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A CONTINUITY ARGUMENT FOR A SEMILINEAR SKYRME
MODEL

DAN-ANDREI GEBA, SARADA G. RAJEEV

Abstract. We investigate a semilinear modification for the wave map prob-
lem proposed by Adkins and Nappi [1], and prove that in the equivariant case

the solution remain continuous at the first possible singularity. This is usually

one of the steps in proving existence of global smooth solutions for certain
equations.

1. Introduction

Let φ : Rn+1 → M be a map from the n + 1 dimensional spacetime, with
Lorentzian metric g of signature (1, n), to a Riemannian manifold (M,h). The
action of the wave map equation, or the nonlinear σ model in physics terminology,
is

S =
1
2

∫
gµν ∂µφ

i ∂νφ
j hij(φ) dg (1.1)

The initial value problem for the Euler-Lagrange equations associated with (1.1)
has been intensely studied, especially the issues of global existence and regularity of
its solutions. We mention here the pioneering works of Christodoulou - Tahvildar-
Zadeh [5], Grillakis [8], Shatah - Tahvildar-Zadeh [14], and Struwe [16].

The particular case when M = S3 and n = 3 is of special interest in high energy
physics. The nuclei of atoms are held together by forces mediated by the pi mesons.
These are a set of three particles whose masses are small compared to the nuclei
themselves, so to a first approximation they can be considered to be massless,
i.e., travelling at the speed of light. If interactions among them are ignored, the
pi mesons are described by a field φ : R3+1 → R3 satisfying the wave equation.
Interactions would add nonlinearities. A remarkable fact of physics is that the
interactions among the pi mesons are described, to a good approximation (Gell-
Mann - Levy [7], Gursey [9], [10], and Lee [11]), by considering the target manifold
to be the sphere S3 and replacing the wave equation by the corresponding wave
map equation. Physicists call this the nonlinear σ model for historical reasons.

In order for the energy to be finite, the gradient of the field must vanish at
infinity: it tends to the same value in all directions of spatial infinity. Thus, each
instantaneous pi meson configuration corresponds to a map φ̃ : S3 → S3 obtained
by identifying the points at spatial infinity. A continuous map of the sphere to itself
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has an integer associated with it, the winding number or element of the homotopy
group π3(S3). In terms of the original field, we can write this as

Q = c

∫
εijk∂aφ

i∂bφ
j∂cφ

kεabc dx (1.2)

where ε is the Levi-Civita symbol and c is a normalizing constant. Small perturba-
tions from the constant configurations would have Q = 0. If time evolutions were
continuous, Q would be a conserved quantity, a ‘topological charge’.

It was suggested by Skyrme [15] in the 1960s that this topological charge Q is just
the total number of neutrons and protons in a nucleus: the baryon number. Thus,
a proton (hydrogen nucleus) would have Q = 1, a helium nucleus would have either
Q = 3 or 4 (depending on the isotope), and so on. This has been confirmed by
connecting with Quantum chromodynamics (Balachandran - Nair - Rajeev - Stern
[2, 3], Witten [18, 19]), the fundamental theory of nuclear interactions. Numerical
calculations (Battye - Sutcliffe [4]) also support this idea. Some essential theoretical
puzzles had to be resolved before this rather strange idea of Skyrme could be
established. These were resolved in the mid-80’s; e.g. by using topological notions
(‘anomalies’) [15, 2, 3, 18, 19].

One of these puzzles is that actually the wave map does not have continuous time
evolution: it is supercritical. Shatah [12] has exhibited an example of a solution
with smooth initial conditions that breaks down in finite time. Physically, this is
because the forces among the pi mesons are mainly attractive; so a configuration
of winding number one would shrink to a point, emitting its energy as radiation
carried away to infinity. At the singularity, Q would jump to zero. Since baryon
number is strictly conserved by nuclear forces, this cannot be right.

Skyrme suggested a modification of the action of the wave map that could stabi-
lize the configurations with Q 6= 0. The corresponding equations are quite intricate,
being quasilinear. What we study here is a semilinear modification of the above
action S, previously introduced by Adkins - Nappi [1], which is also expected,
for physical reasons, to have regular solutions1. The idea is to add a short range
repulsion among the pi mesons, created by their interactions with an omega me-
son. Geometrically, it describes the nonlinear coupling of the wave map with a
gauge field, the source (charge density) of the gauge field being the density of the
topological charge Q.

