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A MODEL FOR SINGLE-PHASE FLOW IN LAYERED POROUS
MEDIA

DANIEL J. COFFIELD JR., ANNA MARIA SPAGNUOLO

Abstract. Homogenization techniques are used to derive a double porosity
model for single phase flow in a reservoir with a preferred direction of fracture.

The equations in the microscopic model are the usual ones derived from Darcy’s

law in the fractures and matrix (rock). The permeability coefficients over
the matrix domain are scaled, using a parameter ε, based on the fracture

direction in the reservoir. The parameter ε represents the size of the parts

of the matrix blocks that are being homogenized and the scaling preserves
the physics of the flow between matrix and fracture as the blocks shrink.

Convergence to the macroscopic model is shown by extracting the weak limits

of the microscopic model solutions. The limit (macroscopic) model consists of
Darcy flow equations in the matrix blocks and fracture sheet, with additional

terms in the fracture sheet equation. Together, these terms represent the fluid

exchange between the matrix blocks and the fracture sheet.

1. Introduction

It is well known that fluid flows in fractured reservoirs as if the reservoir has
two porous structures, one associated with the fissure system and the other as-
sociated with the porous rocks. From this came the dual (double)-porosity (dual-
permeability) concept. Models of this type for single-phase flow were first developed
in [4, 13, 14, 19] using physical arguments. Since then, a more general form of a
double-porosity model for single-phase flow in totally fractured reservoirs was de-
rived on physical grounds and by using formal homogenization in [2, 3, 7, 10], and
then proven rigorously using homogenization techniques [1]. For the main ideas of
fluid flow in porous media and homogenization theory, see [5, 15], respectively. In
addition, a general treatment of homogenization and porous media can be found in
[12].

Double-porosity models have also been used to better model partially fissured
media [9]. Additionally, the dual-porosity concept has been applied to layered
porous media. In [8] a dual-porosity model for two-phase immiscible flow in a
vertically fractured reservoir is derived using formal homogenization techniques.
A model of dual-porosity type is derived on physical grounds in [6] for a porous
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medium with relatively thin rock cells. Furthermore, multiple-porosity models have
been derived using homogenization techniques in [1, 11, 16, 17, 18].

Fractured reservoirs are often classified according to the extent and character-
istics of the fracture system. In a totally fractured porous medium, the fracture
system is fully developed and forms a connected set. The fractures divide the rocks
(matrix blocks) into disconnected pieces so that for fluid to flow from one matrix
block to another, it must first pass through the fracture system. In some sense,
a totally fractured reservoir is an idealization because most reservoirs will have a
less-developed fracture system that is not completely connected. Reservoirs of this
type are called partially fractured (or partially fissured) porous media. The matrix
blocks are not necessarily disconnected in this case and the fractures are not nec-
essarily connected. A special case of fractured reservoirs occurs when the fractures
are naturally developed with a preferred direction. Often the fractures occur in
planes with a particular orientation so that the matrix blocks, separated by the
fractures, form a layered medium.

In this work, we consider single-phase flow through a totally fractured layered
medium. The porous medium consists of horizontal fractures so that the elongated
matrix blocks are stacked vertically. This is a typical structure found in certain
sedimentary rocks such as shale. The primary contribution of this work is the
derivation of a well-posed dual-porosity model for flow through such a reservoir by
using standard fluid flow equations posed at the micro-scale and then averaging
this flow through rigorous homogenization techniques. We followed the techniques
in [1], but, in our case, the homogenization is not done uniformly. More specifically,
we homogenize in the vertical direction only, reflecting the physical nature of the
reservoir: the structure is periodic in only one (the vertical) direction. The one-
dimensional homogenization technique also requires careful component-wise (not
uniform) scaling of the matrix permeability. Scaling of this type has been used in
[8]. Unique to our problem is that vertical side fractures do not contain any rock
and therefore are not averaged, but they are coupled to the flow equations that are
being homogenized. Also, a unique feature of our final homogenized system is that
horizontal flow occurs simultaneously in the fracture sheet and matrix blocks.

In what follows, we describe the fractured porous medium and the assumptions
in Section 2. In Section 3, we describe the microscopic model. Section 4 includes
many technical lemmas and Section 5 defines the macroscopic limit model and
includes the details of how the microscopic model converges to the limit model.
Finally, Section 6 briefly discusses some extensions to this work.

2. Preliminaries

We consider the reservoir Ω = Ω1 ×Ω2 ×Ω3 ⊂ R3 to be a bounded, rectangular
domain that is the union of the closures of congruent rectangular domains. That
is, we denote the standard rectangular cell by Q and Ω is the interior of the union
of translations of Q:

Ω = ∪α∈I(1)(Q+ cα),

where the cα’s are translations and I(1) = {0, 1, 2, . . . , N(1)} is an index set (See
Fig. 1).

Additionally, we require the cells to be disjoint: (Q + cα) ∩ (Q + cβ) = ∅ for
α 6= β. Let C(1) = {cα : α ∈ I(1)} be the set of translations. Then (0, 0, 0) ∈ C(1)
and we call it c0. Also, there is a cα = (0, 0, r) ∈ C(1), call it c1, with r ∈ R, such
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Figure 1. The reservoir Ω = Ω1 × Ω2 × Ω3.

that C(1) = {αc1 : α ∈ I(1)}. That is, C(1) is made up of integer multiples of the
standard translation, c1, and the translations only occur in the third component.

The standard rectangular cell Q = Q1 × Q2 × Q3 consists of three parts: the
matrix block, denoted by Qm; the fracture surrounding the matrix, denoted by Qf ;
and the internal boundary between Qm and Qf , denoted by ∂Qm (See Fig. 2). The
domain Qm is itself rectangular, Qm = Q1

m×Q2
m×Q3

m, and is compactly contained
in Q. The domain Qf is connected and ∂Qm is Lipschitz and piecewise smooth.
We also define Q1

f = Q1\Q1
m, Q2

f = Q2\Q2
m, and Q3

f = Q3\Q3
m. The domain Q3

f

consists of two pieces, which we denote by Q3,1
f and Q3,2

f , with |Q3,1
f | = |Q3,2

f | =
1
2 |Q

3
f |.

Figure 2. The standard cell Q and its subsets.

To homogenize, we will shrink the cells in the direction of periodicity, the vertical
direction. We introduce the notation, εQ = Q1 ×Q2 × εQ3, and call this the ε-cell.
Similarly, we define εQm = Q1

m×Q2
m× εQ3

m and εQf = {(y1, y2, εy3) : (y1, y2, y3) ∈
Qf}. When ε = 1, we have εQ = Q, the standard cell. As ε tends to 0 the cells
shrink linearly in the vertical direction only. For each ε, we have a new index set
I(ε) = {0, 1, 2, . . . , N(ε)} and set of translations C(ε) = {cα : α ∈ I(ε)} so that the
ε-cells fill up Ω (See Fig. 3).
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Figure 3. Vertical cross-sections through the middle of Ω showing
the vertical homogenization as ε→ 0 and the ε-dependent subsets
of Ω.

