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INITIAL-BOUNDARY VALUE PROBLEMS IN A PLANE
CORNER FOR THE HEAT EQUATION

BORYS V. BAZALIY, NATALIYA VASYLYEVA

Abstract. We study the Dirichlet initial problem for the heat equation by

the Fourier-Bessel method in a plane corner. We prove classical solvability for

the problem in weighted Hölder spaces.

1. Introduction

There are various approaches in investigations of initial boundary value problems
for parabolic equations in domains with singularities. In the works of Grisvard
[9], Solonnikov [13], Amann [1], Garroni, Solonnikov and Vivaldi [7], Frolova [6],
the existence of solutions and qualitative properties of solutions are described in
the terms of Sobolev or weighted Sobolev spaces. The similar results in Hölder
classes are represented in works Guidetti [10], Colombo, Guidetti, and Lorenzi [5],
Solonnikov [13] (see also references in these works).

Note that in the pointed out works the method of the Green function or the
theory of analytic semigroups were used to construct some explicit representation
of a solution and to obtain the optimal estimates.

In the present paper we use the classical Fourier method to get a solution in
the form of Fourier-Bessel series in an angular domain. Then we apply some re-
sults on trigonometric series theory, in particular, Bernstein theorem and Jackson’s
construction of approximating trigonometric polynomials to obtain estimates of
the higher derivatives of the solution to the Dirichlet initial problem for the heat
equation in weighted Hölder spaces.

Sometimes a classical solution of the initial value problem for a parabolic equa-
tion is defined as a function, that has required higher derivatives in any internal
subdomain of a cylindrical domain. In the one dimensional case a similar result
was published by Chernyatin [4] where a solution was represented as the sum of the
trigonometric series. But to the best of our knowledge, we have not found similar
results concerning with two-dimensional case.

The paper is organized as follows: in Section 2, we formulate the problem, intro-
duce the appropriate functional space, and show the formal solution to the Dirichlet
initial problem for the heat equation in the form of the sum of the trigonometric
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series. Section 3 contains some auxiliary estimates. In Section 4, we recall some
results from the trigonometric series theory, and in Section 5 we show that the
trigonometric series representing the formal solution converge together with its
higher order derivatives. Section 6 consists of some final remarks to the existence
and uniqueness theorem and some results concerning the parabolic equation with
singular coefficients.

2. The statement of the problem and main results

We use the polar coordinate system (r, ϕ) on a plane R2. Let

G = {(r, ϕ) : r > 0, 0 < ϕ < θ}, θ ∈ (0, 2π),

be an infinite angle on R2, GT = G× [0, T ], T ∈ R+, and its boundary be

g = g0 ∪ g1, g0 = {(r, ϕ) : r > 0, ϕ = 0},
g1 = {(r, ϕ) : r > 0, ϕ = θ}, giT = gi × [0, T ], i = 0, 1.

Let α ∈ (0, 1), l be an integer. We use the weighted Hölder space P l+α,
l+α
2

s (GT ) of
functions u(r, ϕ, t) with the finite norm

‖u‖
P

l+α,(l+α)/2
s (GT )

≡ |u|l+αs,GT

=
∑

0≤β1+β2+2a≤l

sup
(r,ϕ,t)∈GT

r−s+β1+2a|Dβ1
r D

β2
ϕ D

a
t u|

+
∑

0<l+α−(β1+β2+2a)<2

{
〈Dβ1

r D
β2
ϕ D

a
t u〉

(
l+α−β1−β2−2a

2 )

t;s−β1−2a−α,GT

+ [Dβ1
r D

β2
ϕ D

a
t u]

(α,
l+α−β1−β2−2a

2 )

r,t;s−β1−2a−2α,GT
+ [Dβ1

r D
β2
ϕ D

a
t u]

(α,
l+α−β1−β2−2a

2 )

ϕ,t;s−β1−2a−α,GT

}
+

∑
β1+β2+2a=l

{
〈Dβ1

r D
β2
ϕ D

a
t u〉

(α)
r;s−β1−2a−α,GT

+ 〈Dβ1
r D

β2
ϕ D

a
t u〉

(α)
ϕ;s−β1−2a,GT

}
,

with the seminorms defined as follows, r = min(ρ, r), α, γ ∈ (0, 1):

〈v〉(α)
r;µ,GT

= sup
(ρ,ϕ,t),(r,ϕ,t)∈GT , |ρ−r|≤r/2

r−µ
|v(ρ, ϕ, t)− v(r, ϕ, t)|

|ρ− r|α
,

〈v〉(α)
ϕ;µ,GT

= sup
(r,ϕ,t),(r,ψ,t)∈GT

r−µ
|v(r, ϕ, t)− v(r, ψ, t)|

|ϕ− ψ|α
,

〈v〉(γ)t;µ,GT
= sup

(ρ,ϕ,t),(r,ϕ,τ)∈GT

r−µ
|v(r, ϕ, t)− v(r, ϕ, τ)|

|t− τ |γ
,

[v](α,γ)r,t;µ,GT
= sup

(ρ,ϕ,t),(r,ϕ,t),

(r,ϕ,τ),(ρ,ϕ,τ)∈GT

|ρ−r|≤r/2

r−µ
|v(r, ϕ, t)− v(r, ϕ, τ)− v(ρ, ϕ, t) + v(ρ, ϕ, τ)|

|ρ− r|α|t− τ |γ
,

[v](α,γ)ϕ,t;µ,GT
= sup

(r,ϕ,t),(r,ψ,t),

(r,ϕ,τ),(r,ψ,τ)∈GT

r−µ
|v(r, ϕ, t)− v(r, ϕ, τ)− v(r, ψ, t) + v(r, ψ, τ)|

|ϕ− ψ|α|t− τ |γ
.
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The seminorms [·](α,γ) were introduced in [14]. In a similar way we introduce the
space P l+αs (G) of the functions u(r, ϕ) on G. Hereinafter we will use the subspace

P̂
l+α, l+α

2
s (GT ) of the space P l+α,

l+α
2

s (GT ) which is introduced as follows. Let

RT = {(r, t) : r > 0, t ∈ (0, T )},

and function v(r, ϕ, t) ∈ P l+α,
l+α
2

s (GT ) be such that

v(r, ϕ, t) =
∞∑
k=1

vk(r, t) sinλkϕ, λk =
πk

θ
,

where

vk(r, t) =
2
θ

∫ θ

0

v(r, ψ, t) sin(λkψ)dψ.

We will say the function v(r, ϕ, t) ∈ P̂ l+α,
l+α
2

s (GT ) if v(r, ϕ, t) ∈ P l+α,
l+α
2

s (GT ) and
the following inequality holds:

S(v) bP l+α,(l+α)/2
s (GT )

:=
∞∑
k=1

( ∑
0≤β1+β2+2a≤l

sup
(r,t)∈RT

r−s+β1+2aλβ2
k |D

β1
r D

a
t vk(r, t)|

+
∑

0<l+α−(β1+β2+2a)<2

{
〈Dβ1

r D
a
t vk〉

(
l+α−β1−β2−2a

2 )

t;s−β1−2a−α,RT

+ [Dβ1
r D

a
t vk]

(α,
l+α−β1−β2−2a

2 )

r,t;s−β1−2a−2α,RT

}
λβ2
k

+
∑

β1+β2+2a=l

λβ2
k 〈D

β1
r D

a
t vk〉

(α)
r;s−β1−2a−α,RT

)
<∞.

The subspace P̂ l+αs (G) of the function v(r, ϕ) on G is introduced similarly. One

can easily check that if v(r, ϕ, t) ∈ P̂
l+α, l+α

2
s (GT ) or v(r, ϕ) ∈ P̂ l+αs (G) then there

are the constants ci or c̃i, i = 1, 2, such that

c1‖v‖
P

l+α, l+α
2

s (GT )

≤ S(v) bP l+α,(l+α)/2
s (GT )

+
∑

β1+β2+2a=l

〈Dβ1
r D

β2
ϕ D

a
t v〉

(α)
ϕ;s−β1−2a,GT

+
∑

0<l+α−(β1+β2+2a)<2

[Dβ1
r D

β2
ϕ D

a
t v]

(α,
l+α−β1−β2−2a

2 )

ϕ,t;s−β1−2a−α,GT

≤ c2‖v‖
P

l+α, l+α
2

s (GT )
;

c̃1‖v‖P l+α
s (G) ≤ S(v) bP l+α

s (G) +
∑

β1+β2=l

〈Dβ1
r D

β2
ϕ v〉

(α)
ϕ;s−β1,G

≤ c̃2‖v‖P l+α
s (G). (2.1)

Along with the spaces P l+α,
l+α
2

s (GT ), we will use the usual Hölder classes Cα,βx,t :=
Cα,βx,t (ΩT ) where β ∈ (0, 1), x ∈ Ω, t ∈ (0, T ), and

‖u‖Cα,β
x,t (ΩT ) = sup

(x,t)∈ΩT

|u(x, t)|+ 〈u〉(α)
x + 〈u〉(β)

t ,

〈u〉(α)
x = sup

(x,t),(y,t)∈ΩT

|u(x, t)− u(y, t)|
|x− y|α

,
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〈u〉(β)
t = sup

(x,t),(x,τ)∈ΩT

|u(x, t)− u(x, τ)|
|t− τ |β

.

We are looking for a solution of the Dirichlet initial problem

∂u

∂t
− 1
r

∂

∂r
r
∂u

∂r
− 1
r2
∂2u

∂ϕ2
= f(r, ϕ, t), (r, ϕ, t) ∈ GT ,

u|giT
= 0, u|t=0 = u0(r, ϕ), (r, ϕ) ∈ G.

(2.2)

We suppose that
f(r, 0, t) = f(r, θ, t) = 0. (2.3)

As can be seen from further arguments, conditions (2.3) are, at least formally,
necessary to get a solution to problem (2.2) in the form of the Fourier-Bessel series
in the space P 2+α,(2+α)/2

s+2 (GT ). Note that, due to the presence of the seminorms
[·](α,α/2) in the definition of the norm in the space P 2+α,(2+α)/2

s+2 (GT ), the series
solution is more smooth than the solution from the ordinary weighted Hölder spaces.

Theorem 2.1. Let equality (2.3) and the consistency conditions of the first order
in problem (2.2) be fulfilled. The functions f ∈ P̂

α,α/2
s (GT ) and u0 ∈ P̂ 2+α

s+2 (G).
Then there exists a unique solution u ∈ P̂ 2+α,(2+α)/2

s+2 (GT ) with

‖u‖
P

2+α,(2+α)/2
s+2 (GT )

+ S(u) bP 2+α,(2+α)/2
s+2 (GT )

≤ const.(‖f‖
P

α,α/2
s (GT )

+ ‖u0‖P 2+α
s+2 (G) + S(f) bPα,α/2

s (GT )
+ S(u0) bP 2+α

s+2 (G)),
(2.4)

where the constant in (2.4) is independent of u, −π/θ+α < s+2 < π/θ, α ∈ (0, 1).

Under the proof of Theorem 2.1, we will omit the subindex GT in the notations
of the seminorms if it is clearly from the context. We will assume that the function
f(r, ϕ, 0) = 0 and, hence, can be extended by zero onto t < 0 with the same norm.

