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A NONLINEAR NEUTRAL PERIODIC DIFFERENTIAL
EQUATION

ERIC R. KAUFMANN

Abstract. In this article we consider the existence, uniqueness and positivity

of a first order non-linear periodic differential equation. The main tool em-
ployed is the Krasnosel’skĭı’s fixed point theorem for the sum of a completely

continuous operator and a contraction.

1. Introduction

Let T > 0 be fixed. We consider the existence, uniqueness and positivity of
solutions for the nonlinear neutral periodic equation

x′(t) = −a(t)x(t) + c(t)x′
(
g(t)

)
g′(t) + q

(
t, x(t), x(g(t))

)
,

x(t+ T ) = x(t).
(1.1)

In recent years, there have been several papers written on the existence, unique-
ness, stability and/or positivity of solutions for periodic equations of forms similar
to equation (1.1); see [7, 8, 9, 10, 13, 14, 15, 16] and references therein. Neutral
periodic equations such as (1.1) arise in blood cell models (see for example [1], [17]
and [18]) and food-limited population models (see for example [2, 3, 4, 5, 6, 12]).
In the above mentioned papers, the nonlinear term q and the function a are as-
sumed to be continuous in all arguments. We impose much weaker conditions on
the nonlinear term q and the argument function a.

The map f : [0, T ] × Rn → R is said to satisfy Carathéodory conditions with
respect to L1[0, T ] if the following conditions hold.

(i) For each z ∈ Rn, the mapping t 7→ f(t, z) is Lebesgue measurable.
(ii) For almost all t ∈ [0, T ], the mapping z 7→ f(t, z) is continuous on Rn.
(iii) For each r > 0, there exists αr ∈ L1([0, T ],R) such that for almost all

t ∈ [0, T ] and for all z such that |z| < r, we have |f(t, z)| ≤ αr(t).

In Section 2 we present some preliminary material that we will employ to show
the existence of a solution of (1.1). Also, we state a fixed point theorem due to
Krasnosel’skĭı. We present our main results in Section 3.
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2. Preliminaries

Define the set PT = {ψ ∈ C(R,R) : ψ(t + T ) = ψ(t)} and the norm ‖ψ‖ =
supt∈[0,T ] |ψ(t)|. Then (PT , ‖ · ‖) is a Banach space. We will assume that the
following conditions hold.

(A) a ∈ L1(R,R) is bounded, satisfies a(t+ T ) = a(t) for all t and

1− e−
R t

t−T
a(r) dr ≡ 1

η
6= 0.

(C) c ∈ C1(R,R) satisfies c(t+ T ) = c(t) for all t.
(G) g ∈ C1(R,R) satisfies g(t+ T ) = g(t) for all t.

(Q1) q satisfies Carathéodory conditions with respect to L1[0, T ], and
q(t+ T, x, y) = q(t, x, y).

In our first lemma, we state the integral equation equivalent to the periodic
equation (1.1).

Lemma 2.1. Suppose that conditions (A), (C), (G) and (Q1) hold. Then x ∈ PT

is a solution of equation (1.1) if, and only if, x ∈ PT satisfies

x(t) = c(t)x(g(t)) + η

∫ t

t−T

[
q
(
s, x(s), x(g(s))

)
− r(s)x(g(s))

]
e−

R t
s

a(r) dr ds, (2.1)

where
r(s) = a(s)c(s) + c′(s). (2.2)

Proof. Let x ∈ PT be a solution of (1.1). We first rewrite (1.1) in the form

x′(t) + a(t)x(t) = c(t)x′(g(t))g′(t) + q
(
t, x(t), x(g(t))

)
.

Multiply both sides of the above equation by e
R t
0 a(r) dr and then integrate the

resulting equation from t− T to t.

x(t)e
R t
0 a(r) dr − x(t− T )e

R t−T
0 a(r) dr

=
∫ t

t−T

c(s)x′(g(s))g′(s)e
R s
0 a(r) dr + q

(
s, x(s), x(g(s))

)
e

R s
0 a(r) dr ds.

(2.3)

Now divide both sides of (2.3) by e
R t
0 a(r) dr. Since x ∈ PT , then

x(t)
1
η

=
∫ t

t−T

c(s)x′(g(s))g′(s)e−
R t

s
a(r) dr + q

(
s, x(s), x(g(s))

)
e−

R t
s

a(r) dr ds. (2.4)

Consider the first term on the right hand side of (2.4).∫ t

t−T

c(s)x′(g(s))g′(s)e−
R t

s
a(r) drds.