Next, we define a matrix domain and fracture domain for each ε > 0 as follows:

Ωε
m = Ω ∩ ∪α∈I(ε) (εQm + εcα) and Ωε

f = Ω ∩ ∪α∈I(ε) (εQf + εcα) ,

(See Fig. 3). Note that the translations are 0 in the first two components so the ε
only affects the third component of the translation cα. For convenience we assume
that the sequence of ε’s are such that ∂Ω ⊂ ∂Ωε

f .
Next, we introduce notation for various components of Ω. Since, Ω1 = Q1 and

Ω2 = Q2, we similarly define the following: Ω1
m = Q1

m, Ω1
f = Q1

f , Ω2
m = Q2

m,
and Ω2

f = Q2
f . For simplicity, we define Ω1,2 = Ω1 × Ω2, Ω1,2

m = Ω1
m × Ω2

m, and
Ω1,2

f = (Ω1
f × Ω2) ∪ (Ω1 × Ω2

f ). To describe the setting of the macroscopic model,
we decompose Ω into three pieces: the fracture sheet, denoted by ΩM = Ω1,2

m ×Ω3,
corresponding to the part of Ω with matrix blocks in it; the side fractures, denoted
by ΩF = Ω1,2

f ×Ω3, that do not shrink as ε tends to 0 and correspond to the fractures
on the lateral sides of the fracture sheet; and the internal boundary between the
two, denoted by ∂Ω1,2

m ×Ω3. Note that Ω1,2
m ×Ω3,ε

m = Ωε
m and Ω1,2

m ×Ω3,ε
f = Ωε

f\ΩF ,
where Ω3,ε

m and Ω3,ε
f are two ε-dependent subsets of Ω3 (See Fig. 4).

As the cells shrink, their horizontal components remain unchanged. That is, Q1,
Q2, and their subsets are not shrinking at all. So, while the vertical components of
Ω and Q are on different scales as ε tends to 0, the horizontal components remain
on the same scale and are, in fact, the same: Qi = Ωi, Qi

m = Ωi
m, and Qi

f = Ωi
f ,

for i = 1, 2. Because of this, we ignore the redundant spaces for the horizontal
components and refer only to Ω1, Ω2, and their subsets.

For each 0 < ε ≤ 1, we define a function cε : Ω3 → C(ε) by letting cε(x3) be the
translation corresponding to the ε-cell that contains Ω1,2 × {x3}. The function cε

can be properly defined by assigning the ε-cell boundaries to either the cell above
or below it in a non-overlapping way. Finally, we let [0, T ] be the time interval of
interest and use J to denote the open time interval (0, T ).
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Figure 4. A vertical cross-section through the middle of Ω show-
ing the ε-dependent subsets of Ω3.

3. The Microscopic Model

In this section we pose the model on the microscopic scale. For x = (x1, x2, x3),
let ρε(x, t) and σε(x, t) be the fluid density in Ωε

f and Ωε
m respectively. Next,

we assume the fluid is a liquid with Newtonian viscosity, µ, and that it satisfies
the following equations of state: dρε = cρεdpε and dσε = cσεdpε, where c is the
constant (small) compressibility and pε is the pressure.

Let φ(x) and k(x) be the porosity and permeability matrix, respectively, in the
blocks of the original reservoir, Ωε=1

m . Since the blocks are periodically distributed
over Ω in the vertical direction, we assume that φ and k are vertically periodic with
a period of Q3. We then let φε(x) = φ(x1, x2,

x3
ε ) and kε(x) = k(x1, x2,

x3
ε ) be the

porosity and permeability matrix in Ωε
m so that φε and kε are εQ3-periodic in the

vertical direction.
Following [1], the fluid flow is assumed to be governed by Darcy’s law in Ωε

m and
Ωε

f . We define Φ∗(x) and K∗(x) to be the porosity and scalar permeability of the
original fracture domain, defining them first over all of Ω and then considering their
restrictions to Ωε=1

f . Now, φ, Φ∗, k and K∗ are all smooth and bounded, with φ,
Φ∗, and K∗ being uniformly positive. Also, k is uniformly bounded component-wise
and uniformly positive definite.

Now we describe the microscopic model. Since we are only homogenizing in
the one (vertical) direction of periodicity, we must carefully scale the permeability
matrix kε. We use a scaling similar to the one done in [8]. Let H be the matrix

H =

1 0 0
0 1 0
0 0 ε

 .
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We then define a scaled permeability matrix, k̂ε, by k̂ε = HkεH. So,

k̂ε(x) =

 kε
11(x) kε

12(x) εkε
13(x)

kε
21(x) kε

22(x) εkε
23(x)

εkε
31(x) εkε

32(x) ε2kε
33(x)


=

 k11(x1, x2,
x3
ε ) k12(x1, x2,

x3
ε ) εk13(x1, x2,

x3
ε )

k21(x1, x2,
x3
ε ) k22(x1, x2,

x3
ε ) εk23(x1, x2,

x3
ε )

εk31(x1, x2,
x3
ε ) εk32(x1, x2,

x3
ε ) ε2k33(x1, x2,

x3
ε )

 .

Throughout we use ν to mean the outward pointing unit normal. Then using
the conservation of mass equations combined with Darcy’s law and the equations of
state, the fluid flow in Ωε

f and Ωε
m can be described in the standard way as follows:

Φ∗ρε
t −∇ ·

(
K∗

µc
∇ρε

)
= f in Ωε

f , t > 0, (3.1)

K∗

µc
∇ρε · ν =

k̂ε

µc
∇σε · ν on ∂Ωε

m, t > 0, (3.2)

K∗

µc
∇ρε · ν = 0 on ∂Ω, t > 0, (3.3)

ρε = ρinit in Ωε
f , t = 0, (3.4)

φεσε
t −∇ ·

(
k̂ε

µc
∇σε

)
= f in Ωε

m, t > 0, (3.5)

σε = ρε on ∂Ωε
m, t > 0, (3.6)

σε = ρinit in Ωε
m, t = 0. (3.7)

The function f = f(x, t) represents external sources and sinks. The boundary
conditions (3.2) and (3.6) respectively represent conservation of mass and continuity
of pressure between Ωε

f and Ωε
m. Also, (3.3) gives no-flow across the external

boundary ∂Ω. For the sake of convenience, we are ignoring gravity in the model
but could easily account for it.