In detail, the action of the theory we investigate is

S̃ = S +
1
4

∫
FµνFµν dg −

∫
Aµj

µ dx (1.3)

where the omega meson is represented by the gauge potential A = Aµdx
µ, the

2-form Fµν = ∂µAν − ∂νAµ is its associated electromagnetic field, and

jµ = c εµνρσ∂νφ
i∂ρφ

j∂σφ
kεijk

is the flux or the baryonic current2.

1We consider only the case when the masses of the mesons are set to zero, which is sufficient

to understand short distance singularities.
2Note that Q =

R
j0 dx.
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Here we study time dependent equivariant maps associated to S̃ with winding
number 1, i.e.,

g = diag(−1, 1, 1, 1) M = S3

φ(t, r, ψ, θ) = (u(t, r), ψ, θ) A(t, r, ψ, θ) = (V (t, r), 0, 0, 0)

with boundary conditions u(t, 0) = 0 and u(t,∞) = π.
Routine computations lead to

S̃

2π
=

∫∫
{r2(− u2

t + u2
r) + 2 sin2 u+

α2(u− sinu cosu)2

r2

−
[
rVr +

α(u− sinu cosu)
r

]2

} dr dt

where α is an appropriate constant. Eliminating V using its variational equation
and scaling the coordinates by a factor of α, we obtain the main equation satisfied
by u:

utt − urr −
2
r
ur +

1
r2

sin 2u+
1
r4

(u− sinu cosu)(1− cos 2u) = 0 (1.4)

Based on the physical intuition detailed above, we conjecture that smooth
finite energy initial data for this equation will evolve into globally regular
solutions. This is also supported by the existence of static numerical solutions of
winding number 1 for (1.3), that were found in [1]. Regularity at the origin forces
the initial data to vanish at r = 0, which is consistent with the previously imposed
boundary condition, u(t, 0) = 0.

One needs to compare (1.4) with the corresponding wave map equation

utt − urr −
2
r
ur +

1
r2

sin 2u = 0 (1.5)

for which Shatah’s solution (later found by Turok and Spergel [17] in close form)

u(t, r) = 2 arctan
r

T0 − t

provides an example of smooth initial data that develop singularities in finite time.
The goal of this paper is to take the first step in proving our conjecture, which

is to show that a smooth solution for (1.4) remains continuous at the first possible
singularity. Using the fact that (1.4) is semilinear and it is invariant under trans-
lations, we can assume, without any loss of generality, that our solution starts at
time t = −1 and breaks down at the origin (0, 0). Our main result is

Theorem 1.1. The solution u for (1.4) is continuous at the origin and

u(t, r) → 0 as (t, r) → (0, 0)

The proof follows the lines of the one for 2 + 1 dimensional equivariant wave
maps (e.g., [13]); however, because we are in 3 + 1 dimensions, we lose a critical
estimate which is in turn bypassed by a new argument, using the sign of the last
term in (1.4):

u · 1
r4

(u− sinu cosu)(1− cos 2u) ≥ 0 (1.6)

In all of these problems (i.e., wave maps and Skyrme model) the initial configu-
ration shrinks as time evolves, causing energy and winding number to accumulate
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at the origin. For the 2 + 1 dimensional wave map equation, enough energy is ra-
diated away so that the energy density at the origin is finite. In 3 + 1 dimensions,
the energy density diverges at the origin although the total energy tends to zero.
For the Adkins - Nappi version of the Skyrme model, there is a repulsive part in
the energy density. Our new argument shows that the energy corresponding to this
part does not concentrate, allowing us to prove the continuity of the field.

2. Main argument

We will be working with backward truncated cones, their mantels and bases,
denoted as

KS
T = {(t, r) : T ≤ t ≤ S, 0 ≤ r ≤ |t|}
CS

T = {(t, r) : T ≤ t ≤ S, r = |t|}
BT = {(t, r) : t = T, 0 ≤ r ≤ |t|}

where −1 ≤ T ≤ S ≤ 0. For narrower bases, we use the notation

BT (λ) = {(t, r) : t = T, −λt ≤ r ≤ −t}
where 0 ≤ λ ≤ 1.