It can be easily seen that one of the factor in the eigenfunctions to problem (2.2)
is sin(λkφ), λk = πk

θ , k = 1, 2, . . . . So, after the standard procedure of separation
of variables (see Appendix 7.1), we get the series representation of the solution:

u(r, ϕ, t) = R1(r, ϕ, t) +R2(r, ϕ, t), (2.5)

R1(r, ϕ, t) =
∑
k

sin(λkϕ)
∫ t

−∞
dτ

∫ ∞

0

dρ
ρ

2(t− τ)
e−

ρ2+r2

4(t−τ) Iλk
(

ρr

2(t− τ)
)bk(ρ, τ)

≡
∑
k

R1,k(r, t) sin(λkϕ),

(2.6)

R2(r, ϕ, t) =
∑
k

sin(λkϕ)
∫ ∞

0

dρ
ρ

2t
e−

ρ2+r2

4t Iλk

(ρr
2t

)
u0k(ρ), (2.7)

u0k(r) =
2
θ

∫ θ

0

u0(r, ψ) sin(λkψ)dψ, bk(r, t) =
2
θ

∫ θ

0

f(r, ψ, t) sin(λkψ)dψ, (2.8)

where Iµ(z) is a modified Bessel function. Equality (2.5) means that the desired
solution is the sum of the volume potential R1(r, φ, t) and the potential of the initial
data R2(r, φ, t).

The general case of f(r, ϕ, t); i.e., f(r, ϕ, 0) 6= 0, can be reduced to mention above
with the following procedure. Let in problem (2.2), (2.3), f(r, ϕ, 0) ∈ P̂αs (G), and
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the function ŵ(r, ϕ) be a solution of the problem

∆ŵ = −f(r, ϕ, 0) G, ŵ|g = 0,

and ŵ(r, ϕ) ∈ P̂ 2+α
s+2 (G) (see [16]). Then we consider the functions w(r, ϕ, t) =

ŵ(r, ϕ) cos t and v(r, ϕ, t) = u(r, ϕ, t)− w(r, ϕ, t) such that

∂v

∂t
−∆v =

∂u

∂t
−∆u+ ŵ sin t+ ∆ŵ cos t

= f(r, ϕ, t) + ŵ(r, ϕ) sin t− f(r, ϕ, 0) cos t ≡ F (r, ϕ, t) in GT ,

v|giT
= 0, v|t=0 = u0(r, ϕ)− ŵ(r, ϕ).

(2.9)

One can see that the consistency conditions of the first order are fulfilled in problem
(2.9); the function F (r, ϕ, t) ∈ P̂α,α/2s (GT ), satisfies condition (2.3), and F (r, ϕ, 0) =
0.

Thus, the investigation of problem (2.2) can be reduced to study of problem
(2.9) with the homogeneous right part in the equation if t ≤ 0.

Note that, to prove inequality (2.4) and u ∈ P̂ 2+α,(2+α)/2
s+2 (GT ) in Theorem 2.1, it

is sufficient to show the following estimate (due to the first of inequalities in (2.1))

S(u) bP 2+α,(2+α)/2
s+2 (GT )

+
∑

β1+β2+2a=2

〈Dβ1
r D

β2
ϕ D

a
t u〉

(α)
ϕ;s+2−β1−2a,GT

+
∑

0<2+α−(β1+β2+2a)<2

[Dβ1
r D

β2
ϕ D

a
t u]

(α,
2+α−β1−β2−2a

2 )

ϕ,t;s+2−β1−2a−α,GT

≤ const.
(
‖f‖

P
α,α/2
s (GT )

+ ‖u0‖P 2+α
s+2 (G)

)
.

(2.10)

In the all following inequalities, the constants do not depend on k.

3. Convergence of series (2.6) and (2.7)

Let us denote as

∆s =
∫ t

0

dτ

∫ ∞

0

dρ
ρ1+s

2τ
e−

ρ2+r2

4τ Iλk
(
ρr

2τ
). (3.1)

Lemma 3.1. The following estimate holds

∆s ≤
r2+s

λ2
k − (s+ 2)2

, if s+ 2 < π/θ. (3.2)

Proof. The successive changes of variables: ρr
2τ = x and x2τ/r2 = z leads to

∆s = rs
∫ t

0

dτ

∫ ∞

0

21+s(
xτ

r2
)1+se−

r2
4τ −τ

x2

r2 Iλk
(x)dx

= 21+s

∫ ∞

0

r2+s

x3+s
Iλk

(x)dx
∫ t x2

r2

0

z1+se−z−
x2
4z dz

≤ 21+s

∫ ∞

0

r2+s

x3+s
Iλk

(x)dx
∫ ∞

0

z1+se−z−
x2
4z dz.

The internal integral in the above inequality can be calculated, [8, 3.471 (9)],∫ ∞

0

z1+se−z−
x2
4z dz = 2(

x2

4
)1+s/2K2+s(x)
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where Kµ(z) is a modified Bessel function of the second kind. Hence,

∆s ≤
∫ ∞

0

r2+s

x
Iλk

(x)K2+s(x)dx. (3.3)

The condition s+ 2 < π/θ is sufficient to obtain the boundedness of the right part
in (3.3) for all k. Really, we take into account the tabular integral in the right part
of (3.3) [8, 6.576(5)], so that∫ ∞

0

1
x
Iλk

(x)K2+s(x)dx =
1
4

Γ((λk + s+ 2)/2)Γ((λk − s− 2)/2)
Γ(λk + 1)

× F ((λk + s+ 2)/2, (λk − s− 2)/2;λk + 1; 1)

=
1
4

1
λ2

k

4 − (1 + s
2 )2

,

(3.4)

here we employed the definition of the function F (α, β; γ; z) [8, 9.111]. Inequality
(3.3) together with (3.4) complete the proof of Lemma 3.1. �

Similar arguments lead to forllowing remark.

Remark 3.2. If s+ 2 < π/θ, then∫ ∞

0

dτ

∫ ∞

0

dρ
ρ1+s

2τ
e−

ρ2+r2

4τ Iλk
(
ρr

2τ
) = const.

r2+s

λ2
k − (s+ 2)2

.

Note that we take advantage of some tabular integrals in order to obtain the
sharp estimates of the weight in the statement of Lemma 3.1. It is possible to
apply simpler arguments to derive only the asymptotic ∆s with respect to λk.

Hereinafter we will use the following properties of the Bessel functions

Iµ(z) ∼ const.
(z/2)µ

Γ(µ+ 1)
, for small values of z,

Iµ(z) ∼ ez/
√

2πz +
C(µ)
z3/2

, for large values of z
(3.5)

where C(µ) is some function,

Kµ(z) ∼ const.z−µ for |µ| ≤ const. and small values of z,

Kµ(z) ∼ e−z/
√

2πz for |µ| ≤ const. and large values of z.
(3.6)

Lemma 3.3. The following estimate holds for s < π/θ:

Ds := Ds(r, t) =
∫ ∞

0

dρ
ρ1+s

2t
e−

ρ2+r2

4t Iλk

(ρr
2t

)
≤ const.rs. (3.7)

Proof. Let us consider the problem

∂u

∂t
−∆u = 0 in GT ,

u|t=0 = rs sinλkϕ, u|giT
= 0.

Denote by w(r, ϕ) = rs sinλkϕ and introduce the function v(r, ϕ, t) = u(r, ϕ, t) −
w(r, ϕ). The function w(r, ϕ) satisfies the equation

1
r

∂

∂r
r
∂w

∂r
+

1
r2
∂2w

∂ϕ2
= rs−2(s2 − λ2

k) sinλkϕ,
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and v(r, ϕ, t) is a solution of the problem

∂v

∂t
−∆v = rs−2(s2 − λ2

k) sinλkϕ in GT ,

v|t=0 = 0, v|giT
= 0.

Hence, by (2.6)

v(r, ϕ, t) = (s2 − λ2
k) sin(λkϕ)

∫ t

0

dτ

∫ ∞

0

dρ
ρ1+s−2

2(t− τ)
e−

ρ2+r2

4(t−τ) Iλk
(

ρr

2(t− τ)
),

and due to Lemma 3.1 |v(r, ϕ, t)| ≤ const.rs, so that

|u(r, ϕ, t)| ≤ const.rs.

On the other hand the solution u(r, ϕ, t) of the initial problem can be represented
by using (2.7)

u(r, ϕ, t) = sin(λkϕ)
∫ ∞

0

dρ
ρ1+s

2t
e−

ρ2+r2

4t Iλk
(
ρr

2t
).

If we take here ϕ = θ
2k , we will obtain inequality (3.7). �

Corollary 3.4. The inequality

e−zz1/2Iλk
(z) ≤ const., z ∈ (0,∞)

is valid for any k with a constant is independent of k.

The proof of this Corollary is given in Appendix (see subsection 7.2).

Lemma 3.5. The following equality holds if s = 0,

lim
t→0

D0 = 1 (3.8)

for every λk.

Proof. First of all we will prove the following fact. Let

∆−2,s :=
∫ t

0

dτ

∫ ∞

0

1
2τρ1−s e

− r2+ρ2

4τ Iλk
(
rρ

2τ
)dρ

where s will be chosen below. We show that limt→0 ∆−2,s = 0. In fact, using the
changes of variables ρr

2τ = x and τ x
2

r2 = z,

∆−2,s =
∫ ∞

0

( 1
2x

)1−s
r−sIλk

(x)dx
∫ t

0

1
τ1−s e

− r2
4τ −τ

x2

r2 dτ

=
(1

2

)1−s ∫ ∞

0

rs

x1+s
Iλk

(x)dx
∫ t x2

r2

0

z−1+se−z−
x2
4z dz

≤ const.
∫ ∞

0

rs

x1+s
Iλk

(x)
(
t
x2

r2

)α
dx

∫ ∞

0

z−1+s−αe−z−
x2
4z dz

≤ const.tαrs−2α

∫ ∞

0

1
x1−α Iλk

(x)K−α+s(x)dx.

To estimate the inner integral in the next to last inequality, we used the integral
representation of the function Kν(y) [8, 8.432(6)]. The convergence of the integral
in the right part as x → 0 is ensured (see (3.5),(3.6)) if −1 + 2α + λk − s > −1,
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i.e. for s < 2α+ λk ≤ 2α+ π/θ. The convergence of the integral as x→∞ follows
from the second expressions in (3.5) and (3.6). That is why

lim
t→0

∆−2,s = 0. (3.9)

The function u(r, ϕ) = sin(λkϕ) where λk is some fixed number from the set {λk}
is the solution of the problem

∂u

∂t
− 1
r

∂

∂r
r
∂u

∂r
− 1
r2
∂2u

∂ϕ2
=
λk

2

r2
sin(λkϕ),

u|t=0 = sin(λkϕ), u|ϕ=0,θ = 0,

and, hence, there is in view of (2.5)-(2.7) for the solution

sin(λkϕ)

= sin(λkϕ)
∫ t

0

dτ

∫ ∞

0

dρ
λk

2

2τρ
e−

ρ2+r2

4τ Iλk
(
ρr

2τ
) + sin(λkϕ)

∫ ∞

0

dρ
ρ

2t
e−

ρ2+r2

4t Iλk
(
ρr

2t
).

After that, (3.8) follows from (3.9). �

As an application of Lemma 3.5 is the next result.

Lemma 3.6. The equality

lim
t→0

R2(r, ϕ, t) = u0(r, ϕ) (3.10)

is true for the function R2(r, ϕ, t) from (2.5).

Proof. Let us denote

Lk(ρ, r, t) =
ρ

2t
e−

ρ2+r2

4t Iλk

(ρr
2t

)
.

To prove the lemma, it suffices to show that the first term in the right part of the
following equality (which follows from Lemma 3.5)

lim
t→0

∫ ∞

0

Lk(ρ, r, t)u0k(ρ)dρ = lim
t→0

∫ ∞

0

Lk(ρ, r, t)[u0k(ρ)− u0k(r)]dρ+ u0k(r) = 0.

Let ∫ ∞

0

Lk(ρ, r, t)[u0k(ρ)− u0k(r)]dρ ≡ dk.