The need for the ε-scaling in k̂ε can be seen by considering matrix-to-fracture
flow as the blocks shrink. The scaling causes the matrix blocks to be less permeable
as ε→ 0, and if no scaling is done, the matrix-to-fracture flow will blow up as the
blocks shrink. Using a similar technique to that found in [2], we choose the ε-scaling
in k̂ε to conserve matrix-to-fracture flow in a certain sense. The original (ε = 1)
matrix-to-fracture flow is given by:∫

∂Ωε=1
m

k(x)
µc

∇σε=1(x) · ν ds(x) =
∫

Ωε=1
m

∇ ·
(
k(x)
µc

∇σε=1(x)
)
dx

=
N(1)∑
i=0

∫
Qm+ci

∇ ·
(
k(x)
µc

∇σε=1(x)
)
dx,

(3.8)

where N(1) is the number of cells in the original (ε = 1) domain. Now, for arbitrary
ε < 1, we consider the matrix-to-fracture flow without scaling. Making a change of
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variables and recalling that k is Q3-periodic, the flow is given by∫
∂Ωε

m

kε(x)
µc

∇σε(x) · ν ds(x)

=
∫

Ωε
m

∇ ·
(
kε(x)
µc

∇σε(x)
)
dx

=
N(ε)∑
i=0

∫
εQm+εci

∇ ·
(
kε(x)
µc

∇σε(x)
)
dx

= ε

N(ε)∑
i=0

∫
Qm+ci

∇1/ε
z ·

(
k(z1, z2, z3)

µc
∇1/ε

z σε(z1, z2, εz3)
)
dz,

(3.9)

where ∇1/ε
z means

(
∂

∂z1
, ∂

∂z2
, 1

ε
∂

∂z3

)
. Comparing (3.8) and (3.9), we see that the

extra ε is accounted for since N(ε) is on the order of ε−1N(1). But, the extra 1
ε ’s

are not accounted for. By scaling kε as we have done in k̂ε, we account for them
and keep the flow from blowing up. Thus, choosing k̂ε = HkεH seems to be an
appropriate choice for conserving the matrix-to-fracture flow as we homogenize.

To simplify things, we introduce more notation:

Φ(x) =

{
Φ∗(x) if x ∈ ΩF

|Q3
f |

|Q3|Φ
∗(x) if x ∈ ΩM ,

Λ(x) = ΛF (x) =
K∗(x)
µc

,

ΛM (x) =
|Q3

f |
|Q3|

KM (x)
µc

, λε(x) =
kε(x)
µc

, λ̂ε(x) =
k̂ε(x)
µc

.

Throughout we assume that f ∈ L2(J ;L2(Ω)), ρinit ∈ L2(Ω), and use (·, ·)X to
denote the standard inner product of L2(X). Then for ϕ ∈ L2(J ;H1(Ω)), we use
the boundary conditions and (3.5) to see that

−(∇ · (Λ∇ρε), ϕ)Ωε
f

= (Λ∇ρε,∇ϕ)Ωε
f
− (Λ∇ρε · νf , ϕ)∂Ωε

m
− (Λ∇ρε · ν, ϕ)∂Ω

= (Λ∇ρε,∇ϕ)Ωε
f

+ (λ̂ε∇σε · νm, ϕ)∂Ωε
m

= (Λ∇ρε,∇ϕ)Ωε
f

+ (φεσε
t , ϕ)Ωε

m
− (f, ϕ)Ωε

m
+ (λ̂ε∇σε,∇ϕ)Ωε

m
,

where νf and νm are the outward pointing unit normals from Ωε
f and Ωε

m respec-
tively. So a weak form for the microscopic model is

(Φ∗ρε
t , ϕ)Ωε

f×J + (Λ∇ρε,∇ϕ)Ωε
f×J + (φεσε

t , ϕ)Ωε
m×J + (λ̂ε∇σε,∇ϕ)Ωε

m×J

= (f, ϕ)Ω×J , ϕ ∈ L2(J ;H1(Ω)),
(3.10)

(φεσε
t , ψ)Ωε

m×J + (λ̂ε∇σε,∇ψ)Ωε
m×J = (f, ψ)Ωε

m×J , ψ ∈ L2(J ;H1
0 (Ωε

m)), (3.11)

ρε = σε for x ∈ ∂Ωε
m, t > 0, (3.12)

ρε = ρinit, σε = ρinit for x ∈ Ω, t = 0. (3.13)

Theorem 3.1. For each ε, there exists a unique solution, ρε and σε, to the sys-
tem (3.10)–(3.13). Additionally, ρε ∈ H1(J ;L2(Ωε

f )) ∩ L2(J ;H1(Ωε
f )) and σε ∈

H1(J ;L2(Ωε
m)) ∩ L2(J ;H1(Ωε

m)).
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Proof. First, let χε
f be the characteristic function of Ωε

f and

θε(x) =

{
ρε for x ∈ Ωε

f

σε for x ∈ Ωε
m,

αε = χε
fΦ∗ + (1− χε

f )φε, κε = χε
fΛ + (1− χε

f )λ̂ε.

Then (3.10) and (3.13) can be rewritten as

(αεθε
t , ϕ)Ω×J + (κε∇θε,∇ϕ)Ω×J = (f, ϕ)Ω×J , ∀ ϕ ∈ L2(J ;H1(Ω)), (3.14)

θε = ρinit for x ∈ Ω, t = 0. (3.15)

This is a single parabolic problem with discontinuous coefficients. It is well known
that this problem has a unique solution in H1(J ;L2(Ω)) ∩ L2(J ;H1(Ω)). By re-
stricting the solution to Ωε

f and Ωε
m, we obtain ρε and σε respectively. �

Hereafter we use C to denote a positive constant that is independent of ε,
though not necessarily the same one at each occurrence. Also, we use ∇ε to denote
( ∂

∂x1
, ∂

∂x2
, ε ∂

∂x3
). Then, from the standard energy estimates used to prove Theorem

3.1, we obtain the following result.

Lemma 3.2.

‖ρε‖L2(J;L2(Ωε
f )) + ‖σε‖L2(J;L2(Ωε

m)) ≤ C,

‖ρε
t‖L2(J;L2(Ωε

f )) + ‖σε
t ‖L2(J;L2(Ωε

m)) ≤ C,

‖∇ρε‖L2(J;L2(Ωε
f )) + ‖∇εσε‖L2(J;L2(Ωε

m)) ≤ C.

4. Technical Lemmas

To prove the main result we will need to use various technical lemmas which we
state in this section. First, for a measurable function φ on Ω, a subset of Ω, or a
subset of the boundary of Ω, we define

φ̃(x1, x2, x3, y3) = φ(x1, x2, εy3 + cε(x3)).

We call the operator mapping φ to φ̃ the dilation operator. Recalling the definition
of cε, we are actually defining a family of operators, one for each ε, 0 < ε ≤ 1.
However, for convenience we will only write “e ”, and leave the ε-dependence as
implicitly understood. We first note that the dilation operator commutes with ad-
dition and multiplication: φ̃ψ = φ̃ψ̃ and φ̃+ ψ = φ̃+ψ̃. In the following lemmas, we
prove some deeper properties of the dilation operator that will be used extensively.