Integrate this term by parts to get,∫ t

t−T

c(s)x′(g(s))g′(s)e−
R t

s
a(r) drds

= c(t)x(g(t))− e−
R t

t−T
a(s) dsc(t− T )x(g(t− T ))

−
∫ t

t−T

d

ds

[
c(s)e−

R t
s

a(r) dr
]
x(g(s)) ds.
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Since c(t) = c(t− T ), g(t) = g(t− T ), and x ∈ PT , then∫ t

t−T

c(s)x′(g(s))g′(s)e−
R t

s
a(r) drds

=
1
η
c(t)x(g(t))−

∫ t

t−T

d

ds

[
c(s)e−

R t
s

a(r) dr
]
x(g(s)) ds

(2.5)

Finally, we put the right hand side of (2.5) into (2.4) and simplify. We obtain that
if x ∈ PT is a solution of (1.1), then x satisfies

x(t) = c(t)x(g(t)) + η

∫ t

t−T

[
q
(
s, x(s), x(g(s))

)
− r(s)x(g(s))

]
e−

R t
s

a(r) dr ds,

where r(s) = a(s)c(s) + c′(s).
The converse implication is easily obtained and the proof is complete. �

We end this section by stating the fixed point theorem that we employ to help
us show the existence of solutions to equation (1.1); see [11].

Theorem 2.2 (Krasnosel’skĭı). Let M be a closed convex nonempty subset of a
Banach space

(
B, ‖ · ‖

)
. Suppose that

(i) the mapping A : M → B is completely continuous,
(ii) the mapping B : M → B is a contraction, and
(iii) x, y ∈ M, implies Ax+By ∈ M.

Then the mapping A+B has a fixed point in M.

3. Existence Results

We present our existence results in this section. To this end, we first define the
operator H by

Hψ(t) = c(t)ψ(g(t)) + η

∫ t

t−T

[
q
(
s, ψ(s), ψ(g(s))

)
− r(s)ψ(g(s))

]
e−

R t
s

a(r) dr ds,

(3.1)
where r is given in equation (2.2). From Lemma 2.1 we see that fixed points of H
are solutions of (1.1) and vice versa.

In order to employ Theorem 2.2 we need to express the operator H as the sum
of two operators, one of which is completely continuous and the other of which is a
contraction. Let Hψ(t) = Aψ(t) + Bψ(t) where

Bψ(t) = c(t)ψ(g(t)) (3.2)

and

Aψ(t) = η

∫ t

t−T

[
q
(
s, ψ(s), ψ(g(s))

)
− r(s)ψ(g(s))

]
e−

R t
s

a(r) dr ds. (3.3)

Our first lemma in this section shows that A : PT → PT is completely continuous.

Lemma 3.1. Suppose that conditions (A), (C), (G), (Q1) hold. Then A : PT → PT

is completely continuous.

Proof. From (3.3) and conditions (A), (C), (G) and (Q1), it follows trivially that
r(σ + T ) = r(σ) and e−

R t+T
σ+T

a(r) dr = e−
R t

σ
a(ρ) dρ. Consequently, we have that

Aψ(t+ T ) = Aψ(t).
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That is, if ψ ∈ PT then Aψ is periodic with period T .
To see that A is continuous let {ψi} ⊂ PT be such that ψi → ψ. By the

Dominated Convergence Theorem,

lim
i→∞

∣∣Aψi(t)−Aψ(t)
∣∣

≤ lim
i→∞

η

∫ t

t−T

{
|r(s)|

∣∣ψi(g(s))− ψ(g(s))
∣∣

+
∣∣∣q(s, ψi(s), ψi(g(s))

)
− q

(
s, ψ(s), ψ(g(s))

)∣∣∣}e− R t
s

a(r) dr ds

= η

∫ t

t−T

lim
i→∞

{
|r(s)|

∣∣ψi(g(s))− ψ(g(s))
∣∣

+
∣∣∣q(s, ψi(s), ψi(g(s))

)
− q

(
s, ψ(s), ψ(g(s))

)∣∣∣}e− R t
s

a(r) dr ds→ 0.

Hence A : PT → PT .
Finally, we show that A is completely continuous. Let B ⊂ PT be a closed

bounded subset and let C be such that ‖ψ‖ ≤ C for all ψ ∈ B. Then

|Aψ(t)| ≤ η

∫ t

t−T

{∣∣q(s, ψ(s), ψ(g(s))
)∣∣ + |r(s)|

∣∣ψ(g(s))
∣∣}e− R t

s
a(r) dr ds

≤ ηN
{∫ t

t−T

αC(s) ds+ C

∫ t

t−T

|r(s)| ds
}
≡ K,

whereN = maxs∈[t−T,t] e
−

R t
s

a(r) dr. And so, the family of functionsAψ is uniformly
bounded.