We apply the mean value theorem, Corollary 3.4, and take into account that
u0(r, ϕ) ∈ P 2+α

s+2 (G). We have

u0k(ρ)− u0k(r) = (ρ− r)
du0k

dρ
(r), r ∈ [r, ρ],

so that

|dk| ≤ const.rs+1

∫ ∞

0

Lk(ρ, r, t)|ρ− r|max
r
r−s−1|du0k(r)

dr
|dρ

≤ const.rs+1 max
r
r−s−1|du0k(r)

dr
|
∫ ∞

0

ρ

2t
e−

ρ2+r2

4t + ρr
2t (

2t
ρr

)1/2|ρ− r|dρ

≤ const.
rs+1

r1/2
max
r
r−s−1|du0k(r)

dr
|
∫ ∞

0

ρ1/2

t1/2
e−

(ρ−r)2

4t |ρ− r|dρ.



EJDE-2010/90 INITIAL-BOUNDARY VALUE PROBLEMS IN A PLANE CORNER 9

Denote (ρ− r)/2
√
t = z then

|dk| ≤ const.
rs+1

r1/2
max
r
r−s−1|du0k(r)

dr
|
∫ ∞

−∞

|zt1/2 + r|1/2

t1/2
e−z

2
zt dz

≤ const.t1/2(t1/4 + r1/2)
rs+1

r1/2
max
r
r−s−1|du0k(r)

dr
|.

Thus, limt→0 dk = 0 for every fixed r and all k.
Due to u0(r, ϕ) ∈ P 2+α

s+2 (G), we have r−s−2u0k(r) ∼ 1
k2+α and r−s−1 du0k(r)

dr ∼
1

k1+α , and the all written above gives∑
k

lim
t→0

dk = 0. (3.11)

Let us represent R2(r, ϕ, t) as

R2(r, ϕ, t)

=
∑
k

sin(λkϕ)
∫ ∞

0

Lk(ρ, r, t)[u0k(ρ)− u0k(r)]dρ+
∑
k

sin(λkϕ)u0k(r)D0(r, t)

where D0(r, t) was introduced in Lemma 3.3. After passing on to the limit in this
representation and taking into account (3.8) and (3.11), we obtain

lim
t→0

R2(r, ϕ, t) = lim
t→0

∑
k

sin(λkϕ)
∫ ∞

0

Lk(ρ, r, t)[u0k(ρ)− u0k(r)]dρ

+ lim
t→0

∑
k

sin(λkϕ)u0k(r)D0(r, t) = u0(r, ϕ).

�

As a some preliminary result we note that Lemma 3.1 gives the order of the
decreasing to the coefficients of the trigonometric series for r−s−2R1(r, ϕ, t). If one
takes into account that the Fourier coefficients of functions from Hölder classes Cα

have the order 1/kα, Lemma 3.1 will lead the Fourier coefficients of r−s−2R1(r, ϕ, t)
have the order 1/k2+α. Therefore, the function r−s−2R1(r, ϕ, t) can be differenti-
ated with respect to ϕ in the case r and t are fixed. We will show that the function
will be differentiated twice with respect to ϕ. If the function r−s−2u0(r, ϕ) from
R2(r, ϕ, t) has the second derivative with respect to ϕ for the fixed r which be-
longs to classes Cα, Lemma 3.3 asserts that the Fourier coefficients of the function
r−s−2R2(r, ϕ, t) have also the order 1/k2+α.

4. Some facts from the trigonometric series theory

Let f(x) be a 2π-periodic function with the corresponding trigonometric series

f(x) ∼ a0

2
+

∞∑
n=1

(an cosnx+ bn sinnx) = S[f ].

Note that the series S[f ] converges to f(x) in the point x due to Dini’s test for
f ∈ Cα. Let f(x) be a continuous function, and Tn(x) be any trigonometric
polynomial of the order not higher then n,

∆(Tn) := max
x∈[0,2π]

|f(x)− Tn(x)|, En(f) := inf ∆(Tn)
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where the infimum is considered throughout the set of the polynomials Tn(x). The
value of En(f) is called the best approximation of the order n to the function f(x)
(see [17, Ch.3, n.13]).

Theorem 4.1 (Bernstein’s Theorem [2, Appendix to Ch.4, n.7]). )

En(f) = O(1/nα) (4.1)

if and only if f(x) ∈ Cα, α ∈ (0, 1). Moreover, if

En(f) ≤ A
1
nα
,

then 〈f〉(α)
x ≤ const.A.

The proof can be found in [11, Ch.4, n.2]. The next theorem contains the
method of the building of the approximating trigonometric polynomial (Jackson’s
construction [11, Ch.4, n.2]).

Theorem 4.2. Let a 2π-periodic function f(x) ∈ Cα([0, 2π]) and have the module
of continuity ω(δ). Define

un(x) = c(n)
∫ π

−π
f(l)K(l − x)dl, c(n) =

3
2πn(2n2 + 1)

, K(z) =
( sin(nz/2)

sin(z/2)

)4

.

Then the following statements hold

(1) The function un(x) has the form

un(x) = A+
2n−2∑
k=1

(ak cos kx+ bk sin kx);

i.e., un(x) is a trigonometric polynomial of the (2n− 2) order.
(2) If

∫ π
−πf(x)dx = 0, then A = 0.

(3) The following estimates holds for all x

|un(x)− f(x)| ≤ 6ω(1/n). (4.2)

We apply these theorems in the following case. Let one have the function
f(x, q) =

∑
kbk(q) sin kx where q ∈ Ω ⊂ R1, and bk(q) = 2

π

∫ π
−πf(x, q) sin kxdx,

f(x, q) is continuous with respect to x and q, f(x, q) ∈ Cαx ([0, 2π]) with α ∈ (0, 1),
uniformly with respect to q, and ω(δ) be the module of continuity to the function
f(x, q) with respect to x which is uniform with respect to q,∑

k

max
q
|bk(q)| <∞.

This inequality implies

max
x,q

|f | ≥ const.
∑
k

|bk(q)|. (4.3)

Indeed, because the series
∑
k maxq |bk(q)| converges it is possible to choose N so

as
∞∑

k=N+1

max
q
|bk(q)| ≤

1
2

max
x,q

|f |.
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On the other hand the suitable constant can be searched such that

1
2

max
x,q

|f | ≥ const.
N∑
k=1

max
q
|bk(q)|,

that completes the proof of (4.3).
Let us introduce the linear operator A : C → C which acts by the following rule

v(x, q) = Af(x, q) =
∑
k

µk(bk(q)) sin kx, |µk(bk(q))| ≤M max
q
|bk(q)|, (4.4)

where M is an independent constant of k and q. The question arises, does v(x, q)
have the same module of continuity as f(x, q). In accordance with Bernstein’s
theorem this question can be reformulated as is it possible to construct the ap-
proximating polynomial to v(x, q) with the same approximation like (4.1). Denote
Tn(x, q) = Aun(x, q) where un(x, q) is the approximating trigonometric polynomial
to the function f(x, q), then

v(x, q)− Tn(x, q) = Af(x, q)−Aun(x, q).

Following the proof of Theorem 4.2, we can write

Aun(x, q) = A
{
c(n)

∫ π/2

0

[f(x+ 2z, q) + f(x− 2z, q)]K(2z)dz
}

= c(n)
∫ π/2

0

A
{
f(x+ 2z, q) + f(x− 2z, q)

}
K(2z)dz.

After that we use the equality

2c(n)
∫ π/2

0

( sin(nz)
sin(z)

)4

dz = 2c(n)
∫ π/2

0

K(2z)dz = 1,

and obtain

Tn(x, q)−v(x, q) = c(n)
∫ π/2

0

A
{
f(x+2z, q)+f(x−2z, q)−2f(x, q)

}
K(2z)dz. (4.5)

The definition of the operator A together with the properties of the function f(x, q)
lead to the estimates:

max
x,q

|A(f(x, q))| ≤M
∑
k

max
q
|bk(q)| ≤ const. max

x,q
|f(x, q)|,

and that is why

max
x,q

|A{f(x+ 2z, q) + f(x− 2z, q)− 2f(x, q)}| ≤ const.ω(2z).

After that the estimate of the right part can be finished like the proof of [11,
Theorem 4.2]. We have

|Tn(x, q)− v(x, q)| ≤ const.ω(1/n) ≤ const.
1
nα
.

Bernstein’s theorem leads to Af(x, q) ∈ Cα([0, 2π]). Moreover, the estimate

〈Af(x, q)〉(α)
x ≤ const.〈f(x, q)〉(α)

x (4.6)

follows from the proof of Bernstein’s theorem. Thus we obtained the following fact.
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Lemma 4.3. Let f(x, q) be continuous with respect to x, q and f(x, q) ∈ Cαx uni-
formly with respect to q and α ∈ (0, 1),∑

k

max
q
|bk(q)| <∞,

then Af ∈ Cαx and estimate (4.6) holds.

Assume that f(x, t) is a 2π-periodical function with respect to x and f(x, t) ∈
Cα,βx,t , α, β ∈ (0, 1), and ∑

k

(max
t
|bk(t)|+ 〈bk〉βt ) <∞. (4.7)

Let

un(x, t) = c(n)
∫ π

−π
f(s, t)K(x− s)ds

be the trigonometric polynomial from Theorem 4.2 which approximates the function
f(x, t). We have

un(x, t1)− un(x, t2) = c(n)
∫ π

−π
[f(s, t1)− f(s, t2)]K(x− s)ds.

The properties of the kernel K(x− s) ensure the inequality

max
x,t1,t2

|un(x, t1)− un(x, t2)|
|t1 − t2|β

≤ const.〈f(x, t)〉(β)
t ;

i.e., the trigonometric polynomial approximating f(x, t) has a uniformly bounded
Hölder constant with respect to t. Let, as before, Tn(x, t) = Aun(x, t). Then

|Tn(x, t1)− Tn(x, t2)| = |c(n)
∫ π

−π
A{f(s, t1)− f(s, t2)}K(x− s)ds|

≤ const. max
x,t1,t2

|f(x, t1)− f(x, t2)|.

It leads to

max
x,t1,t2

|Tn(x, t1)− Tn(x, t2)|
|t1 − t2|β

≤ const. max
x,t1,t2

|f(x, t1)− f(x, t2)|
|t1 − t2|β

. (4.8)

If one passes to a limit in (4.8) as n→∞ (here we keep in mind that Tn(x, tk) →
Af(x, tk), k = 1, 2) then

max
x,t1,t2

|Af(x, t1)−Af(x, t2)|
|t1 − t2|β

≤ const.〈f(x, t)〉(β)
t .