Lemma 4.1. If ψ ∈ H1(Ω), then ∂
∂y3

ψ̃ = ε ∂̃
∂x3

ψ.

Lemma 4.2. If ψ,ϕ ∈ L2(Ω) (or H1(Ω) when appropriate), then for r = m, f, or
blank,

(ψ̃, ϕ̃)Ω1,2
p(r)×Ω3×Q3

r
= |Q3|(ψ,ϕ)Ω1,2

p(r)×Ω3,ε
r
,

‖ψ̃‖L2(Ω1,2
p(r)×Ω3×Q3

r) = |Q3|1/2‖ψ‖L2(Ω1,2
p(r)×Ω3,ε

r ),

‖ ∂

∂y3
ψ̃‖L2(Ω1,2

p(r)×Ω3×Q3
r) = ε|Q3|1/2‖ ∂

∂x3
ψ‖L2(Ω1,2

p(r)×Ω3,ε
r ),

(ψ̃, ϕ)Ω1,2
r ×Ω3×Q3 = (ψ, ϕ̃)Ω1,2

r ×Ω3×Q3 ,
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where Ω3,ε means Ω3 and p(r) =

{
m if r = f or m,
f if r = blank.

Proof. Letting z3 = εy3 + cε(x3), the first result is a calculation.

(ψ̃, ϕ̃)Ω1,2
p(r)×Ω3×Q3

r
=
∫

Ω1,2
p(r)

∫
Ω3

∫
Q3

r

ψ(x1, x2, εy3 + cε(x3))ϕ(x1, εy3 + cε(x3)) dy3 dx

=
∫

Ω1,2
p(r)

∫
Ω3

∫
εQ3

r+cε(x3)

ψ(x1, x2, z3)ϕ(x1, x2, z3)ε−1 dz3 dx

= |Q3|
∫

Ω1,2
p(r)

∫
Ω3,ε

r

ψ(x1, x2, z3)ϕ(x1, x2, z3) dz3 dx1 dx2

= |Q3|(ψ,ϕ)Ω1,2
p(r)×Ω3,ε

r
.

The next two results follow from the first result and the previous lemma. The last
result is also a calculation.

(ψ̃, ϕ)Ω1,2
r ×Ω3×Q3

=
∫

Ω1,2
r

∫
Ω3

∫
Q3
ψ(x1, x2, εy3 + cε(x3))ϕ(x1, x2, x3) dy3 dx

=
∫

Ω1,2
r

∫
Ω3

∫
εQ3+cε(x3)

ψ(x1, x2, z3)ϕ(x1, x2, x3)ε−1 dz3 dx

= ε−1

∫
Ω1,2

r

∫
Ω3
ψ(x1, x2, z3)

(∫
εQ3+cε(z3)

ϕ(x1, x2, x3) dx3

)
dz3 dx1 dx2

= ε−1

∫
Ω1,2

r

∫
Ω3
ψ(x1, x2, z3)

(∫
Q3
ϕ(x1, x2, εy3 + cε(z3))ε dy3

)
dz3 dx1 dx2

= (ψ, ϕ̃)Ω1,2
r ×Ω3×Q3 .

�

Lemma 4.3. Let s = F or M and r = m, f , or blank. If ϕ ∈ L2(Ωs) is considered
as a function in L2(Ωs×Q3

r) that is constant in y3, then ϕ̃→ ϕ strongly in L2(Ωs×
Q3

r) as ε→ 0.

Proof. Using the Dominated Convergence Theorem, the result is straightforward
for ψ ∈ C∞0 (Ωs):

lim
ε→0

∫
Ωs×Q2

r

(ψ̃(x, y2)− ψ(x))2 dx dy2

=
∫

Ωs×Q2
r

(lim
ε→0

ψ(x1, εy2 + cε(x2))− ψ(x))2 dx dy2 = 0.

The full result then follows from Lemma 4.2 and the fact that functions in C∞0 (Ωs)
are dense in L2(Ωs). �

Corollary 4.4. We have the following estimates:

‖σ̃ε‖L2(Ω3;H1(Ω1,2
m ×Q3

m×J)) ≤ C,

‖ρ̃ε‖L2(Ω3;H1(Ω1,2
f ×Q3×J)) ≤ C,

‖ρ̃ε‖L2(Ω3;H1(Ω1,2
m ×Q3

f×J)) ≤ C,
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‖ ∂

∂y3
ρ̃ε‖L2(ΩF ;L2(Q3;L2(J))) ≤ εC,

‖ ∂

∂y3
ρ̃ε‖L2(ΩM ;L2(Q3

f ;L2(J))) ≤ εC.

The proofs for the above estimates are straighforward calculations using Lemmas
3.2 and 4.2.

5. The Main Result

When we homogenize, the microscopic model converges to an averaged, limit
model. We now describe that limit model which we call the macroscopic model.

Figure 5. The macroscopic model domains, ΩF and ΩM , includ-
ing a horizontal cross-section.

Let ρF (x, t) and ρM (x, t) be the macroscopic, averaged fluid density in side
fractures and fracture sheet, ΩF and ΩM , respectively (See Fig. 5). Also, let

ρ(x, t) =

{
ρF (x, t) if x ∈ ΩF ,

ρM (x, t) if x ∈ ΩM ,
Λ#(x) =

{
ΛF (x) if x ∈ ΩF ,

ΛM (x) if x ∈ ΩM .

We let ∇ = ( ∂
∂x1

, ∂
∂x2

, ∂
∂x3

), ∇x1,x2 = ( ∂
∂x1

, ∂
∂x2

), and ∇x1,x2,y3 = ( ∂
∂x1

, ∂
∂x2

, ∂
∂y3

).
Then, with fm, f1

M , and f2
M defined as below, ρF and ρM satisfy the following:

ΦρF
t −∇ ·

(
ΛF∇ρF

)
= f in ΩF , t > 0, (5.1)

ΦρM
t −∇x1,x2 ·

(
ΛM∇x1,x2ρ

M
)
− ∂

∂x1
f1

M − ∂

∂x2
f2

M = f + fm in ΩM , t > 0,

(5.2)

ΛF∇ρF · ν = 0 on ∂Ω\(Ω1,2
m × ∂Ω3), t > 0, (5.3)

ρ = ρinit in Ω, t = 0, (5.4)
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∂

∂x1
ρF =

|Q3
f |

|Q3|
∂

∂x1
ρM , f1

M = 0 on ∂Ω1
m × Ω2

m × Ω3, t > 0, (5.5)

∂

∂x2
ρF =

|Q3
f |

|Q3|
∂

∂x2
ρM , f2

M = 0 on Ω1
m × ∂Ω2

m × Ω3, t > 0. (5.6)

