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EXISTENCE AND CONCENTRATION OF SOLUTIONS FOR A
p-LAPLACE EQUATION WITH POTENTIALS IN RN

MINGZHU WU, ZUODONG YANG

Abstract. We study the p-Laplace equation with Potentials

− div(|∇u|p−2∇u) + λV (x)|u|p−2u = |u|q−2u,

u ∈ W 1,p(RN ), x ∈ RN where 2 ≤ p, p < q < p∗. Using a concentration-
compactness principle from critical point theory, we obtain existence, multi-

plicity solutions, and concentration of solutions.

1. Introduction

This article concerns the existence and the multiplicity of decaying solutions for
the equation

−div(|∇u|p−2∇u) + V (x)|u|p−2u = |u|q−2u, x ∈ RN (1.1)

and for the related equations

−div(|∇u|p−2∇u) + λV (x)|u|p−2u = |u|q−2u, x ∈ RN , (1.2)

and
−εp div(|∇u|p−2∇u) + V (x)|u|p−2u = |u|q−2u, x ∈ RN (1.3)

respectively as λ → ∞, and ε → 0. We also consider concentration of solutions as
λ →∞ or ε → 0.

We assume throughout that V and p, q satisfy the following conditions:
(V1) V ∈ C(RN ) and V is bounded.
(V2) There exists b > 0 such that the set {x ∈ RN : V (x) < b} is nonempty and

has finite measure.
(P1) 2 ≤ p, p < q < p∗ where p∗ = pN

N−p if N > p and p∗ = ∞ if 1 ≤ N ≤ p.

Note that if εp = λ−1, then u is a solution of (1.2) if and only if v = λ
−1

q−p u is
a solution of (1.3), hence as far as the existence and the number of solutions are
concerned, these two problems are equivalent.
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‖u‖p will denote the usual Lp(RN ) norm and V ±(x) = max {±V (x), 0}. Bρ and
Sρ will respectively denote the open ball and the sphere of radius ρ and center at
the origin.

It is well known that the functional

Φ(u) =
1
p

∫
RN

(|∇u|p + V (x)|u|p)dx− 1
q

∫
RN

|u|qdx

is of class C1 in the Sobolev space

E = {u ∈ W 1,p(RN ) : ‖u‖p =
∫

RN

(|∇u|p + V +(x)|u|p)dx < ∞} (1.4)

and critical points of Φ correspond to solutions u of (1.1). Moreover, u(x) → 0 as
|x| → ∞. It is easy to see that if

M = inf
u∈E\{0}

∫
RN (|∇u|p + V (x)|u|p)dx

‖u‖p
q

(1.5)

is attained at some u and M is positive, then u = M
1

q−p u/‖u‖q is a solution of
(1.1) and u(x) → 0 as |x| → ∞. Such u is called a ground state. Because we have
Poincaré inequality∫

Ω

|u|pdx ≤ C

∫
Ω

|∇u|pdx, 1 ≤ p < +∞, u ∈ W 1,p
0 (Ω)

so E is continuously embedded in W 1,p(RN ).
Recently, there have been numerous works for the eigenvalue problem

−div(|∇u|p−2∇u) = V (x)|u|p−2u

u ∈ D1,p
0 (Ω), u 6= 0

(1.6)

where Ω ⊆ RN . We can see [3, 16, 24, 25] for different approaches. Szulkin and
Willem [25] generalized several earlier results concerning the existence of an infinite
sequence of eigenvalues.

Consider the quasilinear elliptic equation

−div(|∇u|p−2∇u) + λ|u|p−2u = f(x, u), in Ω

u ∈ W 1,p
0 (Ω), u 6= 0

(1.7)

where 1 < p < N , N ≥ 3, λ is a parameter, Ω is an unbounded domain in RN .
Existence of solutions to (1.7) has been investigation in the previoius decade, see for
example [12, 15, 21, 22, 27, 28]. Because of the unboundedness of the domain, the
Sobolev compact embedding do not hold. There are some methods to overcome this
difficulty. In [28], the authors used the concentration-compactness principle posed
by Lions and the mountain pass lemma to solve problem (1.3). In [27], the author
use that the projection u 7→ f(x, u) is weak continuous in W 1,p

0 (Ω) to consider
the problem. In [8, 9], the authors study the problem in symmetric Sobolev spaces
which possess Sobolev compact embedding. By the result and a min-max procedure
formulated by Bahri and Li [5], they considered the existence of positive solutions
of

−div(|∇u|p−2∇u) + up−1 = q(x)uα in RN ,

where q(x) satisfies certain conditions.
When p = 2, problem (1.1) has been studied in [1, 4, 6, 7, 14, 17, 17, 19]. In

[20], a quasilinear problem in bounded domains was considered with Hardy type
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potentials. To the best of our knowledge, there is very little work on the case p 6= 2
for problem (1.1).