Multiplying (1.4) by r2ut, r2ur, r3ur, r2u, respectively r2tut, we obtain the
following differential identities:

Lemma 2.1. A classical solution for (1.4) satisfies:

∂t

(
r2

2
(u2

t + u2
r) + sin2 u+

1
2r2

(u− sinu cosu)2
)
− ∂r(r2utur) = 0, (2.1)

∂t(r2utur)− ∂r

(
r2

2
(u2

t + u2
r)− sin2 u− 1

2r2
(u− sinu cosu)2

)
= r(u2

r − u2
t )−

1
r3

(u− sinu cosu)2,
(2.2)

∂t(r3utur)− ∂r

(
r3

2
(u2

t + u2
r)− r sin2 u− 1

2r
(u− sinu cosu)2

)
=
r2

2
(u2

r − 3u2
t ) + sin2 u− 1

2r2
(u− sinu cosu)2,

(2.3)

∂t(r2uut)− ∂r(r2uur)

= r2(u2
t − u2

r)− u

(
sin 2u+

1
r2

(u− sinu cosu)(1− cos 2u)
)
,

(2.4)

∂t

(
tr2

2
(u2

t + u2
r) + t sin2 u+

t

2r2
(u− sinu cosu)2

)
− ∂r(tr2utur)

=
r2

2
(u2

t + u2
r) + sin2 u+

1
2r2

(u− sinu cosu)2
(2.5)

Remark 2.2. The argument for 2+1 dimensional equivariant wave maps relies on
the counterparts of all five identities. For our analysis we will not use (2.2).

Next, we define the local energy and the flux associated to our problem.

Definition 2.3. The energy of the time slice t = T is defined as

E(T ) =
∫

BT

1
2
(u2

t + u2
r) +

1
r2

sin2 u+
1

2r4
(u− sinu cosu)2
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while the flux between the time slices t = T and t = S is given by

F (T, S) =
1√
2

∫
CS

T

1
2
(ut − ur)2 +

1
r2

sin2 u+
1

2r4
(u− sinu cosu)2

The classical energy estimate, obtained by integrating (2.1) over KS
T ,

E(T )− E(S) = F (T, S)

implies that the local energy is decreasing and the flux decays to 0, i.e.,

E(S) ≤ E(T ) for − 1 ≤ T ≤ S, (2.6)

lim
T→0−

F (T, 0) = 0 (2.7)

These two facts allow us to go further and show that:

Proposition 2.4. The solution u is bounded, with

‖u‖L∞ ≤ C(E(−1)), (2.8)

lim
t→0−

u(t,−t) = 0 (2.9)

Proof. For

I(z) =
∫ z

0

(w − sinw cosw) dw =
z2 − sin2 z

2
we have

I(0) = 0, I(z) > 0 (z 6= 0), lim
|z|→∞

I(z) = ∞

Based on u(t, 0) = 0, we can write

I(u(t, r)) =
∫ r

0

(u− sinu cosu)ur dr

which implies

I(u(t, r)) .
( ∫

Bt

u2
r

)1/2( ∫
Bt

(u− sinu cosu)2

r4

)1/2

. E(t)

The monotonicity of the energy, (2.6), then settles the first claim.
Next, denoting v(t) = u(t,−t), we use (2.7) to infer

lim
T→0−

∫ 0

T

(v − sin v cos v)2

t2
dt = 0

which leads to the existence of a sequence tn → 0 for which v(tn) → 0. For fixed T
and large n we obtain

|I(v(T ))− I(v(tn))| .
∫ tn

T

|(v − sin v cos v) · vs| ds . F (T, 0)

which proves the last claim. �

We use these results to reduce the proof of Theorem 1.1 to the one of a local
energy estimate.
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Theorem 2.5. If the solution u is smooth on Kt
−1 for all −1 < t < 0 and

lim
T→0−

∫
BT

(u− sinu cosu)2

r4
= 0 (2.10)

then u is continuous at the origin and

u(t, r) → 0 as (t, r) → (0, 0)

Proof. We argue as in Proposition 2.4 to deduce

I(u(t, r)) = I(u(t,−t)) +
∫ r

−t

(u− sinu cosu)(t, r′) · ur(t, r′) dr′

. I(u(t,−t)) + E(t)1/2 ·
( ∫

Bt

(u− sinu cosu)2

r4

)1/2

which obviously provides the desired conclusion based on (2.6) and (2.9). �

Remark 2.6. Theorem 2.5 is the point where our argument leaves the approach
for equivariant wave maps. There, one relies on the weaker bound

I(u(t, r)) . I(u(t,−t)) + E(t)

and proves nonconcentration of the energy (i.e., E(t) → 0 as t → 0). The crucial
ingredient for that analysis is that the annular energy doesn’t concentrate,

Eλ(t) =
∫

Bt(λ)

e→ 0

where e is the energy density and 0 ≤ λ ≤ 1. This is in turn obtained from

((rm)t − (re)r)2 . (e−m)(e+m) (2.11)

where m is the momentum density. We refer the interested reader to [5] or [13] for
more details.