The boundary condition (5.3) holds on the boundary of Ω, excluding the top
and bottom of ΩM . The conditions (5.5) and (5.6) hold on the internal boundary
between ΩF and ΩM . As ε tends to zero, the blocks shrink to become horizontal
plates. There are infinitely many of them, one for each x3. Let σ(x, y3, t) be the
macroscopic fluid density in the matrix blocks and note that the macroscopic poros-
ity and scaled permeability matrix are φ(x1, x2, y3) and λ(x1, x2, y3) respectively.
Then σ satisfies the following:

φσt −∇x1,x2,y3 · (λ∇x1,x2,y3σ) = f(x, t) in ΩM ×Q3
m, t > 0, (5.7)

σ = ρ on ∂(Ω1,2
m ×Q3

m)× Ω3, t > 0, (5.8)

σ = ρinit in ΩM ×Q3
m, t = 0. (5.9)

Boundary condition (5.8) reflects continuity of pressure between the blocks and
the fractures. Let λ1 and λ2 be the first and second rows of the matrix λ. Then
fm, f1

M , and f2
M are given by

fm(x, t) = − 1
|Q3|

∫
Q3

m

φ(x1, x2, y3)σt(x, y3, t) dy3,

f1
M (x, t) =

1
|Q3|

∫
Q3

m

λ1 · ∇x1,x2,y3σ(x, y3, t) dy3,

f2
M (x, t) =

1
|Q3|

∫
Q3

m

λ2 · ∇x1,x2,y3σ(x, y3, t) dy3.

Together, the fm, f1
M , and f2

M terms are a fluid source, representing the total
average flow out of the matrix blocks into the fracture sheet. The fm term alone
contributes too much fluid because it takes into account lateral flow in the blocks
as well as vertical. Since in ΩM fluid is exchanged only through the top and bottom
of each block, the f1

M and f2
M terms cancel the extra flow.

Theorem 5.1. The macroscopic model has a unique solution, (ρ, σ). Moreover,
the solution of the microscopic model, (ρε, σε), converges to (ρ, σ) in the following
weak sense: χε

fΦ∗ρε ⇀ Φρ in H1(J ;L2(Ω)), χε
fΛ∇ρε ⇀ Λ#ξ in L2(J ;L2(Ω)), and

σ̃ε ⇀ σ in L2(Ω3;H1(Ω1,2
m ×Q3

m × J)).

The proof will be completed via the subsequent lemmas.

Lemma 5.2. For a subsequence of the ε’s, we have the following weak convergence:

χε
fΦ∗ρε ⇀ Φρ in H1(J ;L2(Ω)), (5.10)

χε
fΦ∗ρε ⇀ Φρ in H1(ΩF × J), (5.11)

χε
fΦ∗ρε ⇀ Φρ in L2(Ω3;H1(Ω1,2

m × J)), (5.12)

χε
fΛ∇ρε ⇀ Λ#ξ in L2(J ;L2(Ω)), (5.13)

σ̃ε ⇀ σ in L2(Ω3;H1(Ω1,2
m ×Q3

m × J)), (5.14)

ρ̃ε ⇀ τ3 in L2(Ω3;H1(Ω1,2
f ×Q3 × J)), (5.15)
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ρ̃ε ⇀ τ in L2(Ω3;H1(Ω1,2
m ×Q3

f × J)). (5.16)

The proof of the above convergence follow immediately from Lemma 3.2 and
Corollary 4.4.

We denote the components of ξ as ξ = (ξ1, ξ2, ξ3). From Corollary 4.4, we see
that τ3 = τ3(x, t) only, because Q3 is connected. Similarly, if we let τ1 and τ2 be
the restrictions of τ to ΩM × Q3,1

f × J and ΩM × Q3,2
f × J respectively, we have

τ1 = τ1(x, t) and τ2 = τ2(x, t) as well. Next we show that ρ̃ε actually converges to
ρ.

Lemma 5.3. τ3 = ρ in L2(Ω3;H1(Ω1,2
f × J)) and τ1+τ2

2 = ρ in L2(Ω3;H1(Ω1,2
m ×

J)).

Proof. Let ϕ ∈ C∞0 (ΩF × J). Then using Lemmas 4.2 and 4.3 we have

(ρ̃ε, ϕ)ΩF×Q3×J = (χ̃ε
fρ

ε, ϕ)ΩF×Q3×J = (χε
fρ

ε, ϕ̃)ΩF×Q3×J

→ (
Φ
Φ∗
ρ, ϕ)ΩF×Q3×J = |Q3|(ρ, ϕ)ΩF×J .

We also have (ρ̃ε, ϕ)ΩF×Q3×J → |Q3|(τ3, ϕ)ΩF×J , so the first result is clear. Simi-
larly, for ϕ ∈ C∞0 (ΩM × J), Lemmas 4.2 and 4.3 give

(ρ̃ε, ϕ)ΩM×Q3
f×J = (χ̃ε

fρ
ε, ϕ)ΩM×Q3×J = (χε

fρ
ε, ϕ̃)ΩM×Q3×J

→ (
Φ
Φ∗
ρ, ϕ)ΩM×Q3×J = |Q3

f |(ρ, ϕ)ΩM×J .

Then the second result follows because

(ρ̃ε, ϕ)ΩM×Q3
f×J → (τ, ϕ)ΩM×Q3

f×J = |Q3,1
f |(τ1, ϕ)ΩM×J + |Q3,2

f |(τ2, ϕ)ΩM×J

= |Q3
f |(

τ1 + τ2
2

, ϕ)ΩM×J .

�

We claim that, in fact, τ1 = τ2 and thus, τ = ρ in L2(Ω3;H1(Ω1,2
m × J)). Recall

that the standard cell Q was constructed with the block centered in the fracture,
that is, |Q3,1

f | = |Q3,2
f | = 1

2 |Q
3
f |. If instead, we define a new standard cell Q̌, with

corresponding subsets, and repeat all the analysis, replacing τ1 and τ2 with γ1 and
γ2, then we have the following: τ1 = γ1 in L2(Ω3;H1(Ω1,2

m × J)) and τ2 = γ2 in
L2(Ω3;H1(Ω1,2

m × J)). In addition, calculations similar to the ones in the proof of

Lemma 5.3 give
|Q̌3,1

f |γ1+|Q̌3,2
f |γ2

|Q̌3
f |

= ρ in L2(Ω2;H1(Ω1
m × J)). This implies that

τ1 = τ2

( |Q̌3,2
f | − |Q3,2

f |
|Q̌3,1

f | − |Q3,1
f |

)
,

which gives τ1 = τ2, since
|Q̌3,2

f |−|Q3,2
f |

|Q̌3,1
f |−|Q3,1

f | = 1. Now we show that the weak limits ρ

and σ are solutions to the macroscopic model.

Lemma 5.4. The weak limit σ is a solution of (5.7), the block equation of the
macroscopic model.
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Proof. First take ψ ∈ L2(Ω3;L2(J ;H1
0 (Ω1,2

m ×Q3
m))) and define

ψ̄(x1, x2, x3, z3, t) =

{
ψ
(
x1, x2, x3,

z3−cε(x3)
ε , t

)
if z3 ∈ εQ3

m + cε(x3)
0 otherwise.