Lemma 4.4. Let the function f(x, t) be a 2π-periodical function with respect to x,
and f(x, t) ∈ Cα,βx,t , α, β ∈ (0, 1) and (4.7) holds. Then Af(x, t) ∈ Cα,βx,t and

〈Af〉(α)
x ≤ const.〈f(x, t)〉(α)

x , 〈Af〉(β)
t ≤ const.〈f(x, t)〉(β)

t . (4.9)

Remark 4.5. Lemmas 4.3 and 4.4 will hold if we change the functions f(x, q) ∈ Cαx
and f(x, t) ∈ Cα,βx,t onto f(x, q1, . . . qn) ∈ Cαx uniformly with respect to q1 . . . qn in
Lemma 4.3, and f(x, t1, . . . tn) ∈ Cα,β1,...βn

x,t1,...tn with 0 < βi < 1, i = 1, n in Lemma
4.4, correspondingly, and the inequality like (4.7) holds.
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5. Estimates of the higher seminorms of the solution

5.1. Estimate for ∂2R1
∂ϕ2 .

Lemma 5.1. The function ∂2R1
∂ϕ2 meets the Hölder condition with respect to ϕ and

〈∂
2R1

∂ϕ2
〉(α)
ϕ;s+2,GT

+
∑
k

λ2
k max

R̄T

r−s−2|R1,k(r, t)| ≤ const.〈f〉(α)
ϕ;s,GT

. (5.1)

Proof. After a formal differentiation with respect to ϕ one can obtain

∂2R1

∂ϕ2
= −

∑
k

λ2
k sin(λkϕ)

∫ t

0

dτ

∫ ∞

0

Lk(ρ, r, t− τ)bk(ρ, τ)dρ (5.2)

where bk(r, t) are the Fourier coefficients of the function f(r, ϕ, t). The function
f(r, ϕ, t) is continued odd onto the interval (−θ, 0), and f(r, ϕ, t) = 0 if ϕ = 0, θ
or t < 0. In the case of a 2θ− periodical function, the change of variables allows
keeping the mentioned above argumentations regarding to use of the approximating
trigonometric polynomial to a 2π− periodical function. Let us denote by

Bk = −λ2
k

∫ t

0

dτ

∫ ∞

0

Lk(ρ, r, t− τ)bk(ρ, τ)dρ,

in view of Lemma 3.1,

|Bk| ≤ const.r2+smax
r,t

r−s|bk| (5.3)

with the constant is independent of k. After that, we put in (4.4): x = ϕ, f(x, q) :=
f(r, ϕ, t), bk(q) := r−sbk(r, t), µk(bk(q)) := r−2−sBk, Af(x, q) := r−2−s ∂2R1

∂ϕ2 . Then
Lemma 4.3 together with the properties of the function f(r, ϕ, t) (namely, f ∈
P̂
α,α/2
s (GT ), i.e. r−sf ∈ Cαϕ([0, θ]) uniformly with respect to t and r, inequality

like (4.3) holds) lead to estimate (5.1). �

Lemma 5.2. The function ∂2R1
∂ϕ2 (r, ϕ, t) satisfies the Hölder conditions with respect

to t and r. Moreover,∑
k

λ2
k〈R1,k〉(α/2)t;s+2−α,RT

≤ const.〈f〉(α/2)t;s−α,GT
, (5.4)∑

k

λ2
k〈R1,k〉(α)

r;s+2−α,RT
≤ const.〈f〉(α)

r;s−α,GT
, (5.5)

[
∂2R1

∂ϕ2
](α,α/2)ϕ,t;s+2−α,GT

+
∑
k

λ2
k[R1,k]

(α,α/2)
r,t;s+2−2α,RT

≤ const.([f ](α,α/2)ϕ,t;s−α,GT
+ [f ](α,α/2)r,t;s−2α,GT

).

(5.6)

Proof. The proof of estimates (5.4) and (5.5) follows from the properties of the func-
tion f(r, ϕ, t), Lemma 3.1 and Lemma 4.4. Regarding inequality (5.6), it is obtained
if one applies Lemmas 4.4 and 5.1 to the function [∂

2R1
∂ϕ2 (r, ϕ, t2)− ∂2R1

∂ϕ2 (r, ϕ, t1)]. �
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5.2. Estimates of the derivative of the function R1(r, ϕ, t) with respect to
t. First we obtain the representation of ∂R1/∂t. Let

vk(r, t) =
∂

∂t

∫ t

0

dτ

∫ ∞

0

dρLk(ρ, r, τ)
∫ θ

0

2
θ
f(ρ, ψ, t− τ) sin(λkψ)dψ. (5.7)

Assume from the beginning that f(r, ϕ, t) is differentiated with respect to t. Then
differentiation under the integral sign acts on f(r, ϕ, t), and integrating by parts
gives

vk(r, t) =
∫ t

0

dτ

∫ ∞

0

dρ
∂Lk
∂τ

(ρ, r, τ)bk(ρ, t−τ)+ lim
ε→0

∫ ∞

0

dρLk(ρ, r, ε)bk(ρ, t). (5.8)

Note that the derivative of the function f(r, ϕ, t) is not required in (5.8). Using the
relation above, we obtain the following representation

∂R1

∂t
(r, ϕ, t) =

∑
k

sin(λkϕ)
∫ t

0

dτ

∫ ∞

0

dρ
∂Lk
∂τ

(ρ, r, τ)

×
∫ θ

0

2
θ
[f(ρ, ψ, t− τ)− f(ρ, ψ, t)] sin(λkψ)dψ

+
∑
k

sin(λkϕ)
∫ ∞

0

dρLk(ρ, r, t)
∫ θ

0

2
θ
f(ρ, ψ, t) sin(λkψ)dψ

≡ A1 +A2.

Straight away, we obtain another useful representation of ∂R1
∂t (r, ϕ, t). Let

v1k(ρ, t) =
∫ t

−∞
dτ

∫ ∞

0

dρLk(ρ, r, t− τ)bk(ρ, τ),

vh1k(ρ, t) =
∫ t−h

−∞
dτ

∫ ∞

0

dρLk(ρ, r, t− τ)bk(ρ, τ).

The derivative of ∂v1k/∂t is limh→0
∂vh

1k

∂t . Non-complicated calculations and Corol-
lary 3.4 give

lim
t→+∞

limLk(ρ, r, t) = 0,

and then

∂v1k
∂t

=
∫ t

−∞
dτ

∫ ∞

0

∂Lk
∂t

(ρ, r, t− τ)[bk(ρ, τ)− bk(ρ, t)]dρ, (5.9)

∂R1

∂t
(r, ϕ, t) =

∑
k

sin(λkϕ)
∫ t

−∞
dτ

∫ ∞

0

dρ
∂Lk
∂t

(ρ, r, t− τ)

×
∫ θ

0

2
θ
[f(ρ, ψ, τ)− f(ρ, ψ, t)] sin(λkψ)dψ.

(5.10)

We will use the next representation

∂Lk
∂t

(ρ, r, t) = − ρ

2t2
e−

ρ2+r2

4t Iλk
(
ρr

2t
) +

ρ

2t
∂

∂t
{e−

ρ2+r2

4t Iλk

(ρr
2t

)
}

= i1k(ρ, r, t) + i2k(ρ, r, t).
(5.11)
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Lemma 5.3. The following estimate holds∑
k

max
RT

r−s|∂R1,k

∂t
| ≤ const.‖f‖

P
α,α/2
s (GT )

. (5.12)

Proof. First we justify the estimate

|∂R1,k

∂t
| =

∣∣ ∫ t

−∞
dτ

∫ ∞

0

dρ
∂Lk
∂t

(ρ, ϕ, t− τ)[bk(ρ, τ)− bk(ρ, t)]
∣∣ ≤ const.〈bk〉(α/2)t,s−αr

s

(5.13)
where

∂

∂t
Lk(ρ, r, t) = −1

t
Lk(ρ, r, t) +

ρ(ρ2 + r2)
8t3

Iλk
(
rρ

2t
)e−

ρ2+r2

4t

− rρ2

4t3
e−

ρ2+r2

4t
d

dx
Iλk

(x), x =
rρ

2t
.

From the representation of the function Iλk
(x) (see [8, 8.431(1)])

Iλk
(x) =

(x/2)λk

Γ(λk + 1/2)Γ(1/2)

∫ 1

−1

exy(1− y2)λk−1/2dy,

it follows

dIλk
(x)

dx
=
λk
x
Iλk

(x) +
(x/2)λk

Γ(λk + 1/2)Γ(1/2)

∫ 1

−1

yexy(1− y2)λk−1/2dy

≡ λk
x
Iλk

(x) +Qλk
(x).

On the other hand,(see [8, 8.486(4)])

x
dIλk

(x)
dx

= λkIλk
(x) + xIλk+1(x),

and, hence, xQλk
(x) = xIλk+1(x). From this equation and the definition of Qλk

(x),
we obtain

xQλk
(x) ≤ const.

{
xλk+2

Γ(λk+1) , for x ≤ 1,

xIλk
(x), for x > 1.

Returning to ∂Lk

∂t (ρ, r, t), we have

∂Lk
∂t

(ρ, r, t) = −1
t
Lk +

1
t
Lk
ρ2 + r2

4t
− λk

t
Lk −

ρ

2t2
xQλk

(x)e−
ρ2+r2

4t

≡ −m1(ρ, r, t) +m2(ρ, r, t)−m3(ρ, r, t)−m4(ρ, r, t), x =
rρ

2t
.

Let

M(r, t) =
∫ t

−∞
dτ

∫ ∞

0

dρρs−α(t− τ)α/2Lk(ρ, r, t− τ).

Since

M(r, t) =
∫ ∞

0

dz

∫ ∞

0

dρρs−αzα/2Lk(ρ, r, z),

then ∂M
∂t (r, t) = 0. Due to Lemma 3.3,

lim
t→0

tα/2
∫ ∞

0

dρρs−αLk(ρ, r, t) = 0,
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and therefore

∂M

∂t
(r, t) =

∫ t

−∞
dτ

∫ ∞

0

dρ[
∂

∂t
(t− τ)α/2]ρs−αLk(ρ, r, t− τ)

+
∫ t

−∞
dτ

∫ ∞

0

dρ(t− τ)α/2ρs−α
∂

∂t
Lk(ρ, r, t− τ).

(5.14)

Let us consider the integral

M1 = (1 + λk)
∫ ∞

0

dt

∫ ∞

0

dρρs−αt−1+α/2Lk(ρ, r, t)

corresponding to (m1(ρ, r, t)+m3(ρ, r, t)) in the representation of ∂Lk

∂t (ρ, r, t). Then
the following estimate holds

|M1| ≤ rs
1

λ
α/2−µ
k

, µ < α/2. (5.15)

We represent its proof in the Appendix (see Subsection 7.3). Now, using the integral
representations of Iλk

(x) and Qλk
(x), we have

m2(ρ, r, t)−m4(ρ, r, t)

=
ρ

8t3
e−

ρ2+r2

4t {(ρ2 + r2)Iλk
(rρ/2t)− 2rρQλk

(rρ/2t)}

=
ρ

8t3
e−

ρ2+r2

4t {(ρ2 − 2rρ+ r2)Iλk
(rρ/2t)

+ 2rρ
(rρ/4t)λk

Γ(λk + 1/2)Γ(1/2)

∫ 1

−1

(1− y)exy(1− y2)λk−1/2dy} ≥ 0.

Estimate (5.15) implies∫ ∞

0

dτ

∫ ∞

0

dρρs−ατα/2(m1(ρ, r, τ) +m3(ρ, r, τ)) ≤ const.rs
1

λ
α/2−µ
k

. (5.16)

Note that the estimate of the first term at the right part of (5.14) is contained in
(5.15), thus, by the equation ∂M

∂t (r, t) = 0, we have∫ ∞

0

dτ

∫ ∞

0

dρρs−ατα/2(m2(ρ, r, τ)−m4(ρ, r, τ)) ≤ const.rs
1

λ
α/2−µ
k

. (5.17)

At last, we are ready with (5.16) and (5.17) to prove inequality (5.13):

|∂R1k

∂t
| ≤ 〈bk〉(α/2)t,s−α,RT

rs
∫ ∞

0

dτ

∫ ∞

0

dρ|∂Lk
∂t

(ρ, ϕ, τ)|ρs−ατ α
2

= 〈bk〉(α/2)t,s−α,RT
rs

∫ t

−∞

∫ ∞

0

ρs−ατ
α
2 (m1(ρ, r, τ) +m3(ρ, r, τ)

+m2(ρ, r, τ)−m4(ρ, r, τ))

≤ const.〈bk〉(α/2)t,s−α,RT

rs

λ
α/2−µ
k

.

