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A NONLINEAR NEUTRAL PERIODIC DIFFERENTIAL
EQUATION

ERIC R. KAUFMANN

ABSTRACT. In this article we consider the existence, uniqueness and positivity
of a first order non-linear periodic differential equation. The main tool em-
ployed is the Krasnosel’skii’s fixed point theorem for the sum of a completely
continuous operator and a contraction.

1. INTRODUCTION

Let T > 0 be fixed. We consider the existence, uniqueness and positivity of
solutions for the nonlinear neutral periodic equation

(1) = —a(t)z(t) +c(t)2’ (g(t)) g’ (t) + q(t, 2 (1), 2(9(1))),

x(t+T) = xz(t). (1.1)

In recent years, there have been several papers written on the existence, unique-
ness, stability and/or positivity of solutions for periodic equations of forms similar
to equation ; see [7, [8, [, 10, 3] 14, 5] [T6] and references therein. Neutral
periodic equations such as arise in blood cell models (see for example [I], [17]
and [I8]) and food-limited population models (see for example [2] [3 [, [5, 6] 12]).
In the above mentioned papers, the nonlinear term ¢ and the function a are as-
sumed to be continuous in all arguments. We impose much weaker conditions on
the nonlinear term ¢ and the argument function a.

The map f : [0,7] x R™ — R is said to satisfy Carathéodory conditions with
respect to L1[0, 7] if the following conditions hold.

(i) For each z € R™, the mapping t — f(¢, z) is Lebesgue measurable.
(ii) For almost all ¢ € [0, 7], the mapping z — f(¢, z) is continuous on R™.
(iii) For each r > 0, there exists o, € L'([0,7],R) such that for almost all
t € [0,7] and for all z such that |z| < r, we have |f(t,2)| < a.(¢).

In Section 2 we present some preliminary material that we will employ to show
the existence of a solution of ([L.1)). Also, we state a fixed point theorem due to
Krasnosel’skii. We present our main results in Section 3.
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2. PRELIMINARIES

Define the set Pr = {¢ € C(R,R) : ¢¥(t + T) = ¢(¢)} and the norm ||¢|| =
supiepo,r) [¥(t)|. Then (Pr,|| - []) is a Banach space. We will assume that the
following conditions hold.

(A) a € L'(R,R) is bounded, satisfies a(t + T') = a(t) for all t and
1
—#0.
n
(C) c e CYR,R) satisfies c(t + T) = c(t) for all ¢.
(G) g € CY(R,R) satisfies g(t +T) = g(t) for all t.
(Q1) g satisfies Carathéodory conditions with respect to L'[0,T], and
q(t +T,2,y) = q(t, 2,y).
In our first lemma, we state the integral equation equivalent to the periodic
equation (1.1).

Lemma 2.1. Suppose that conditions (A), (C), (G) and (Q1) hold. Then x € Pr
is a solution of equation (L.1)) if, and only if, x € Pr satisfies

1—e" Jipa(r)dr =

o) = (o) +1 [ Jals.a(s)alo(e)) —r(oala(s)]e 0w s, (21)
where
r(s) = a(s)c(s) + c'(s). (2.2)
Proof. Let x € Pr be a solution of . We first rewrite in the form
2'(t) + a(t)z(t) = c(t)z’(9(t)g' (t) + a(t, 2(t), z(g(1)))-

Multiply both sides of the above equation by el e dr and then integrate the
resulting equation from ¢t — T to t.

.%‘(t)efot a(r)dr x(t _ T)efOFT a(r) dr

¢ . . (2.3)
:/ c(s)a' (g(s))g (s)eds T 4 g (s, 2(s), x(g(s)))elo 9 " g,
t—T
Now divide both sides of by eloa(mdr Since z € Pr, then
t
x@%:i/ c(s)a' (g(s))g (s)e™ J< 2 g (s, 2(s),2(g(s)))e [ 9 I ds. (2.4)
t—T

Consider the first term on the right hand side of (2.4]).

/ ()2 (g(s))g/ (s)e= ¥ *Prds,
t—T

Integrate this term by parts to get,
t

c(s)a' (g(s))g (s)e™ Js o) drgs
-T

= c(t)z(g(t)) — e~ J=r “O et — T)a(g(t - T))
d

- /t = [e(s)e™ J atr) x(g(s)) ds.

-T

T~
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Since ¢(t) = c(t —T), g(t) = g(t — T), and = € Pr, then

t
| e tgleng e e as

i . (2.5)
— Celtalo®) - [ L) o0 ag()ds
n t—r ds
Finally, we put the right hand side of into and simplify. We obtain that
if x € Pr is a solution of , then x satisfies

#(t) = e(t)a(g(0) + 1 / la(s2().2(0()  r(s)e(g(s)]e 0 ds,

where 7(s) = a(s)c(s) + ¢/(s).
The converse implication is easily obtained and the proof is complete. O

We end this section by stating the fixed point theorem that we employ to help
us show the existence of solutions to equation ([1.1)); see [I].