From its first appearance in the work by Lions [21, 22], the concentration-
compactness principle in calculus of variations has been widely used and by many
authors. In fact, one should refer to the two concentration-compactness principles,
as “escape to infinity” and “concentration around points” as treated separately,
originally. This seemingly harmless dichotomy however often leads to rather cum-
bersome and tricky calculations. To get rid of these difficulties, some authors have
developed variants that encompass both possible loss of compactness in a whole;
see for instance Ben-Naoum et al. [10] and Bianchi et al. [11] which seem to be
the first works in this direction. When using the original principle or its variants,
it is necessary beforehand to discover the so-called limiting problems that are re-
sponsible for non-compactness. Often, these are related to the invariance of the
considered functional and constraint under a non-compact group; translations and
dilations being the two most studied.

Motivated by the results in [6, 11, 13, 14, 17, 18, 19, 20, 22, 26, 27], we obtain
the existence and the multiplicity of solutions in Theorems 3.1–3.3 by using critical
point theory. By Theorems 3.4 and 3.5, we can obtain the concentration of solutions.

This paper is organized as follows. In Section 2, we state some condition and
many lemmas which we need in the proof of the main Theorem. In Section 3, we
give the proof of the main result of the paper.

2. Preliminaries

Lemma 2.1. Let Ω ⊆ RN be an open subset. (un) ⊆ W 1,p
0 (Ω) be a sequence such

that un ⇀ u in W 1,p
0 (Ω) and p ≥ 2. Then

lim
n→∞

∫
Ω

|∇un|pdx ≥ lim
n→∞

∫
Ω

|∇un −∇u|pdx +
∫

Ω

|∇u|pdx.

Proof. When p = 2 from Lieb Lemma we have

lim
n→∞

∫
Ω

|∇un|2dx = lim
n→∞

∫
Ω

|∇un −∇u|2dx +
∫

Ω

|∇u|2dx.

For 3 ≥ p > 2, using the lower semi-continuity of the Lp-norm with respect to the
weak convergence and un ⇀ u in W 1,p(Ω), we deduce

lim
n→∞

〈|∇un|p−2∇un,∇un〉 ≥ 〈|∇u|p−2∇u,∇u〉

and

lim
n→∞

〈|∇un −∇u|p−2(∇un −∇u),∇un −∇u〉

= 0 ≥ lim
n→∞

〈|∇un −∇u|p−2(∇u−∇u),∇u−∇u〉.

So

lim
n→∞

〈|∇un −∇u|p−2∇un,∇un〉 ≥ lim
n→∞

〈|∇un −∇u|p−2∇un,∇u〉

= lim
n→∞

〈|∇un −∇u|p−2∇u,∇un〉

= lim
n→∞

〈|∇un −∇u|p−2∇u,∇u〉.
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Then

lim
n→∞

∫
Ω

(|∇un|p − |∇u|p)dx

= lim
n→∞

∫
Ω

|∇un|p−2(|∇un|2 − |∇u|2)dx + lim
n→∞

∫
Ω

(|∇un|p−2 − |∇u|p−2)|∇u|2dx

= lim
n→∞

∫
Ω

(|∇un|p−2 + |∇u|p−2)(|∇un|2 − |∇u|2)dx

+ lim
n→∞

∫
Ω

(|∇un|p−2|∇u|2 − |∇u|p−2|∇un|2)dx.

From un ⇀ u in W 1,p(Ω),

lim
n→∞

∫
Ω

(|∇un|p−2|∇u|2 − |∇u|p−2|∇un|2)dx = 0.