Again, let ψ ∈ B. Without loss of generality, we can pick τ < t such that
t− τ < T . Then

|Aψ(t)−Aψ(τ)|

= η
∣∣∣ ∫ t

t−T

{
q
(
s, ψ(s), ψ(g(s))

)
− r(s)ψ(g(s))

}
e−

R t
s

a(r) dr ds

− η

∫ τ

τ−T

{
q
(
s, ψ(s), ψ(g(s))

)
− r(s)ψ(g(s))

}
e−

R τ
s

a(r) dr ds
∣∣∣.

We can rewrite the left hand side as the sum of three integrals.
We obtain the following.

|Aψ(t)−Aψ(τ)|

≤ η

∫ t

τ

{∣∣∣q(s, ψ(s), ψ(g(s))
)∣∣∣ + |r(s)|

∣∣ψ(g(s))
∣∣} e− R t

s
a(r) dr ds

+ η

∫ τ

τ−T

{∣∣∣q(s, ψ(s), ψ(g(s))
)∣∣∣ + |r(s)|

∣∣ψ(g(s))
∣∣}

×
∣∣∣e− R t

s
a(r) dr − e−

R τ
s

a(r) dr
∣∣∣ ds

+ η

∫ t−T

τ−T

{∣∣∣q(s, ψ(s), ψ(g(s))
)∣∣∣ + |r(s)|

∣∣ψ(g(s))
∣∣} e− R τ

s
a(r) dr ds

≤ 2ηN
{∫ t

τ

aC(s) + C|r(s)| ds
}
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+ η

∫ τ

t−T

[
aC(s) + C|r(s)|

] ∣∣∣e− R t
s

a(r) dr − e−
R τ

s
a(r) dr

∣∣∣ ds.
Now

∫ t

τ
aC(s) + |r(s)| ds→ 0 as (t− τ) → 0. Also, since∫ τ

t−T

[
ac(s) + |r(s)|

] ∣∣∣e− R t
s

a(r) dr − e−
R τ

s
a(r) dr

∣∣∣ ds
≤

∫ T

0

[
ac(s) + |r(s)|

] ∣∣∣e− R t
s

a(r) dr − e−
R τ

s
a(r) dr

∣∣∣ ds,
and |e−

R t
s

a(r) dr − e−
R τ

s
a(r) dr| → 0 as (t− τ) → 0, then by the Dominated Conver-

gence Theorem,∫ τ

t−T

[
ac(s) + |r(s)|

]∣∣e− R t
s

a(r) dr − e−
R τ

s
a(r) dr

∣∣ ds→ 0

as (t− τ) → 0. Thus |Aψ(t)−Aψ(τ)| → 0 as (t− τ) → 0 independently of ψ ∈ B.
As such, the family of functions Aψ is equicontinuous on B.

By the Arzelà-Ascoli Theorem, A is completely continuous and the proof is
complete. �

Our next lemma gives a sufficient condition under which B : PT → PT is a
contraction.

Lemma 3.2. Suppose
‖c‖ ≤ ζ < 1. (3.4)

Then B : PT → PT is a contraction.

The proof of the above lemma is trivial and hence is omitted. We now define some
quantities that will be used in the following theorem. Let δ = maxt∈[0,T ] e

−
R t
0 a(r) dr,

R = supt∈[0,T ] |r(t)|, A =
∫ T

0
|α(s)| ds, B =

∫ T

0
|β(s)| ds, Γ =

∫ T

0
|γ(s)| ds. Also, we

need the following condition on the nonlinear term q.
(Q2) There exists periodic functions α, β, γ ∈ L1[0, T ], with period T , such that

|q(t, x, y)| ≤ α(t)|x|+ β(t)|y|+ γ(t),

for all x, y ∈ R.

Theorem 3.3. Suppose that conditions (A), (C), (G), (Q1), (Q2) hold. Let ζ > 0
be such that ‖c‖ ≤ ζ < 1. Suppose there exists a positive constant J satisfying the
inequality

Γδη +
(
ζ + δη(RT +A+B)

)
J ≤ J.

Then (1.1) has a solution ψ ∈ PT such that ‖ψ‖ ≤ J .

Proof. Define M = {ψ ∈ PT : ‖ψ‖ ≤ J}. By Lemma 3.1, the operator A : M → PT

is completely continuous. Since ‖c‖ ≤ ζ < 1, then by Lemma 3.2, the operator
B : M → PT is a contraction. Conditions, (i) and (ii) of Theorem 2.2 are satisfied.
We need to show that condition (iii) is fulfilled. To this end, let ψ,ϕ ∈ M. Then

|Aψ(t) + Bϕ(t)| ≤ |c(t)|
∣∣ϕ(g(t))

∣∣ + η

∫ t

t−T

|r(s)|
∣∣ψ(g(s))

∣∣e− R t
s

a(r) dr ds
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+ η

∫ t

t−T

∣∣q(s, ψ(s), ψ(g(s))
)∣∣e− R t

s
a(r) dr ds

≤ ζJ + η
(
RδJ + Γδ +AδJ +BδJ

)
= Γδη +

(
ζ + δη(R+A+B)

)
J ≤ J.