In our case, the corresponding estimate should read

((r2m)t − (r2e)r)2 . r2(e−m)(e+m) (2.12)

where

e =
1
2
(u2

t + u2
r) +

1
r2

sin2 u+
1

2r4
(u− sinu cosu)2, m = urut

The left-hand side in (2.12), which can be obtained through (2.2), takes the form:

(r2m)t − (r2e)r = r(u2
r − u2

t ) +
(u− sinu cosu)2

r3
− 2 sin 2u · ur

− 2(u− sinu cosu)(1− cos 2u)
r2

ur

Precisely the last term above fails to obey the bound in (2.12). This is the reason
why we do not use (2.2) in our argument.
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3. Local energy estimates

These estimates are deduced by integrating the differential identities (2.3)-(2.5)
on the backward cone K0

T and then allow for T → 0. First, we notice that for
f ∈ L∞ one obtains

lim
T→0−

1
|T |

∫
K0

T

f

r2
= lim

T→0−

∫
BT

f

r2
= 0 (3.1)

which allows us to ignore certain terms in the analysis.

Lemma 3.1. For u solution of (1.4), smooth on Kt
−1 for all −1 < t < 0, the

following estimates hold:

lim
T→0−

1
|T |

∫
K0

T

[1
2
(3u2

t − u2
r) +

1
2r4

(u− sinu cosu)2
]
− 1
|T |

∫
BT

rurut = 0 (3.2)

lim
T→0−

1
|T |

∫
K0

T

[
u2

r − u2
t + u · 1

r4
(u− sinu cosu)(1− cos 2u)

]
= 0 (3.3)

lim
T→0−

1
|T |

∫
K0

T

[
− 1

2
(u2

t + u2
r)−

1
2r4

(u− sinu cosu)2
]
+ E(T ) = 0 (3.4)

Proof. We prove only the first estimate, the other two being treated similarly. As
mentioned above, we integrate (2.3) on K0

T to infer∫
K0

T

[1
2
(3u2

t − u2
r)−

1
r2

sin2 u+
1

2r4
(u− sinu cosu)2

]
=

∫
BT

rurut +
∫

C0
T

[
r ·

(1
2
(ut − ur)2 +

1
r2

sin2 u+
1

2r4
(u− sinu cosu)2

)]
Using (3.1) we deduce that

lim
T→0−

1
|T |

∫
K0

T

1
r2

sin2 u = 0

(3.2) follows immediately as

lim
T→0−

1
|T |

∫
C0

T

[
r ·

(1
2
(ut − ur)2 +

1
r2

sin2 u+
1

2r4
(u− sinu cosu)2

)]
= 0

due to (2.7) and that r ≤ |T | in C0
T . �

Finally, combining (3.2)-(3.4) and relying on (1.6), we obtain:

lim
T→0−

E(T )− 1
|T |

∫
BT

rurut = 0 (3.5)

Coupling this with

E(T )− 1
|T |

∫
BT

rurut =
∫

BT

[1
4
(1− r

|T |
)(ut − ur)2 +

1
4
(1 +

r

|T |
)(ut + ur)2

]
+

∫
BT

[ 1
r2

sin2 u+
1

2r4
(u− sinu cosu)2

]
we deduce the sufficient condition (2.10) from Theorem 2.5, which finishes the
argument.
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It is worth noting that (3.5) yields also

lim
T→0−

∫
BT

[
(1− r

|T |
)(ut − ur)2 + (ut + ur)2 +

1
r2

sin2 u

]
= 0

Thus we obtain that the entire energy does not concentrate, except maybe for∫
BT

r

|T |
(ut − ur)2

This question is addressed in an upcoming article [6].
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[7] M. Gell-Mann and M. Lévy, The axial vector current in beta decay, Nuovo Cimento (10) 16

(1960), 705–726.
[8] Manoussos Grillakis, Classical solutions for the equivariant wave map in 1 + 2 dimensions,

preprint, 1991.

[9] Feza Gürsey, On the symmetries of strong and weak interactions, Nuovo Cimento (10) 16
(1960), 230–240.

[10] Feza Gürsey, On the structure and parity of weak interaction currents, Ann. Physics 12

(1961), no. 1, 91–117.
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