So

lim
n→∞

∫
Ω

(|∇un|p − |∇u|p)dx = lim
n→∞

∫
Ω

(|∇un|p−2 + |∇u|p−2)(|∇un|2 − |∇u|2)dx

≥ lim
n→∞

∫
Ω

|∇un −∇u|p−2(|∇un|2 − |∇u|2).

So we have

lim
n→∞

〈|∇un|p−2∇un,∇un〉+ 〈|∇un −∇u|p−2∇u,∇un〉+ 〈|∇un −∇u|p−2∇un,∇u〉

≥ lim
n→∞

〈|∇un −∇u|p−2∇un,∇un〉

+ lim
n→∞

〈|∇un −∇u|p−2∇u,∇u〉+ 〈|∇u|p−2∇u,∇u〉.

Then

lim
n→∞

〈|∇un|p−2∇un,∇un〉

≥ lim
n→∞

〈|∇un −∇u|p−2∇un −∇u,∇un −∇u〉+ 〈|∇u|p−2∇u,∇u〉.

and

lim
n→∞

∫
Ω

|∇un|pdx ≥ lim
n→∞

∫
Ω

|∇un −∇u|pdx +
∫

Ω

|∇u|pdx.

For p > 3, there exist a k ∈ N that 0 < p− k ≤ 1. Then, we only need to prove
the inequality

lim
n→∞

∫
Ω

(|∇un|p − |∇u|p)dx ≥ lim
n→∞

∫
Ω

|∇un −∇u|p−k(|∇un|k − |∇u|k).

The proof of this iequality is similar to the above, so we omit it. Therefore, the
lemma is proved. �

Let Vb(x) = max {V (x), b} and

Mb = inf
u∈E\{0}

∫
RN (|∇u|p + Vb(x)|u|p)dx

‖u‖p
q

. (2.1)

Denote the spectrum of −∆p+V in Lp(RN ) by σ(−∆p+V ) and recall the definition
(1.5) of M .
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Lemma 2.2. Suppose (V1), (V2), (P1) are satisfied and σ(−∆p + V ) ⊂ (0,∞). If
M < Mb, then each minimizing sequence for M has a convergent subsequence. So
in particular, M is attained at some u ∈ E \ {0}.
Proof. Let {um} be a minimizing sequence. We may assume ‖um‖q = 1. Since
V < 0 on a set of finite measure, {um} is bounded in the norm of E given by (1.4).
Passing to a subsequence we may assume um ⇀ u in E and by the continuity of
the embedding E ↪→ W 1,p(RN ), um → u in Lp

loc(RN ), Lq
loc(RN ) and a.e. in RN .

Let um = vm + u. Then by Lemma 2.1, we have

lim
m→∞

∫
RN

(|∇um|p + V (x)|um|p)dx

≥ lim
m→∞

∫
RN

(|∇vm|p + V (x)|vm|p)dx +
∫

RN

(|∇u|p + V (x)|u|p)dx,

(2.2)

by the Lieb Lemma,

lim
m→∞

∫
RN

|um|pdx = lim
m→∞

∫
RN

|vm|pdx +
∫

RN

|u|pdx. (2.3)

Moreover, by (V2) and since vm ⇀ 0 as m →∞,

lim
m→∞

∫
RN

(V (x)− Vb(x))|vm|pdx → 0. (2.4)

Using (2.2)-(2.4) and the definitions of M , Mb, we obtain∫
RN

(|∇u|p + V (x)|u|p)dx + lim
m→∞

∫
RN

(|∇vm|p + V (x)|vm|p)dx

≤ M lim
m→∞

‖um‖p
q

= M lim
m→∞

(‖u‖q
q + ‖vm‖q

q)
p
q

≤ M lim
m→∞

(‖u‖p
q + ‖vm‖p

q)

≤
∫

RN

(|∇u|p + V (x)|u|p)dx + MM−1
b lim

m→∞

∫
RN

(|∇vm|p + Vb(x)|vm|p)dx

≤
∫

RN

(|∇u|p + V (x)|u|p)dx + MM−1
b lim

m→∞

∫
RN

(|∇vm|p + V (x)|vm|p)dx.