Thus ‖Aψ+Bϕ‖ ≤ J and so Aψ+Bϕ ∈ M. All the conditions of Theorem 2.2 are
satisfied and consequently the operator H defined in (3.1) has a fixed point in M.
By Lemma 2.1 this fixed point is a solution of (1.1) and the proof is complete. �

The condition (Q2) is a global condition on the function q. In the next theorem
we replace this condition with the following local condition.
(Q2*) There exists periodic functions α∗, β∗, γ∗ ∈ L1[0, T ], with period T , such

that |q(t, x, y)| ≤ α∗(t)|x| + β∗(t)|y| + γ∗(t), for all x, y with |x| < J and
|y| < J .

The constants A∗, B∗ and Γ∗ are defined as before with the understanding that the
functions α∗, β∗ and γ∗ are those from condition (Q2*).

Theorem 3.4. Suppose that conditions (A), (C), (G), (Q1) hold. Suppose there
exists a positive constant J such that (Q2*) holds and such that the inequality

Γ∗δη +
(
ζ + δη(RT +A∗ +B∗)

)
J ≤ J

is satisfied. Then equation (1.1) has a solution ψ ∈ PT such that ‖ψ‖ ≤ J .

The proof of the above theorem parallels that of Theorem 3.3. For our next
result, we give a condition for which there exists a unique solution of (1.1). We
replace condition (Q2) with the following condition.
(Q2†) There exists periodic functions α†, β†,∈ L1[0, T ], with period T , such that

|q(t, x1, y1)− q(t, x2, y2)| ≤ α†(t)|x1 − x2|+ β†(t)|y1 − y2|,
for all x1, x2, y1, y2 ∈ R.

Theorem 3.5. Suppose that conditions (A), (C), (G), (Q1), (Q2†) hold. If

ζ + δη(RT +A† +B†) < 1,

then (1.1) has a unique T -periodic solution.

Proof. Let ϕ,ψ ∈ PT . By (3.1) we have for all t,

|Hϕ(t)−Hψ(t)| ≤ |c(t)| ‖ϕ− ψ‖+ δη

∫ t

t−T

|r(s)| ‖ϕ− ψ‖ ds

+ δη

∫ t

t−T

∣∣∣q(s, ϕ(s), ϕ(g(s))
)
− q

(
s, ψ(s), ψ(g(s))

)∣∣∣ ds
≤ ζ‖ϕ− ψ‖+RδηT‖ϕ− ψ‖+ η(A† +B†)δ‖ϕ− ψ‖.

Hence, ‖Hϕ−Hψ‖ ≤
(
ζ+ηδ(RT +A†+B†)

)
‖ϕ−ψ‖. By the contraction mapping

principal, H has a fixed point in PT and by Lemma 2.1, this fixed point is a solution
of (1.1). The proof is complete. �

For our last result, we give sufficient conditions under which there exists positive
solutions of equation (1.1). We begin by defining some new quantities. Let

m ≡ min
s∈[t−T,t]

e−
R t

s
a(r) dr, M ≡ max

s∈[t−T,t]
e−

R t
s

a(r) dr.
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Given constants 0 < L < K, define the set M2 = {ψ ∈ PT : L ≤ ψ(t) ≤ K, t ∈
[0, T ]}.

Assume the following conditions hold.
(C2) c ∈ C1(R,R) satisfies c(t+T ) = c(t) for all t and there exists a c∗ > 0 such

that c∗ < c(t) for all t ∈ [0, T ].
(Q3) There exists constants 0 < L < K such that

(1− c∗)L
ηmT

≤ q(s, ρ, ρ)− r(s)ρ ≤ (1− ζ)K
ηMT

for all ρ ∈ M and s ∈ [t− T, t].

Theorem 3.6. Suppose that conditions (A), (C2), (G), (Q1), (Q3) hold. Suppose
that there exists ζ such that ‖c‖ ≤ ζ < 1. Then there exists a positive solution of
(1.1).

Proof. As in the proof of Theorem 3.3, we just need to show that condition (iii) of
Theorem 2.2 is satisfied. Let ϕ,ψ ∈ M. Then

Aψ(t) + Bϕ(t)

= c(t)ϕ(g(t)) + η

∫ t

t−T

[
q
(
s, ψ(s), ψ(g(s))

)
− r(s)ψ(g(s))

]
e−

R t
s

a(r) dr ds

≥ c∗L+ ηmT
(1− c∗)L
ηmT

= L.

Likewise,

Aψ(t) + Bϕ(t) ≤ ζK + ηMT
(1− ζ)K
ηMT

= K.

By Theorem 2.2, the operator H has a fixed point in M2. This fixed point is a
positive solution of (1.1) and the proof is complete. �
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