Then, we have ψ̄ ∈ L2(Ω3;L2(J ;H1
0 (Ωε

m))). We use ψ̄ as the test function in the
block equation of the weak form of the microscopic model (3.11). So, for almost
every fixed x3 ∈ Ω3, we have

(φεσε
t , ψ̄(x3))Ωε

m×J + (λ̂ε∇x1,x2,z3σ
ε,∇x1,x2,z3 ψ̄(x3))Ωε

m×J = (f, ψ̄(x3))Ωε
m×J .

Since ψ̄ = 0 in all blocks except the one that x is in, this simplifies to

(φεσε
t , ψ̄(x3))Ω1,2

m ×(εQ3
m+cε(x3))×J

+ (λ̂ε∇x1,x2,z3σ
ε,∇x1,x2,z3 ψ̄(x3))Ω1,2

m ×(εQ3
m+cε(x3))×J

= (f, ψ̄(x3))Ω1,2
m ×(εQ3

m+cε(x3))×J .

Next, we let y3 = z3−cε(x3)
ε and use the Q3-periodicity of φ and λ̂ to obtain

(φσ̃ε
t , ψ)Ω1,2

m ×Q3
m×J + (λ̂∇1/ε

x1,x2,y3
σ̃ε,∇1/ε

x1,x2,y3
ψ)Ω1,2

m ×Q3
m×J = (f̃ , ψ)Ω1,2

m ×Q3
m×J ,

where ∇1/ε
x1,x2,y3 = ( ∂

∂x1
, ∂

∂x2
, 1

ε
∂

∂y3
). Simplifying and integrating in x3, we get

(φσ̃ε
t , ψ)ΩM×Q3

m×J + (λ∇x1,x2,y3 σ̃
ε,∇x1,x2,y3ψ)ΩM×Q3

m×J = (f̃ , ψ)ΩM×Q3
m×J .

Finally, letting ε→ 0 gives us

(φσt, ψ)ΩM×Q3
m×J +(λ∇x1,x2,y3σ,∇x1,x2,y3ψ)ΩM×Q3

m×J = (f, ψ)ΩM×Q3
m×J . (5.17)

This is a weak form of (5.7). �

Lemma 5.5. The weak limit ρ is a solution of (5.1)-(5.3), (5.5)-(5.6), the fracture
equations of the macroscopic model.

Proof. Starting with (3.10), we let ε → 0 and consider the convergence of each
term. The first and second terms are straightforward:

(Φ∗ρε
t , ϕ)Ωε

f×J = (χε
fΦ∗ρε

t , ϕ)Ω×J → (Φρt, ϕ)Ω×J ,

(Λ∇ρε,∇ϕ)Ωε
f×J = (χε

fΛ∇ρε,∇ϕ)Ω×J → (Λ#ξ,∇ϕ)Ω×J .

Using the periodicity of φ and Lemmas 4.2-4.3, the third term converges as follows:

(φεσε
t , ϕ)Ωε

m×J =
1

|Q3|
(φσ̃ε

t , ϕ̃)ΩM×Q3
m×J

→ 1
|Q3|

(φσt, ϕ)ΩM×Q3
m×J = −(fm, ϕ)ΩM×J .

Letting λε
i , i = 1, 2, 3, be the rows of λε, we expand the fourth term,

(λ̂ε∇σε,∇ϕ)Ωε
m×J

= (λε
1 · ∇εσε,

∂

∂x1
ϕ)Ωε

m×J + (λε
2 · ∇εσε,

∂

∂x2
ϕ)Ωε

m×J + ε(λε
3 · ∇εσε,

∂

∂x3
ϕ)Ωε

m×J .

The last term has an extra ε and thus converges to 0 by Lemma 3.2. The conver-
gence of other terms is shown using Lemmas 4.1-4.3:

(λε
i∇εσε,

∂

∂xi
ϕ)Ωε

m×J =
1

|Q3|
(λ̃ε

i ∇̃εσε,
∂̃

∂xi
ϕ)ΩM×Q3

m×J
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=
1

|Q3|
(λi · ∇x1,x2,y3 σ̃

ε,
∂̃

∂xi
ϕ)ΩM×Q3

m×J

→ 1
|Q3|

(λi · ∇x1,x2,y3σ,
∂

∂xi
ϕ)ΩM×Q3

m×J

= (f i
M ,

∂

∂xi
ϕ)ΩM×J for i = 1, 2.

Finally, we show the relationship between ρ and ξ. First, we have ξ = ∇ρ in
L2(J ;L2(ΩF )). To see this, let ϕ ∈ C∞0 (ΩF × J) and extend it by 0 to a function
over all of Ω× J . Then for i = 1, 2, 3, we have

0 = (χε
f

∂

∂xi
ρε, ϕ)Ω×J − (χε

f

∂

∂xi
ρε, ϕ)ΩF×J

→ (
Λ#

Λ
ξi, ϕ)Ω×J − (

Φ
Φ∗

∂

∂xi
ρ, ϕ)ΩF×J

= (ξi −
∂

∂xi
ρ, ϕ)ΩF×J .

Similar calculations show that (ξ1, ξ2) = ∇x1,x2ρ = ( ∂
∂x1

ρ, ∂
∂x2

ρ) in L2(J ;L2(ΩM )).
To relate ξ3 and ρ in ΩM × J , the following function will be useful. Let w ∈
C0(Q3)∩H1(Q3), with w|

Q3
f

∈ C1(Q3
f ), be a piecewise linear function that is 0 on

the boundary, ∂Q3, and constructed so that ∂
∂y3

w = 1 in Q3
f . Then define a new

function, wε, by wε(x3) = εw(x3−cε(x3)
ε ) and note that wε ∈ H1(Ω3). Also, note

that for x3 ∈ Ω3,ε
f , we have ∂

∂x3
wε(x3) = 1. Using Lemma 4.2, we see that

‖wε‖L2(Ω×J) = |Q3|−1/2‖w̃ε‖L2(Ω×Q3×J) = ε
( |Ω| |J |
|Q3|

)1/2

‖w‖L2(Q3) → 0,

and thus, wε → 0 in L2(Ω× J). Next, we let ϕ ∈ C∞0 (ΩM × J), extend it by 0 to
all of Ω× J , and use wεϕ as the test function in (3.10):

(Φ∗ρε
t , w

εϕ)Ωε
f×J + (Λ∇ρε,∇(wεϕ))Ωε

f×J

+ (φεσε
t , w

εϕ)Ωε
m×J + (λ̂ε∇σε,∇(wεϕ))Ωε

m×J = (f, wεϕ)Ω×J .