As the series
∑
k〈bk〉

(α/2)
t,s−α,RT

converges, we arrive at (5.12) which completes the
proof. �
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5.3. Hölder constant for ∂R1
∂t (r, ϕ, t) with respect to ϕ. We apply Theorem

4.2 to estimate the Hölder constant of the function ∂R1
∂t (r, ϕ, t) with respect to ϕ.

Let us consider the function

F (x, t, τ) = g(x, t− τ)− g(x, t), g(x, t) ∈ Cα,α/2x,t (ΩT )

where ΩT := [0, 2π]× [0, T ], α ∈ (0, 1), and the function g(x, t) satisfies (4.7). The
approximating polynomial to F (x, t, τ) is

un(x, t, τ) = c(n)
∫ π/2

0

[F (x+ 2l, t, τ) + F (x− 2l, t, τ)]K(2l)dl.

Let

Tn(x, t, τ) = Aun(x, t, τ)

where the operator A, on the one hand, is the operator like A from (4.4) with
f(x, q) := F (x, t, τ), and, on the other hand, models the operator from the right
hand side in (5.10). In the same way as above,

Tn(x, t, τ)−AF (x, t, τ)

= c(n)
∫ π/2

0

A{F (x+ 2l, t, τ) + F (x− 2l, t, τ)− 2F (x, t, τ)}K(2l)dl.
(5.18)

After applying the operator A and following the proof of Lemma 5.3, we have

max
x,t,τ

|AF (x, t, τ)| ≤ const. max
x,t,τ

{ |F (x, t, τ)|
τα/2

}.

We apply this estimate to the integrand in (5.18) and obtain

|Tn(x, t, τ)−AF (x, t, τ)|

≤ const.c(n)
∫ π/2

0

K(2l) max
x,t,τ

{ |F (x+ 2l, t, τ) + F (x− 2l, t, τ)− 2F (x, t, τ)|
τα/2

}
dl.

It is obvious that

max
x,t,τ

|F (x+ 2l, t, τ) + F (x− 2l, t, τ)− 2F (x, t, τ)|
τα/2

≤ const.[g](α,α/2)x,t;ΩT
lα.

That is why following the proof of Theorem 4.2, we obtain that the studied function
AF (x, t, τ) belongs to Cαx [0, 2π]).

Thus, similar considerations as in the case of the function ∂R1
∂t (r, ϕ, t) lead to

r−s
∂R1

∂t
(r, ϕ, t) ∈ Cαϕ , 〈∂R1

∂t
〉(α)
ϕ;s,GT

≤ const.[f ](α,α/2)ϕ,t;s−α,GT
. (5.19)

This is the place where the additional smoothness of the function f(r, ϕ, t); i.e., the
boundedness of the seminorm [f ](α,α/2)φ,t;s−α,GT

, is used. That, of course, is stipulated
by the approach to the investigation of the problem.
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5.4. Hölder constant for ∂R1
∂t (r, ϕ, t) with respect to t. In this section we make

use representation (5.10) of the function ∂R1
∂t (r, ϕ, t). Let t2 > t1, and 4t = t2− t1.

We have
∂R1

∂t
(r, ϕ, t2)−

∂R1

∂t
(r, ϕ, t1)

=
∑
k

sin(λkϕ)
∫ t2

2t1−t2
dτ

∫ ∞

0

dρ
∂Lk
∂τ

(ρ, r, t2 − τ)[bk(ρ, τ)− bk(ρ, t2)]

−
∑
k

sin(λkϕ)
∫ t1

2t1−t2
dτ

∫ ∞

0

dρ
∂Lk
∂τ

(ρ, r, t1 − τ)[bk(ρ, τ)− bk(ρ, t1)]

+
∑
k

sin(λkϕ)
∫ 2t1−t2

−∞
dτ

∫ ∞

0

dρ[bk(ρ, τ)− bk(ρ, t1)]

× [
∂Lk
∂τ

(ρ, r, t2 − τ)− ∂Lk
∂τ

(ρ, r, t1 − τ)]

+
∑
k

sin(λkϕ)
∫ 2t1−t2

−∞
dτ

∫ ∞

0

dρ[bk(ρ, t1)− bk(ρ, t2)]
∂Lk
∂τ

(ρ, r, t2 − τ)

=
4∑
i=1

∑
k

sin(λkϕ)
2∑
j=1

A
(i)
j,k,

(5.20)

where A(i)
1,k, i = 1, 4, correspond to i1k in representation (5.11) for the function

∂Lk/∂t and A(i)
2,k, i = 1, 4, do to i2k. By the definition

A
(1)
1,k = −

∫ t2

2t1−t2
dτ

∫ ∞

0

dρ
ρ

2(t2 − τ)2
e
− ρ2+r2

4(t2−τ) Iλk
(

ρr

2(t2 − τ)
)[bk(ρ, τ)− bk(ρ, t2)],

so that the inequality

|A(1)
1,k| ≤ const.

∫ t2

2t1−t2
dτ

∫ ∞

0

dρ
ρs+1−α

(t2 − τ)2−α/2
e
− ρ2+r2

4(t2−τ) Iλk
(

ρr

2(t2 − τ)
)〈bk〉(α/2)t;s−α,RT

is valid. After applying Lemma 3.3, we obtain

|A(1)
1,k| ≤ const.rs−α〈bk〉(α/2)t;s−α,RT

∫ t2

2t1−t2

dτ

(t2 − τ)1−α/2

≤ const.rs−α(∆t)α/2〈bk〉(α/2)t;s−α,RT
.

(5.21)

The estimate of A(2)
1,k has been done the same way. To estimate

A
(3)
1,k =

∫ 2t1−t2

−∞
dτ

∫ ∞

0

dρ[bk(ρ, τ)− bk(ρ, t1)][i1k(ρ, r, t2 − τ)− i1k(ρ, r, t1 − τ)],

we apply the mean value theorem. To this end we calculate

∂

∂t

{ ρ

2t2
e−

ρ2+r2

4t Iλk

(ρr
2t

)}
= −∂i1k

∂t

= − ρ

t3
e−

ρ2+r2

4t Iλk

(ρr
2t

)
+

ρ

2t2
∂

∂t

{
e−

ρ2+r2

4t Iλk

(ρr
2t

)}
= J1k + J2k.
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Let t ∈ (t1, t2) and

A
(3,1)
1,k =

∫ 2t1−t2

−∞
dτ

∫ ∞

0

dρ[bk(ρ, τ)− bk(ρ, t1)]
ρ(t2 − t1)
(t− τ)3

e
− ρ2+r2

4(t−τ) Iλk
(

ρr

2(t− τ)
).

We restrict ourself only by the estimate of A(3,1)
1,k , that is the part of A(3)

1,k corre-
sponding to J1k. The rest estimates are proved with the same way.

Note that t− τ ≥ t1 − τ and t− 2t1 + t2 ≥ ∆t, thus, Lemma 3.3 gives

A
(3,1)
1,k ≤ (∆t)〈bk〉(α/2)t,s−α,RT

∫ 2t1−t2

−∞
dτ

∫ ∞

0

dρ
ρs+1−α

(t− τ)3−α/2
e
− ρ2+r2

4(t−τ) Iλk
(

ρr

2(t− τ)
)

≤ const.rs−α(∆t)α/2〈bk〉(α/2)t;s−α,RT
.

The estimate of A(4)
j,k in (5.20) is obtained simultaneously for j = 1 and j = 2. We

have

|
2∑
j=1

A
(4)
j,k| =

∣∣ ∫ 2t1−t2

−∞
dτ

∫ ∞

0

dρ[bk(ρ, t1)− bk(ρ, t2)]
∂Lk
∂τ

(ρ, r, t2 − τ)
∣∣

=
∣∣ ∫ ∞

0

dρ[bk(ρ, t1)− bk(ρ, t2)]
∫ 2t1−t2

−∞

∂Lk
∂τ

(ρ, r, t2 − τ)dτ
∣∣

=
∣∣ ∫ ∞

0

dρ[bk(ρ, t1)− bk(ρ, t2)]
ρ

2∆t
e−

ρ2+r2

4∆t Iλk
(
ρr

2∆t
)
∣∣

≤ const.rs−α(∆t)α/2〈bk〉(α/2)t;s−α,RT
,

where Lemma 3.3 has been applied.
The coefficients A(i)

j,k, i = 1, 3, j = 2, are evaluated similarly. Thus, the above
gives an estimate for all i = 1, 4, and j = 1, 2

|A(i)
j,k| ≤ const.rs−α(∆t)α/2〈bk〉(α/2)t;s−α,RT

.

This inequality together with the convergence of
∑
k〈bk〉

(α/2)
t;s−α,RT

lead to

∑
k

〈∂R1,k

∂t
〉(α/2)t;s−α,RT

≤ const.〈f〉(α/2)t;s−α,GT
(5.22)

as it was to be proved.

5.5. Hölder constant of the function ∂R1
∂t (r, ϕ, t) with respect to r. We

change the variables in the representation ∂R1
∂t (r, ϕ, t) from (5.10): t − τ → τ ,

and consider as the example, the part of one which corresponds to i1k(ρ, r, t) in
(5.11). Let

V1(r, ϕ, t) =
∑
k

sin(λkϕ)
∫ ∞

0

dτ

∫ ∞

0

dρi1k(ρ, r, τ)[bk(ρ, t− τ)− bk(ρ, t)]

≡
∑
k

sin(λkϕ)V1,k(r, t).
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Consider the difference as h > 0

V1(r + h, ϕ, t)− V1(r, ϕ, t)

=
∑
k

sin(λkϕ)
∫ h2

0

dτ

∫ ∞

0

dρi1k(ρ, r + h, τ)[bk(ρ, t− τ)− bk(ρ, t)]

−
∑
k

sin(λkϕ)
∫ h2

0

dτ

∫ ∞

0

dρi1k(ρ, r, τ)[bk(ρ, t− τ)− bk(ρ, t)]

+
∑
k

sin(λkϕ)
∫ ∞

h2
dτ

∫ ∞

0

dρ[i1k(ρ, r + h, τ)− i1k(ρ, r, τ)]

× [bk(ρ, t− τ)− bk(ρ, t)] ≡
3∑
j=1

∑
k

V j1,k sin(λkϕ).

(5.23)

Let rh = r + h. One can easy estimate the coefficients V j1,k, j = 1, 2 with Lemma
3.3. For instance,

|V 1
1,k| ≤ 〈bk〉(α/2)t;s−α,RT

∫ h2

0

dτ

∫ ∞

0

dρ
ρs+1−α

2τ2
τα/2e−

ρ2+r2
h

4τ Iλk
(
ρrh
2τ

)

≤ const.rs−α〈bk〉(α/2)t;s−α,RT

∫ h2

0

dτ
1

τ1−α/2

≤ const.rs−α〈bk〉(α/2)t;s−α,RT
hα.