Theorem 2.2 (Krasnosel’skil). Let M be a closed convexr nonempty subset of a
Banach space (B,|| - ||). Suppose that

(i) the mapping A : M — B is completely continuous,
(ii) the mapping B : M — B is a contraction, and
(iii) x,y € M, implies Ax + By € M.
Then the mapping A+ B has a fixed point in M.

3. EXISTENCE RESULTS

We present our existence results in this section. To this end, we first define the
operator H by

00 = et0la®) +n [ [als0(6),00a(s) = r(s)ola(s)]e o ds,

(3.1)

where r is given in equation (2.2]). From Lemma we see that fixed points of H
are solutions of (|1.1)) and vice versa.

In order to employ Theorem [2:2] we need to express the operator H as the sum

of two operators, one of which is completely continuous and the other of which is a
contraction. Let Hi(t) = A (t) + By (t) where

By(t) = c(t)(g(t)) (3.2)

and

t
Aip(t) = 77/ ; [a(s,0(5), ¢(g(5))) = r(s)v(g(s))]e™ = “ " ds. (3.3)

t7
Our first lemma in this section shows that A : Pr — Pr is completely continuous.

Lemma 3.1. Suppose that conditions (A), (C), (G), (Q1) hold. Then A: Pr — Pr
is completely continuous.

Proof. From ({3.3) and conditions (A), (C), (G) and (Q1), it follows trivially that
r(c+T)=r(o) and e~ Jolratrydr — o= [ alp)dp, Consequently, we have that

Ap(t+T) = Ap(t).
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That is, if ¢ € Pr then A is periodic with period T.
To see that A is continuous let {¢;} C Pr be such that ¢¥; — . By the
Dominated Convergence Theorem,

T [Avs (1) — Au(1)|
<Jimn [ {6 fwstats) — (a(s)]

+ [as. 409,01 (0())) — (s 005). wla(s) | Jem 1 o) ds
=u [ Jim ()l [(a() ~ o)

_p =

gl vi(), va(9(50) = als, wls), wlgls)) | e O ds 0.

Hence A : Pr — Pr.
Finally, we show that A is completely continuous. Let B C Pr be a closed
bounded subset and let C' be such that |[¢]] < C for all ) € B. Then

AP <n / {la(s, 05, (g(s) | + Ir(s) [(g(s))] fe I ) ds

t
gnN{/ ds+C/ |ds =K,
t_

a(r) dT

where N = maxgc;_7,¢ €~ I And so, the family of functions .4 is uniformly

bounded.
Again, let v € B. Without loss of generality, we can pick 7 < t such that
t—7 <T. Then

A (t) — Ap(7)|
[ a6 06060) — rspitaton e 40 as

=1
_ T)/TTT {q(s,i/](S)ﬂl)(g(s))) — r(s)(g(s ))} et gy

We can rewrite the left hand side as the sum of three integrals.
We obtain the following.

|AY(t) — Ay (T)|
= "/T {’q(s’d}(s),w(g(s)))\ + Ir(s)\|w(g(s))|} o Jlatrydr g
o] (bt ot

> ‘e—f;a(r)dr _ e_f; a(r)dr ds

+n/:TT{’q(s,w(s),w(g(s)))] +|T(S)\|1/)(g(5))|}e* J7almdr g

< omN {/: ac(s) + Clr(s)| ds}
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+ 77/ lac(s) + C|r(s)]] ‘e_ [la(rydr _ = [Ta(r)dr| ;o
t—T
Now f: ac(s) +|r(s)|ds — 0 as (t — 1) — 0. Also, since
/ [ac(s) + |7”(s)|] ‘ef Jya(r)ydr _ e~ ST a(r)dr ds
t—T
T t )
< / [CLC(S) + |’)"(S)H }ef Sy a(r)dr _ e~ ST a(r)dr ds,
0

and |e” Joatrydr _ o= ] a(r) | — 0 as (t —7) — 0, then by the Dominated Conver-
gence Theorem,

ac(s) + |r(s)|][e™ Js @ dr _ o= [Talndr| gg g
t—T

as (t —7) — 0. Thus |Ay(t) — AY(7)| — 0 as (t — 7) — 0 independently of ¢ € 5.
As such, the family of functions At is equicontinuous on B.

By the Arzela-Ascoli Theorem, A is completely continuous and the proof is
complete. (Il

Our next lemma gives a sufficient condition under which B : P — Pr is a
contraction.

Lemma 3.2. Suppose
lel < ¢ <1 (3.4)

Then B : Pr — Pr is a contraction.

The proof of the above lemma is trivial and hence is omitted. We now define some
quantities that will be used in the following theorem. Let § = max;c[o,7) e~ J§ atm) dr.
T T T
R =sup,cioq Ir(t)], A= [5 le(s)|ds, B= [; [B(s)|ds, T = [; [v(s)|ds. Also, we
need the following condition on the nonlinear term gq.
(Q2) There exists periodic functions «, 3,7 € L'[0, T], with period T, such that

lq(t, 2, y)| < a(®)]x] + B@)|y| + (1),
for all z,y € R.