Letting ε→ 0, Lemma 3.2 gives us

(f, wεϕ)Ω×J → 0, (Φ∗ρε
t , w

εϕ)Ωε
f×J → 0,

(φεσε
t , w

εϕ)Ωε
m×J → 0, (Λ∇ρε, wε∇ϕ)Ωε

f×J → 0,

(λ̂ε∇σε, wε∇ϕ)Ωε
m×J → 0, (λ̂ε∇σε, ϕ∇wε)Ωε

m×J → 0.

Also, because ϕ = 0 in ΩF × J and ∂
∂x3

wε = 1 in Ω1,2
m × Ω3,ε

f × J , we have

(Λ∇ρε, ϕ∇wε)Ωε
f×J = (Λ

∂

∂x3
ρε, ϕ

∂

∂x3
wε)Ωε

f×J = (Λ
∂

∂x3
ρε, ϕ)Ω1,2

m ×Ω3,ε
f ×J .

Combining the above gives us (Λ ∂
∂x3

ρε, ϕ)Ω1,2
m ×Ω3,ε

f ×J → 0. But,

(Λ
∂

∂x3
ρε, ϕ)Ω1,2

m ×Ω3,ε
f ×J = (χε

fΛ
∂

∂x3
ρε, ϕ)Ω×J → (Λ#ξ3, ϕ)Ω×J = (ΛMξ3, ϕ)ΩM×J .
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Thus, (ξ3, ϕ)ΩM×J = 0 for every ϕ ∈ C∞0 (ΩM × J) and ξ3 = 0 in ΩM × J . Putting
all the convergence results together, we see that

(Φρt, ϕ)Ω×J + (ΛF∇ρ,∇ϕ)ΩF×J + (ΛM∇x1,x2ρ,∇x1,x2ϕ)ΩM×J

+ (f1
M ,

∂

∂x1
ϕ)ΩM×J + (f2

M ,
∂

∂x2
ϕ)ΩM×J

= (f, ϕ)Ω×J + (fm, ϕ)ΩM×J , ∀ ϕ ∈ L2(J ;H1(Ω)),

(5.18)

which is a weak form of (5.1)-(5.3), (5.5)-(5.6). �

Next we show that ρ and σ satisfy the appropriate initial and boundary condi-
tions. Throughout we will use the following well-known results.

Proposition 5.6. If X and Y are Banach spaces, T : X → Y a bounded linear
operator, and ψα ⇀ ψ weakly in X, then T (ψα) ⇀ T (ψ) weakly in Y .

Proposition 5.7. Let U be a bounded domain (not sitting on both sides of ∂U)
and U1, U2 be disjoint open subsets of U with ∂U1 ∩ ∂U2 = Σ (Σ 6= ∅ and Lipschitz
continuous). Furthermore, let Γ be any subset of Σ, including Σ itself, and u ∈
H1(U). If TU1 : H1(U1) → L2(Γ), and TU2 : H1(U2) → L2(Γ) are trace operators,
then TU1(u|U1) = TU2(u|U2) in L2(Γ).

We first show the initial conditions.

Lemma 5.8. The weak limits ρ and σ satisfy the initial conditions, (5.4) and (5.9),
of the macroscopic model: ρ(0) = ρinit in L2(Ω) and σ(0) = ρinit in L2(Ω3;L2(Ω1,2

m ×
Q3

m)).

Proof. There exist appropriate time-zero trace operators, T f
0 : H1(J ;L2(Ω)) →

L2(Ω) and Tm
0 : L2(Ω3;H1(J ;L2(Ω1,2

m ×Q3
m))) → L2(Ω3;L2(Ω1,2

m ×Q3
m)), that are

linear and bounded. Thus, (5.10) and Proposition 5.6 give us

T f
0 (χε

fΦ∗ρε) ⇀ T f
0 (Φρ) = ΦT f

0 ρ weakly in L2(Ω).

Also, recalling the initial condition (3.13), we have

T f
0 (χε

fΦ∗ρε) = χε
fΦ∗ρε(0) = χε

fΦ∗ρinit ⇀ Φρinit weakly in L2(Ω).

Therefore, T f
0 ρ = ρinit in L2(Ω). Similarly, by (5.14) and Proposition 5.6 we have

Tm
0 σ̃ε ⇀ Tm

0 σ weakly in L2(Ω3;L2(Ω1,2
m ×Q3

m)).

But the initial condition (3.13) and Lemma 4.3 give us

Tm
0 σ̃ε = σ̃ε(0) = ρ̃init → ρinit strongly in L2(Ω3;L2(Ω1,2

m ×Q3
m)).

Hence, Tm
0 σ = ρinit in L2(Ω3;L2(Ω1,2

m ×Q3
m)). �

It remains to show (5.8). To do so, we must consider the boundary of the block
in pieces because the domain of ρ̃ε depends on x1 and x2. We start with the lateral
boundaries of the block, ∂Ω1,2

m ×Q3
m.

Lemma 5.9. The weak limits ρ and σ satisfy ρ = σ in L2(Ω3;L2(∂Ω1,2
m ×Q3

m×J)).

Proof. Let T a,ε
f1

and T a,ε
m1

be standard traces for the fracture and matrix domains

respectively: T a,ε
f1

: H1(Ωε
f × J) → L2(∂Ω1,2

m ×Ω3,ε
m × J) and T a,ε

m1
: H1(Ωε

m × J) →
L2(∂Ω1,2

m × Ω3,ε
m × J).
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Additionally, let T a
f : L2(Ω3;H1(Ω1,2

f ×Q3× J)) → L2(Ω3;L2(∂Ω1,2
m ×Q3

m × J))
and T a

m : L2(Ω3;H1(Ω1,2
m ×Q3

m × J)) → L2(Ω3;L2(∂Ω1,2
m ×Q3

m × J)) be standard
trace operators. Then the dilation and trace operators commute in the following
sense:

T a
f ρ̃

ε = T̃ a,ε
f1
ρε, T a

mσ̃
ε = T̃ a,ε

m1 σ
ε in L2(Ω3;L2(∂Ω1,2

m ×Q3
m × J)). (5.19)

This result is straightforward for all functions in C0(Ωε
r × J) ∩H1(Ωε

r × J), r = f
or m. The full result then follows from a density argument since C0(Ωε

r × J) is
dense in H1(Ωε

r × J). Next, we use Proposition 5.7 with U = Ω× J , U1 = Ωε
f × J ,

U2 = Ωε
m × J , and Γ = ∂Ω1,2

m × Ω3,ε
m × J , to get

T a,ε
f1
ρε = T a,ε

m1
σε in L2(∂Ω1,2

m × Ω3,ε
m × J).