To estimate V 3
1,k in (5.23), we apply the mean value theorem. We have

∂i1k(ρ, r, t)
∂r

=
rρ

4t3
e−

ρ2+r2

4t Iλk
(
ρr

2t
)− ρ2

4t3
e−

ρ2+r2

4t
d

dx
Iλk

(x)

=
ρ

2t2

{
r

2t
Iλk

(x)− ρ

2t
d

dx
Iλk

(x)
}
e−

ρ2+r2

4t

=
ρ

2t2
r − ρ

2t
Iλk

(x)e−
ρ2+r2

4t − ρ

2t2
ρ

2t
[
d

dx
Iλk

(x)− Iλk
(x)]e−

ρ2+r2

4t

= j1k + j2k
(5.24)

where ρr/2t = x. In compliance with (5.24) the Fourier coefficients V 3
1,k can be

represented as V 3
1,k = V 3,1

1,k + V 3,2
1,k . First we estimate V 3,1

1,k

V 3,1
1,k = h

∫ ∞

h2
dτ

∫ ∞

0

dρ
ρ(r − ρ)

4τ3
e−

ρ2+r2

4τ Iλk
(
ρr

2τ
)[bk(ρ, t− τ)− bk(ρ, t)]

where r ∈ (r, r + h). We have by properties of the function bk(ρ, t)

|V 3,1
1,k | ≤ 〈bk〉(α/2)t;s−α,RT

h

∫ ∞

h2
dτ

∫ ∞

0

dρ
ρ1+s−α|r − ρ|

4τ3
τα/2e−

ρ2+r2

4τ Iλk
(
ρr

2τ
),

and as it follows from Subsection 7.4 in the appendix,∫ ∞

0

dρ
ρ1+s−α|r − ρ|

4t3/2
e−

ρ2+r2

4t Iλk
(
ρr

2t
) ≤ const.rs−α.
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Therefore,

|V 3,1
1,k | ≤ const.〈bk〉(α/2)t;s−α,RT

hrs−α
∫ ∞

h2
τα/2−3/2dτ ≤ const.〈bk〉(α/2)t;s−α,RT

hαrs−α

≤ const.〈bk〉(α/2)t;s−α,RT
hα(r + h)s−α ≤ const.〈bk〉(α/2)t;s−α,RT

hαrs−α,

(5.25)
since the only h ≤ r should be considered, to obtain the Hölder constant for ∂R1/∂t
with respect to r.

As for V 3,2
1,k corresponding to j2k in (5.24), it can be represented as (x = rρ/2t)

j2k =
−ρ2

4t3
[
d

dx
Iλk

(x)− Iλk
(x)]e−

ρ2+r2

4t =
ρ2

4t3
e−

ρ2+r2

4t [Iλk
(x)− λk

x
Iλk

(x)−Qλk
(x)]

and

j2k ≤
ρλk
2rt2

Iλk
(rρ/2t)e−

ρ2+r2

4t +
ρ2

4t3
e−

ρ2+r2

4t [Iλk
(rρ/2t)− Iλk+1(rρ/2t)].

Note that the first term in the right part of the last inequality is estimated in
the proof of Lemma 5.3 (see (5.15)), as for the second term one is evaluated like
V 3,1

1,k . If we take into account that from the equation Iλk+1(x) = Qλk
(x), we have

Iλk+1(x) ≤ const.Iλk
(x), and, hence, by Corollary 3.4, x1/2e−xIλk+1(x) ≤ const.

uniformly in k. From here it follows that Iλk
(x)− Iλk+1(x) ∼ const.x−3/2 for large

value of x where the constant in independent of k. Using this fact, we can repeat
the arguments from Subsection 7.4. Thus, the estimate like (5.25) holds for V 3,2

1,k .

On account of convergence of
∑
k〈bk〉

(α/2)
t;s−α,RT

we have∑
k

〈V1,k〉(α)
r;s−α,RT

≤ const.〈f〉(α,α/2)r,t;s−α,GT
.

Finally, we note that the analogous methods are applied to treat the function (which
corresponds to i2k from (5.11))

V2(r, ϕ, t) =
∑
k

sin(λkϕ)
∫ ∞

0

dτ

∫ ∞

0

dρi2k(ρ, r, τ)[bk(ρ, t− τ)− bk(ρ, t)]

≡
∑
k

V2,k(r, t) sin(λkϕ),

and the following is true∑
k

〈V2,k〉(α)
r;s−α,RT

≤ const.〈f〉(α,α/2)r,t;s−α,GT
.

The above estimates lead to∑
k

〈∂R1,k

∂t
〉(α)
r;s−α,RT

≤ const.〈f〉(α,α/2)r,t;s−α,GT
. (5.26)

Remark 5.4. Note that the estimate of
∑
k[
∂R1,k

∂t ]α,α/2r,t;s−2α,RT
will be obtained in the

same way if we apply the arguments above to the difference [∂R1
∂t (r, ϕ, t2)− ∂R1

∂t (r, ϕ,
t1)].
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5.6. Estimate for the seminorm [∂R1
∂t ](α,α/2)ϕ,t;s−α,GT

. We will use representation
(5.20) to the difference of ∂R1

∂t (r, ϕ, t2) − ∂R1
∂t (r, ϕ, t1) to obtain the desired esti-

mate. Let us consider the item A
(1)
j,k = A

(1)
j,k(r, ϕ, t1, t2). Let A1 be the operator

corresponding to A(1)
j,k; i.e.,

A1(f(r, ϕ, τ)− f(r, ϕ, t2)) = A
(1)
j,k(r, ϕ, t1, t2) = v(r, ϕ),

and

un(f(r, ϕ, τ)− f(r, ϕ, t2)) = c(n)
∫ π/2

0

[f(r, ϕ+ 2lθ/π, τ)− f(r, ϕ− 2lθ/π, τ)

− f(r, ϕ+ 2lθ/π, t2) + f(r, ϕ− 2lθ/π, t2)]K(2l)dl

be the approximating trigonometric polynomial of f(r, ϕ, τ)−f(r, ϕ, t2). After that,
we introduce the approximating trigonometric polynomial of A1(f(r, ϕ, τ)− f(r, ϕ,
t2)) as Tn(r, ϕ, τ, t2) = A1un(f(r, ϕ, τ)− f(r, ϕ, t2)). Then, as before,

v − Tn = c(n)
∫ π/2

0

A1

{
f(r, ϕ+ 2lθ/π, τ)− f(r, ϕ− 2lθ/π, τ)

− f(r, ϕ+ 2lθ/π, t2) + f(r, ϕ− 2lθ/π, t2)

− 2[f(r, ϕ, τ)− f(r, ϕ, t2)]}K(2l)dl.

Estimate (5.21) ensured that the value A1{. . . } where {. . . } is the expression in
the braces in the integrand can be evaluated as

|A1{. . . }| ≤ const.lαrs−α|∆t|α/2[f ](α,α/2)ϕ,t;s−α,GT
.

After that, ending the estimate as well as the proof of Theorem 4.2 and applying

Theorem 4.1, we obtain
A

(1)
j,k(r,ϕ,t1,t2)

rs−α|∆t|α/2 ∈ Cαϕ uniformly with respect to the rest
variables. The same arguments are true in the case of other terms in (5.20). This
implies

[
∂R1

∂t
](α,α/2)ϕ,t;s−α,GT

≤ const.[f ](α,α/2)ϕ,t;s−α,GT
. (5.27)

6. Proof of Theorem 2.1 and applications

To complete the proof of Theorem 2.1, we note the following. The exact rep-
resentation of the solution in (2.5) has been got. We have shown the proof of the
estimates to the higher derivatives of the solution with respect to ϕ and t. After
that the derivatives of the solution with respect to r are evaluated with these esti-
mates and the equation. We have given the estimates of the solution corresponding
to the bulk potential, and the estimates of the potential corresponding to the initial
data are done with the same way. This proves estimate (2.10). A uniqueness of the
solution in the wider class has been proved in [13]. Thus, Theorem 2.1 has been
proved.

Remark 6.1. Problem (2.2) with not uniform boundary conditions can be studied
with reduction one to the problem with uniformly boundary value problem if the
boundary functions are extended into the domain GT (see [13]).

Remark 6.2. The described method makes possible to consider the homogeneous
Dirichlet initial problem in an arbitrary domain in R2 with an corner point on the
boundary.
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In this section we formulate only results relating to the problem for the parabolic
equation with singular coefficients of the form

∂u

∂t
−

(1
r

∂

∂r
r
∂u

∂r
+
b

r

∂u

∂r

)
− 1
r2

( ∂2u

∂ϕ2
+
b

ϕ

∂u

∂ϕ

)
= f(r, ϕ, t), (r, ϕ, t) ∈ GT , (6.1)

∂u

∂ϕ
|ϕ=0 = 0, u|ϕ=θ = 0, u|t=0 = u0(r, ϕ), (6.2)

where b = const. > 0.
Equation (6.1) is the main part of the parabolic equation with the Bessel operator

∂u

∂t
− ∂2u

∂x2
−

(∂2u

∂y2
+
b

y

∂u

∂y

)
= f(x, y, t), (x, y, t) ∈ GT ,

which can be also rewritten in the form
∂u

∂t
−

(1
r

∂

∂r
r
∂u

∂r
+
b

r

∂u

∂r

)
− 1
r2

( ∂2u

∂ϕ2
+b

cosϕ
sinϕ

∂u

∂ϕ

)
= f(r, ϕ, t), (r, ϕ, t) ∈ GT . (6.3)

If b = 0, we get the problem for the heat equation.
We shall use the representation of a solution to problem (6.1), (6.2) in the form

of the Fourier series by using eigenfunctions of the problem

∂2v

∂ϕ2
+
b

ϕ

∂v

∂ϕ
= −λ2v ϕ ∈ (0, θ), (6.4)

∂v

∂ϕ
|ϕ=0 = 0, v|ϕ=θ = 0. (6.5)

Equation (6.4) has the two linearly independent solutions:

v1(ϕ) = ϕq/2Jq/2(λkϕ), v2(ϕ) = ϕq/2J−q/2(λkϕ), q = 1− b, b 6= 1,

and if b = 1
v1(ϕ) = J0(λkϕ), v2(ϕ) = N0(λkϕ),

where Jν(x) and Nν(x) are the Bessel functions of the first and second kind. The
Bessel functions Jν(x) has the power series representation

Jν(x) =
xν

2ν

∞∑
k=0

(−1)k
x2k

22kk!Γ(ν + k + 1)
.

In view of this expansion the eigenfunctions v2(φ) for b 6= 1 and v1(φ) for b = 1 are
appropriate for our purpose. They have the bounded second derivative and satisfy
the first boundary condition in (6.5). To satisfy the second one, we define λ = λk
as the solutions of the equation J−q/2(λkθ) = 0, k = 1, 2, . . . . We will say about
the case b 6= 1, the case b = 1 can be studied similarly.

The formal solution of problem (6.1), (6.2) is represented as

u(r, ϕ, t) = R1b(r, ϕ, t) +R2b(r, ϕ, t), (6.6)

where R1b(r, ϕ, t) is the volume potential

R1b(r, ϕ, t)

=
∑
k

ϕq/2J−q/2(λkϕ)
∫ t

0

dτ

∫ ∞

0

(ρ
r

)b/2 ρ

2(t− τ)
e−

ρ2+r2

4(t−τ) Iνk

( ρr

2(t− τ)

)
akdρ

with

ak =
(θ2

2
J2

1−q/2(λkθ)
)−1

∫ θ

0

ψ1−q/2J−q/2(λkψ)f(ρ, ψ, τ)dψ,
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and R2b(r, ϕ, t) is the initial data potential

R2b(r, ϕ, t) =
∑
k

ϕq/2J−q/2(λkϕ)
∫ ∞

0

(ρ
r

)b/2 ρ
2t
e−

ρ2+r2

4t Iνk

(ρr
2t

)
a0kdρ

with

a0k =
(θ2

2
J2

1−q/2(λkθ)
)−1

∫ θ

0

ψ1−q/2J−q/2(λkψ)u0(ρ, ψ)dψ,

and ν2
k = λ2

k + b2/4.
It turns out that the natural space for solutions of problem (6.1), (6.2) is the space

P
l+α,(l+α)/2
s,b (GT ) of the functions with the finite norm (l is an integer, α ∈ (0, 1))

‖u‖
P

l+α,(l+α)/2
s,b (GT )

=
∑

0≤β1+β2+2a≤l

sup
(r,φ,t)∈GT

r−s+β1+2aϕb/2|Dβ1
r D

β2
ϕ D

a
t u|

+
∑

0<l+α−(β1+β2+2a)<2

{
〈ϕb/2Dβ1

r D
β2
ϕ D

a
t u〉

(
l+α−β1−β2−2a

2 )

t;s−β1−2a−α,GT

+ [ϕb/2Dβ1
r D

β2
ϕ D

a
t u]

(α,
l+α−β1−β2−2a

2 )

r,t;s−β1−2a−2α,GT

+ [ϕb/2Dβ1
r D

β2
ϕ D

a
t u]

(α,
l+α−β1−β2−2a

2 )

ϕ,t;s−β1−2a−α,GT

}
+

∑
β1+β2+2a=l

{
〈ϕb/2Dβ1

r D
β2
ϕ D

a
t u〉

(α)
r;s−β1−2a−α,GT

+ 〈ϕb/2Dβ1
r D

β2
ϕ D

a
t u〉

(α)
ϕ;s−β1−2a,GT

}
.

