21 (2008) 279-286.
[8] Y. Sun; Positive solutions for third-order three-point nonhomogeneous boundary value problems, Appl. Math. Lett. 22 (2009) 45-51.

Jian-Ping Sun
Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu 730050, China

E-mail address: jpsun@lut.cn
Xiao-Yun Wang
Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu 730050, China

E-mail address: catherine699@163.com

[^0]: 2000 Mathematics Subject Classification. 34B08, 34B10.
 Key words and phrases. Nonhomogeneous; fourth-order; four-point; Sturm-Liouville; boundary-value problem; positive solution; uniqueness; dependence on parameter. (C) 2010 Texas State University - San Marcos.

 Submitted September 21, 2009. Published June 18, 2010.
 Supported by grant 10801068 from the National Natural Science Foundation of China.