Then dilating both sides, we have

T̃ a,ε
f1
ρε = T̃ a,ε

m1 σ
ε in L2(Ω3;L2(∂Ω1,2

m ×Q3
m × J)). (5.20)

Together, (5.19) and (5.20) imply that T a
f ρ̃

ε = T a
mσ̃

ε in L2(Ω3;L2(∂Ω1,2
m ×Q3

m×J)).
Since the trace operators are all linear and bounded, Proposition 5.6 gives us

T a
f ρ̃

ε ⇀ T a
f τ3 = T a

f ρ weakly in L2(Ω3;L2(∂Ω1,2
m ×Q3

m × J)),

T a
mσ̃

ε ⇀ T a
mσ weakly in L2(Ω3;L2(∂Ω1,2

m ×Q3
m × J)),

and the main result follows. �

Next we derive a similar boundary condition for the top and bottom of the blocks,
Ω1,2

m × ∂Q3
m. The proof is nearly identical to the one for the lateral boundaries.

Lemma 5.10. The weak limits ρ and σ satisfy ρ = σ in L2(Ω3;L2(Ω1,2
m ×∂Q3

m×J)).

Proof. In similar fashion, we let T b,ε
f1

: H1(Ωε
f × J) → L2(Ω1,2

m × ∂Ω3,ε
m × J),

T b,ε
m1

: H1(Ωε
m × J) → L2(Ω1,2

m × ∂Ω3,ε
m × J), T b

f : L2(Ω3;H1(Ω1,2
m × Q3

f × J)) →
L2(Ω3;L2(Ω1,2

m ×∂Q3
m×J)) and T b

m : L2(Ω3;H1(Ω1,2
m ×Q3

m×J)) → L2(Ω3;L2(Ω1,2
m ×

∂Q3
m × J)) be standard trace operators. As before, we need the dilation and trace

operators to commute:

T b
f ρ̃

ε = T̃ b,ε
f1
ρε, T b

mσ̃
ε = T̃ b,ε

m1σ
ε in L2(Ω3;L2(Ω1,2

m × ∂Q3
m × J)). (5.21)

Again, the result holds for all functions in C0(Ωε
r × J) ∩ H1(Ωε

r × J), r = f or
m, and thus for all functions in H1(Ωε

r × J) via a density argument. Next, we use
Proposition 5.7 with U = Ω×J , U1 = Ωε

f×J , U2 = Ωε
m×J , and Γ = Ω1,2

m ×∂Ω3,ε
m ×J

to get
T b,ε

f1
ρε = T b,ε

m1
σε, L2(Ω1,2

m × ∂Ω3,ε
m × J).

Thus, dilating both sides gives

T̃ b,ε
f1
ρε = T̃ b,ε

m1σ
ε in L2(Ω3;L2(Ω1,2

m × ∂Q3
m × J)). (5.22)

Finally, (5.21) and (5.22) together imply that T b
f ρ̃

ε = T b
mσ̃

ε in L2(Ω3;L2(Ω1,2
m ×

∂Q3
m × J)). Then the main result follows from Proposition 5.6 since

T b
f ρ̃

ε ⇀ T b
f τ = T b

fρ weakly in L2(Ω3;L2(Ω1,2
m × ∂Q3

m × J)),
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T b
mσ̃

ε ⇀ T b
mσ weakly in L2(Ω3;L2(Ω1,2

m × ∂Q3
m × J)).

�

Thus, from Lemmas 5.9 and 5.10, the limit solution satisfies the full boundary
condition, (5.8). We now show that our limit solution is unique.

Lemma 5.11. The weak solutions ρ and σ are unique.

Proof. Let ρ and σ be the difference of two solutions to macroscopic model. Then,
ρ and σ satisfy (5.17) and (5.18) with the source terms involving f equal to zero.
Additionally, ρ and σ satisfy (5.8), ρ(0) = 0, and σ(0) = 0. Next, using ρ and σ−ρ
as test functions, we see that ρ and σ satisfy the following:

(Φρt, ρ)Ω×J + (ΛF∇ρ,∇ρ)ΩF×J + (ΛM∇x1,x2ρ,∇x1,x2ρ)ΩM×J

+ (f1
M ,

∂

∂x1
ρ)ΩM×J + (f2

M ,
∂

∂x2
ρ)ΩM×J = (fm, ρ)ΩM×J

(5.23)

and
(φσt, σ)ΩM×Q3

m×J − (φσt, ρ)ΩM×Q3
m×J + (λ∇x1,x2,y3σ,∇x1,x2,y3σ)ΩM×Q3

m×J

− (λ∇x1,x2,y3σ,∇x1,x2,y3ρ)ΩM×Q3
m×J = 0.

(5.24)
Then multiplying (5.23) by |Q3|, adding it to (5.24), and recalling what fm, f1

M ,
and f2

M are, gives us

|Q3|(Φρt, ρ)Ω×J + (φσt, σ)ΩM×Q3
m×J + |Q3|(ΛF∇ρ,∇ρ)ΩF×J

+ |Q3|(ΛM∇x1,x2ρ,∇x1,x2ρ)ΩM×J + (λ∇x1,x2,y3σ,∇x1,x2,y3σ)ΩM×Q3
m×J = 0.

Hence, standard energy estimates of this equation give us ‖ρ‖L2(Ω×J) = 0 and
‖σ‖2

L2(ΩM×Q3
m×J) = 0, and the result follows. �

Since the solution is unique, the whole sequence of solutions to the microscopic
model converges to ρ and σ. Finally, we address the well-posedness of the macro-
scopic model.

Theorem 5.12. The weak limits ρ and σ depend continuously on the data. That
is, ‖ρ‖H1(J;L2(Ω)) + ‖σ‖L2(Ω2;H1(Ω1

m×Q3
m×J)) ≤ C

(
‖f‖L2(J;L2(Ω)) + ‖ρinit‖L2(Ω)

)
.

Proof. It follows from the energy estimates used to prove Theorem 3.1 that ρε and
σε depend continuously on the data, f and ρinit. An appropriate bound on the
norm of σ̃ε can be obtained by performing calculations similar to those found in
the proof of Lemma 4.2. The result then follows by passing to the weak limits. �

6. Extensions

The geometry considered in this work can be extended to include larger fractures
in the vertical direction in at least two ways. First of all, the domain of consideration
would consist of horizontal translations of cells, where each cell is a layered porous
medium of the type described in this work (See Fig. 6).

One method of homogenizing this medium would be to use the following recur-
sive homogenization approach: first homogenize each cell in the vertical direction
using the method in this work; then homogenize the vertical fractures using a ho-
mogenization approach in the horizontal direction on a larger length scale.
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Figure 6. A vertical cross-section of a domain with large vertical
fractures in between horizontal translations of cells with the same
structure as in Fig. 1.

A second approach would be to use reiterative homogenization. That is, we
would set up two different length scales, both dependent on a parameter ε, that
would eventually tend to zero in the homogenization process. The fine scale would
be the horizontal fractures in each cell and the coarse scale would be the larger
vertical fractures between the cells. As ε → 0, the fine scale fractures would tend
to zero faster than the coarse scale fractures.

Acknowledgements. The authors would like to express their sincere gratitude
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They would also like to thank the reviewers of the manuscript for their thoughtful
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