We introduce the subspace P̂ l+α,
l+α
2

s,b (GT ) (P̂ l+αs,b (G)) of the space P l+α,
l+α
2

s (GT )

(P l+αs (G)) like the definition of P̂ l+α,
l+α
2

s (GT ) (P̂ l+αs (G)). We are looking for the
solution to the problem in the form of the series and waiting that these series
converge in GT . All their terms are equal to zero at ϕ = 0, thus, the condition

f(r, θ, t) = 0 (6.7)

is necessary for the solvability of the problem in P 2+α,(2+α)/2
s,b (GT ).

Theorem 6.3. Assume the consistency conditions of the first order and condition
(6.7) are fulfilled. The functions f ∈ P̂

α,α/2
s,b (GT ) and u0 ∈ P̂ 2+α

s+2,b(G) Then there

exists a unique solution u(r, ϕ, t) ∈ P̂
2+α, 2+α

2
s,b (GT ) and

‖u‖
P

2+α,(2+α)/2
s+2,b (GT )

+ S(u) bP 2+α,(2+α)/2
s+2,b (GT )

≤ const.(‖f‖
P

α,α/2
s,b (GT )

+ ‖u0‖P 2+α
s+2,b(G) + S(f) bPα,α/2

s,b (GT )
+ S(u0) bP 2+α

s+2,b(G)),
(6.8)

where the constant in (6.8) is independent of u(r, ϕ, t), α ∈ (0, 1) and s + 2 <
(λ2

1 + b2/4)1/2, λ1θ is the smallest root of the equation J−q/2(λkθ) = 0.

In general, the proof of Theorem 6.3 repeats our arguments from the proof of
Theorem 2.1. We note only that if k >> 1,

J−q/2(λkϕ) ∼
√

1
λkϕ

cos(λkϕ+ π(q − 1)/4), λkθ ∼ (k − (q + 1)/4)π +O(1/k),

that gives the possibility to apply here the theorems from the trigonometric series
theory.
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7. Appendix

7.1. Formal representation of the solution to (2.2). To obtain the formal
solution of (2.2), we applied the method of the separation of the variables. In
detail, one consists in the following. Let us consider case of u0(r, ϕ) ≡ 0 (this case
corresponds to R2(r, ϕ, t) = 0 in (2.3)). We look for the solution u(r, ϕ, t) of the
problem

∂u

∂t
− 1
r

∂

∂r
r
∂u

∂r
− 1
r2
∂2u

∂ϕ2
= f(r, ϕ, t), (r, ϕ, t) ∈ GT ,

u|giT
= 0, u|t=0 = 0, (r, ϕ) ∈ G,

(7.1)

as
u(r, ϕ, t) =

∑
k

Vk(r, t)Φk(ϕ). (7.2)

After the substitution of the function Vk(r, t)Φk(ϕ) into the homogenous equation
and boundary condition from (7.1), we obtain

r2
∂Vk

∂t −
1
r
∂
∂r r

∂Vk

∂r

Vk
=

∂2Φk

∂ϕ2

Φk
≡ −λ2

k, (7.3)

Φk(0) = Φk(θ) = 0. (7.4)

Conditions (7.3) and (7.4) lead to the function Φk being the solution of the problem

Φ′′k(ϕ) + λ2
kΦk = 0,

Φk(0) = Φk(θ) = 0.
(7.5)

The solution of (7.5) is the function

Φk = sinλkϕ, λk = πk/θ, k = 1, 2 . . . . (7.6)

Now we return to problem (7.1) and represent f(r, ϕ, t) as

f(r, ϕ, t) =
∑
k

bk(r, t) sinλkϕ, (7.7)

with

bk(r, t) =
2
θ

∫ θ

0

f(r, ψ, t) sinλkψdψ. (7.8)

After that we substitute (7.2), (7.7) and (7.8) to the equation and the initial con-
dition of (7.1) and have

∂Vk
∂t

− 1
r

∂

∂r
r
∂Vk
∂r

+ λ2
k

Vk
r2

= bk(r, t),

Vk(r, 0) = 0.
(7.9)

Here we use that the function Φk(ϕ) satisfies the equation in (7.5).
Let us denote the Hankel transformation (see, for example, [8, 12, 15] for discus-

sion) with respect to r of the functions Vk(r, t) and bk(r, t) by V̂k(µ, t) and b̂k(µ, t),
respectively, µ is the parameter under the transformation:

V̂k(µ, t) =
∫ ∞

0

Vk(r, t)rJλk
(µr)dr;

b̂k(µ, t) =
∫ ∞

0

bk(r, t)rJλk
(µr)dr,

(7.10)

where Jλk
(µr) is the Bessel function [8].
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Expressions (7.9) and (7.10) lead to the following problem for the function
V̂k(µ, t),

dV̂k
dt

+ µ2V̂k = b̂k(µ, t),

V̂k(µ, 0) = 0.
(7.11)

It is easy to check that the function

V̂k(µ, t) =
∫ t

0

e−µ
2(t−τ)b̂k(µ, τ)dτ (7.12)

gives the solution of problem (7.11).
After applying the inverse Hankel transformation in (7.12), we obtain

Vk(r, t) =
∫ ∞

0

µJλk
(µr)

∫ t

0

e−µ
2(t−τ)b̂k(µ, τ)dτdµ. (7.13)

Then the formal solution (7.1) follows from (7.2), (7.6) and (7.13), so,

u(r, ϕ, t) =
∑
k=1

sinλkϕ
∫ ∞

0

µJλk
(µr)

∫ t

0

e−µ
2(t−τ)b̂k(µ, τ)dτdµ. (7.14)

To obtain formula (2.6), we transform (7.14) applying formula [8, 6.633(2)]:∫ ∞

0

µe−µ
2(t−τ)Jλk

(µr)Jλk
(µρ)dµ =

1
2(t− τ)

Iλk

( rρ

2(t− τ)

)
exp

(
− r2 + ρ2

4(t− τ)

)
where Iλk

(x) is the modified Bessel function. Thus,

u(r, ϕ, t)

=
∑
k=1

sinλkϕ
∫ t

0

dτ

∫ ∞

0

dρbk(ρ, τ)ρ
∫ ∞

0

µJλk
(µr)e−µ

2(t−τ)Jλk
(µρ)dµ

=
∑
k=1

sinλkϕ
∫ t

0

dτ

∫ ∞

0

dρbk(ρ, τ)
ρ

2(t− τ)
Iλk

( rρ

2(t− τ)

)
exp

(
− r2 + ρ2

4(t− τ)

)
.

That gives (2.5), (2.6) with R2 ≡ 0 (due to u0 ≡ 0). To obtain the complete formula
(2.5); i.e., with R2 6= 0, it is enough to consider the problem

∂u

∂t
− 1
r

∂

∂r
r
∂u

∂r
− 1
r2
∂2u

∂ϕ2
= 0, (r, ϕ, t) ∈ GT ,

u|giT
= 0, u|t=0 = u0(r, ϕ), (r, ϕ) ∈ G,

(7.15)

and apply all reasoning mentioned above to this problem.
After that, the solution of (2.2) is represented as

u(r, ϕ, t) = R1(r, ϕ, t) +R2(r, ϕ, t) (7.16)

where R1(r, ϕ, t) and R2(r, ϕ, t) are the solutions of (7.1) and (7.15), correspond-
ingly.

R1(r, ϕ, t) =
∑
k

sin(λkϕ)
∫ t

0

dτ

∫ ∞

0

dρ
ρ

2(t− τ)
e−

ρ2+r2

4(t−τ) Iλk

( ρr

2(t− τ)

)
bk(ρ, τ),

R2(r, ϕ, t) =
∑
k

sin(λkϕ)
∫ ∞

0

dρ
ρ

2t
e−

ρ2+r2

4t Iλk

(ρr
2t

)
u0k(ρ),

(7.17)
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u0k(r) =
2
θ

∫ θ

0

u0(r, ψ) sin(λkψ)dψ, bk(r, t) =
2
θ

∫ θ

0

f(r, ψ, t) sin(λkψ)dψ.

(7.18)
Equation (2.5) implies that the desired solution is the sum of the volume potential
R1(r, φ, t) and the potential of the initial data R2(r, φ, t).

The representation for R1(r, ϕ, t) can be rewritten also as

R1(r, ϕ, t) =
∑
k

sin(λkϕ)
∫ t

−∞
dτ

∫ ∞

0

dρ
ρ

2(t− τ)
e−

ρ2+r2

4(t−τ) Iλk

( ρr

2(t− τ)

)
bk(ρ, τ),

(7.19)
if f(r, ϕ, t) = 0 for t < 0, that was assumed. Thus representations (7.16)-(7.19)
give (2.5)-(2.8).

7.2. Proof of Corollary 3.4. In the integral from (3.7), we change the variable
ρr
2t = x and then x2 = y,

Ds =
∫ ∞

0

(2xt
r

)1+s 2t
r

1
2t
e−

r2
4t −t

x2

r2 Iλk
(x)dx

=
(2t
r

)1+s 1
2r
e−

r2
4t

∫ ∞

0

ys/2e−t
y

r2 Iλk
(y1/2)dy.

Using tabular integral [8, 6.643(2)], we obtain

Ds = 21+srs(t/r2)
1+s
2 e−

r2
8t

Γ(λk+s+2
2 )

Γ(λk + 1)
M− 1+s

2 ,
λk
2

(r2/4t).

In our case (see [8, 9.221])

M− 1+s
2 ,

λk
2

(r2/4t) =
(r2/4t)

λk+1
2

2λkB(λk−s
2 , λk+s+2

2 )
N

(
λk,

r2

8t

)
,

where B(x, y) = Γ(x)Γ(y)
Γ(x+y) , Γ(x) is the Gamma function, and

N
(
λk,

r2

8t

)
=

∫ 1

−1

(1 + z)
λk+s

2 (1− z)
λk−2−s

2 ez
r2
8t dz.

By the substitution 1 + z = x we go to

N
(
λk,

r2

8t

)
=

∫ 2

0

e−
r2
8t x

λk+s

2 (2− x)
λk−2−s

2 ex
r2
8t dx.

In this equality, we put s = −1 and use tabular integral [8, 3.383(2)], then

N
(
λk,

r2

8t

)
=
√
π
(16t
r2

)λk/2

Γ
(λk + 1

2

)
Iλk/2

(r2
8t

)
.

Finally, we gather our calculations and obtain

D−1 = const.r−1e−zz
1
2 Iλk

2
(z), z = r2/8t.