Theorem 3.3. Suppose that conditions (A), (C), (G), (Q1), (Q2) hold. Let ¢ >0
be such that ||c|| < ¢ < 1. Suppose there exists a positive constant J satisfying the
inequality

Ién+ (¢ +on(RT+ A+ B))J < J.
Then has a solution ¢ € Pr such that ||| < J.

Proof. Define M = {¢) € Pr : ||| < J}. By Lemma [3.1] the operator A: M — Pr
is completely continuous. Since ||c[| < ¢ < 1, then by Lemma the operator
B :M — Pr is a contraction. Conditions, (i) and (ii) of Theorem are satisfied.
We need to show that condition (iii) is fulfilled. To this end, let ¢, o € M. Then

A1) + Beo(t)] < Je()l|o(a(®)] + 1 /

t—

t

. 17 (s)| [ (g(s))|e~ I+ 2@ r g
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+ n~/t_T ’q(sﬂﬁ(s)ﬂl)(g(s))”e— f: a(r)dr ds

< ¢J +n(R6J 416+ AdJ + B6J)
=Don+ ((+0on(R+ A+ B))J < J.

Thus ||Ay + By|| < J and so A+ By € M. All the conditions of Theorem [2.2] are
satisfied and consequently the operator H defined in ([3.1)) has a fixed point in M.
By Lemma this fixed point is a solution of (|1.1)) and the proof is complete. O

The condition (Q2) is a global condition on the function ¢. In the next theorem
we replace this condition with the following local condition.
(Q2*) There exists periodic functions a*, 3*,v* € L'[0,T], with period T, such
that |q(¢, z,y)| < a*(t)|z] + 8*(¢)|y| + v*(t), for all z,y with |z| < J and
lyl < J.
The constants A*, B* and I'* are defined as before with the understanding that the
functions a*, 8* and v* are those from condition (Q2*).

Theorem 3.4. Suppose that conditions (A), (C), (G), (Q1) hold. Suppose there
exists a positive constant J such that (Q2*) holds and such that the inequality

I*6n+ ((+on(RT + A*+ B*))J < J
is satisfied. Then equation (L.1)) has a solution v € Pr such that |0 < J.

The proof of the above theorem parallels that of Theorem [3.3] For our next
result, we give a condition for which there exists a unique solution of (1.1). We
replace condition (Q2) with the following condition.

(Q2") There exists periodic functions af, 7, € L'[0, T], with period T, such that
lq(t, 21, m1) — a(t, 22, 92)| < of (8)|z1 — 22| + BT () |y1 — v2l,
for all z1,z2,y1,y2 € R.
Theorem 3.5. Suppose that conditions (A), (C), (G), (Q1), (Q2") hold. If
¢+ 6n(RT+ A"+ BY) <1,
then has a unique T-periodic solution.
Proof. Let p,9 € Pr. By we have for all ¢,

[Hp(t) = Hp@)] < le(®)] o = ¢ +5n/t_T [r(s)] llp = [l ds

o [ Jals.o(6)pla(s)) = als v(s),vl0(6)) | ds

< ¢lle — | + RonT||lp — || +n(AT + B)é[l¢ — ||

Hence, ||[Hp— H|| < (C+nd(RT+ AT+ BY))|¢o— . By the contraction mapping
principal, H has a fixed point in Pr and by Lemma[2.1] this fixed point is a solution
of (1.1). The proof is complete. a

For our last result, we give sufficient conditions under which there exists positive
solutions of equation (|1.1)). We begin by defining some new quantities. Let

m= min e_fst“(r)dr, M= max e Joamdr

set—T,t] set—T,t]



EJDE-2010/88 A NONLINEAR NEUTRAL PERIODIC DIFFERENTIAL EQUATION 7

Given constants 0 < L < K, define the set My = {¢p € Pr : L < 9¢(t) < K,t €
[0, 77}
Assume the following conditions hold.

(C2) c € CHR,R) satisfies c(t+T) = c(t) for all t and there exists a ¢* > 0 such
that ¢* < ¢(t) for all t € [0, 7.
(Q3) There exists constants 0 < L < K such that

(1—-¢*)L
nmmT
forall pe M and s € [t — T, 1.

Theorem 3.6. Suppose that conditions (A), (C2), (G), (Q1), (Q3) hold. Suppose
that there exists ¢ such that ||c|| < ¢ < 1. Then there exists a positive solution of

(L.1).

Proof. As in the proof of Theorem we just need to show that condition (iii) of
Theorem [2.2] is satisfied. Let ¢, € M. Then

A(t) + Bo(t)
= celo(®) +1 | [alos ) 00050) — rlo)etalon)] e 0 s

(1-c"L
mT

(1-QK

< Q(Sapa p) - T(S)p < UMT

>c*L+nmT = L.

Likewise,

(1-QK

AU(t) + Bp(t) < (K +nMT =K.

nMT
By Theorem the operator H has a fixed point in My. This fixed point is a
positive solution of (1.1) and the proof is complete. O
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