Lemma 3.3 leads to
e−zz

1
2 Iλk

2
(z) ≤ const.,

where the constant does not depend on k. Recall that λk = π
θ k, so, if we take

k = 2n, n = 1, 2, . . . , we will obtain our assertion. This ends the proof of Corollary
3.4.
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7.3. Estimate for the integral M1 = (1+λk)
∫∞
0
dt

∫∞
0
dρ ρs−α

t1−α/2Lk(ρ, r, t). Using
the representation of the function Iλk

(x) from [3, 7.7.3(25)], we obtain

M1 = (1 + λk)
∫ ∞

0

dt

∫ ∞

0

dρ
ρ1+s−α

t1−α/2

∫ ∞

0

Jλk
(ρµ)Jλk

(rµ)e−tµ
2
µdµ

= (1 + λk)
∫ ∞

0

dt

∫ ∞

0

dρ
ρ−1+s−α

t1−α/2

∫ ∞

0

Jλk
(zr/ρ)Jλk

(z)e−z
2tρ−2

zdz

= (1 + λk)
∫ ∞

0

dyy−1−s+α
∫ ∞

0

dzzJλk
(zry)Jλk

(z)
∫ ∞

0

dtt−1+α/2e−z
2ty2

,

In the first equality above we used µ = z/ρ, and in the second ρ = y−1. The last
integral can be calculated (see [8, 3.381(4)])∫ ∞

0

dtt−1+α/2e−z
2ty2

=
Γ(α/2)
zαyα

,

so that after the changing of the variable y = q/r,

M1

= (1 + λk)rsΓ(α/2)
∫ ∞

0

dqq−1−s
∫ ∞

0

dzz1−αJλk
(zq)Jλk

(z)

= (1 + λk)rsΓ(α/2)
{∫ 1−ε

0

+
∫ 1+ε

1−ε
+

∫ ∞

1+ε

}
dqq−1−s

∫ ∞

0

dzz1−αJλk
(zq)Jλk

(z)

≡ (1 + λk)rsΓ(α/2)(M (1)
1 +M

(2)
1 +M

(3)
1 ).

(7.20)
For q ∈ (0, 1− ε) the integral (see [3, 7.7.4(29)])

d1 =
∫ ∞

0

dzz1−αJλk
(zq)Jλk

(z)

=
qλkΓ(λk + 1− α/2)

2α−1Γ(λk + 1)Γ(α/2)
F (λk + 1− α/2, 1− α/2;λk + 1; q2).

The function F (λk +1−α/2, 1−α/2;λk +1; q2) is bounded (see [8, 9.102]) so that

d1 ≤ const.
qλk

2α−1Γ(α/2)
λ
−α/2
k ≤ const.qλkλ

−α/2
k . (7.21)

For q ∈ (1 + ε,∞),

d3 =
∫ ∞

0

dzz1−αJλk
(zq)Jλk

(z)

=
q−λk+α−2Γ(λk + 1− α/2)

2α−1Γ(λk + 1)Γ(α/2)
F (λk + 1− α/2, 1− α/2;λk + 1; q−2)

≤ const.q−λk+α−2λ
−α/2
k .

(7.22)

Estimates (7.21) and (7.22) lead to

M
(1)
1 ≤ const.λ−1−α/2

k , M
(3)
1 ≤ const.λ−1−α/2

k . (7.23)

Now we estimate the integral

M
(2)
1 =

{∫ 1

1−ε
+

∫ 1+ε

1

}
q−1−sdq

∫ ∞

0

z1−αJλk
(z)Jλk

(qz)dz = M
(2,1)
1 +M

(2,2)
1 ,
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M
(2,1)
1 =

∫ 1

1−ε
q−1−sdq

∫ ∞

0

z1−αJλk
(z)Jλk

(qz)dz

=
∫ ε

0

(1− x)−1−sdx

∫ ∞

0

z1−αJλk
(z)Jλk

((1− x)z)dz

=
∫ ε

0

(1− x)−1−sd21(x)dx

(in the second inequality above, we used q = 1− x),

d21 =
(1− x)λkΓ(λk + 1− α/2)

2α−1Γ(λk + 1)Γ(α/2)
F (λk + 1− α/2, 1− α/2;λk + 1; (1− x)2),

M
(2,2)
1 =

∫ 1+ε

1

q−1−sdq

∫ ∞

0

z1−αJλk
(z)Jλk

(qz)dz

=
∫ ε

0

(1 + x)−1−sd22(x)dx

(in the inequality above, we used q = 1 + x),

d22 =
(1 + x)α−2−λkΓ(λk + 1− α/2)

2α−1Γ(λk + 1)Γ(α/2)
F (λk + 1− α/2, 1− α/2;λk + 1; (1 + x)−2),

where

F (α, β; γ;x) = 1 +
αβ

1 · γ
x+

α(α+ 1)β(β + 1)
1 · 2 · γ(γ + 1)

x2 + · · · = 1 +
∞∑
p=1

apx
p.

In our case

a1 =
(λk + 1− α/2)(1− α/2)

(λk + 1)
, a2 = a1 ·

(λk + 2− α/2)(2− α/2)
2 · (λk + 2)

, . . . ;

i.e., ap ≤ const. with respect to p and λk. After that,

M
(2,1)
1 +M

(2,2)
1

=
Γ(λk + 1− α/2)

2α−1Γ(λk + 1)Γ(α/2)

∑
p=0

ap

∫ ε

0

[(1− x)λk−1−s+2p + (1 + x)−λk−1−s−2p−2+α]dx

=
Γ(λk + 1− α/2)

2α−1Γ(λk + 1)Γ(α/2)

∑
p=0

ap[(1− x)λk−s+2p(λk − s+ 2p)−1

+ (1 + x)−λk−s−2p−2+α(−λk − s− 2p− 2 + α)−1]|x=εx=0

=
Γ(λk + 1− α/2)

2α−1Γ(λk + 1)Γ(α/2)

∑
p=0

ap

{
[(1− ε)λk−s+2p(λk − s+ 2p)−1

+ (1 + ε)−λk−s−2p−2+α(−λk − s− 2p− 2 + α)−1]

− (α− 2− 2s)(λk − s+ 2p)−1(−λk − s− 2p− 2 + α)−1
}

=
Γ(λk + 1− α/2)

2α−1Γ(λk + 1)Γ(α/2)

{∑
p=0

ap[(1− ε)λk−s+2p(λk − s+ 2p)−1

+ (1 + ε)−λk−s−2p−2+α(−λk − s− 2p− 2 + α)−1]

+
∑
p=0

ap(α− 2− 2s)(λk − s+ 2p)−1(λk + s+ 2p+ 2− α)−1
}
.
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The first series converges because, for example, for every fixed ε ≥ ε0 > 0

ap(1− ε)λk−s+2p(λk − s+ 2p)−1 ≤ const.
λk

qλk , q < 1,

so ∣∣ ∑
p=0

ap[(1− ε)λk−s+2p(λk − s+ 2p)−1

+ (1 + ε)−λk−s−2p−2+α(−λk − s− 2p− 2 + α)−1]
∣∣ ≤ const.

λk
.

As for the second series,∣∣ ∑
p=0

ap(α− 2− 2s)(λk − s+ 2p)−1(λk + s+ 2p+ 2− α)−1
∣∣ ≤ const.

λ1−µ
k

, µ > 0.

Taking into account that

Γ(λk + 1− α/2)
Γ(λk + 1)

≈ λ
−α/2
k

for large λk, we have

|M (2)
1 | = |M (2,1)

1 +M
(2,2)
1 | ≤ const.λ−1+µ−α/2

k . (7.24)

Finally, the following inequality follows from (7.20), (7.23) and (7.24):

|M1| ≤ const.
rs

λ
α/2−µ
k

(7.25)

with 0 < µ < α/2.

7.4. Estimate for the integral
∫∞
0

ρ1+s−α

t3/2 |r−ρ|Iλk
(rρ/2t)e−

r2+ρ2

4t dρ from Sub-
section 5.5. In this subsection we show the estimate

I =
∫ ∞

0

ρ1+s−α

t3/2
|r − ρ|Iλk

(rρ/2t)e−
r2+ρ2

4t dρ ≤ const.rs−α.

Denote
u =

ρ

2t1/2
, v =

r

2t1/2
, 2uv =

rρ

2t
,

and change the integration variable ρ by u. We obtain

I =
∫ ∞

0

4t
(2t1/2u)1+s−α

t3/2
|v − u|e−(u2+v2)Iλk

(2uv)du

≤ const.
∫ ∞

0

t
s−α

2 u1+s−αe−γ(u−v)
2
Iλk

(2uv)e−2uvdu

where γ ∈ (0, 1). Next we consider the integral

A(v) =
∫ ∞

0

uβe−γ(u−v)
2
Iλk

(2uv)e−2uvdu.

Introduce the new integration variable z = uv so that

A(v) = v−β−1

∫ ∞

0

zβe−γ(
z
v−v)

2
Iλk

(2z)e−2zdz

= v−β−1

∫ 1

0

zβe−γ(
z
v−v)

2
Iλk

(2z)e−2zdz
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+ v−β−1

∫ ∞

1

zβe−γ(
z
v−v)

2
Iλk

(2z)e−2zdz

≡ A1(v) +A2(v).

To estimate A2(v), we use Corollary 3.4, and obtain

A2(v) ≤ const.v−β−1

∫ ∞

1

zβ−1/2e−γ(
z
v−v)

2
dz.

Now let ξ = z
v − v. Then

A2(v) ≤ const.v−β−1

∫ ∞

−v+1/v

vβ+1/2(ξ + v)β−1/2e−γξ
2
dξ

≤ const.v−1/2

∫ ∞

−v+1/v

max
ξ

[(ξ + v)β−1/2e−γξ
2/2]e−γξ

2/2dξ.

One can verify that

ϕ(ξ, v) = (ξ + v)β−1/2e−γξ
2/2 ≤ const.vβ−1/2

under v ≥ v0(β, γ) > 0. It implies

A2(v) ≤ const.vβ−1 for v ≥ 1.

To estimate A2(v) for v < 1, notice that e−γ
z2

2v2 ≤ e
−γ

2v2 if z ≥ 1 and e−γ
z2

2v2 ≤ e
−γz2

2

if v < 1. Therefore,

A2(v) ≤ const.v−1−β
∫ ∞

1

zβ−1/2e−γ
z2

2v2 e−γ
z2

2v2 e2ze−γv
2
dz

≤ const.v−1−βe−
γ

2v2

∫ ∞

1

zβ−1/2e−γ
z2
2 +2zdz

≤ const.v−1−βe−
γ

2v2 ≤ const.v−1+β

for v < 1.
After that we evaluate the integral A1(v) for v ≥ 1. For z ≤ 1, we use the

estimate
Iλk

(2z) ≤ const.zλk ≤ const.zλ1 , λ1 = π/θ.

Then

A1(v) ≤ const.v−β−1

∫ 1

0

zβ+λ1e−γ(v
2−2z+z2/v2)dz

≤ const.v−β−1e−γv
2
≤ const.v−1+β

for v ≥ 1. At last, for v < 1,

A1(v) ≤ const.v−β−1

∫ 1

0

zβ+λ1e−γ(v
2−2z+z2/v2)dz

≤ const.v−β
∫ 1/v

0

dy(yv)β+λ1e−γy
2

≤ const.vλ1 = const.v−1+βvλ1+1−β ≤ const.vβ−1

if λ1 + 1− β ≥ 0.
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If we take β = 1 + s− α, then the condition λ1 + 1− β ≥ 0 means 1− α ≤ π/θ
that is fulfilled under conditions of Theorem 2.1. Thus, our calculations lead to

I ≤ const.t(s−α)/2
( r

2t1/2

)−1+1+s−α
≤ const.rs−α,

that was to be proved.
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