Since MM−1
b < 1 and

∫
RN V −1(x)|vm|pdx → 0 as m →∞, it follows that vm → 0

and therefore um → u as m →∞. It is clear that u 6= 0. �

From the above lemma it follows that if σ(−∆p+V ) ⊂ (0,∞) and M < Mb, then
there exists a ground state solution of (1.1). Recall that {um} is called a Palais-
Smale sequence at the level c (a (PS)c-sequence) if Φ′(um) → 0 and Φ(um) → c.
If each (PS)c-sequence has a convergent subsequence, then Φ is said to satisfy the
(PS)c-condition.

Lemma 2.3. If (V1), (V2), (P1) hold, then Φ satisfies (PS)c for all

c < (
1
p
− 1

q
)M

q
(q−p)

b .

Proof. Let {um} be a (PS)c-sequence with c satisfying the inequality above. First
we show that {um} is bounded. We have

2c + d‖um‖ ≥ Φ(um)− 1
p
〈Φ′(um), um〉 = (

1
p
− 1

q
)‖um‖q

q (2.5)
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and
2c + d‖um‖ ≥ Φ(um)− 1

q
〈Φ′(um), um〉

= (
1
p
− 1

q
)‖um‖p − (

1
p
− 1

q
)
∫

RN

V −(x)|um|pdx

(2.6)

for some constants d > 0. Suppose ‖um‖ → ∞ as m → ∞ and let wm =
um/‖um‖. Dividing (2.5) by ‖um‖q we see that wm → 0 in Lq(RN ) as m → ∞
and therefore wm ⇀ 0 in E as m → ∞ after passing to a subsequence. Hence∫

RN V −(x)|wm|pdx → 0 as m → ∞. So dividing (2.6) by ‖um‖p, it follows that
wm → 0 in E as m →∞, a contradiction. Thus {um} is bounded.

As in the preceding proof, we may assume um ⇀ u in E and um → u in Lp
loc(RN ).

Set um = vm + u. Since Φ′(u) = 0 and

Φ(u) = Φ(u)− 1
p
〈Φ′(u), u〉 = (

1
p
− 1

q
)‖u‖q

q ≥ 0,

it follows from (2.2), (2.3) that

lim
m→∞

(|‖vm‖p − ‖vm‖q
q|) ≤ lim

m→∞
(|‖um‖p − ‖um‖q

q|+ |‖u‖p − ‖u‖q
q|) = 0

so
lim

m→∞
(‖vm‖p − ‖vm‖q

q) = 0 (2.7)

and
c = lim

m→∞
Φ(um) ≥ lim

m→∞
(Φ(vm) + Φ(u)) ≥ lim

m→∞
Φ(vm). (2.8)

By (2.7), we have

lim
m→∞

∫
RN

(|∇vm|p + V (x)|vm|p)dx = lim
m→∞

∫
RN

|vm|qdx = γ (2.9)

possibly after passing to a subsequence, and therefore it follows from (2.8) that

c ≥ (
1
p
− 1

q
)γ. (2.10)

By (2.4),

lim
m→∞

∫
RN

(|∇vm|p + Vb(x)|vm|p)dx = lim
m→∞

∫
RN

(|∇vm|p + V (x)|vm|p)dx = γ .

On the other hand,

‖vm‖p
q ≤ M−

b lim
m→∞

∫
RN

(|∇vm|p + Vb(x)|vm|p)dx;

therefore, γ
p
q ≤ M−

b γ. Combining this with (2.10), we see that either γ = 0, or

c ≥ (
1
p
− 1

q
)M

q
(q−p)

b

hence γ must be 0 by the assumption on c. So according to (2.9), we have

lim
m→∞

∫
RN

(|∇vm|p + V +(x)|vm|p)dx = lim
m→∞

∫
RN

(|∇vm|p + V (x)|vm|p)dx = 0.

Therefore, vm → 0 and um → u in E as m →∞. �

Next we recall a usual critical point theory which will be used in the below
Theorem. Here γ(A) is the Krasnoselskii genus of A.
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Theorem 2.4. Suppose E ∈ C1(M) is an even functional on a complete symmetric
C1,1-manifold M ⊂ V \{0} in some Banach space V . Also suppose E satisfies (PS)
and is bounded below on M . Let γ̃(M) = sup{γ(K);K ⊂ M and symmetric}. Then
the functional E possesses at least γ̃(M) ≤ ∞ pairs of critical points.

3. Proof of Main Theorems

Theorem 3.1. Suppose Assumptions (V1), (P1) are satisfied, σ(−∆p + V ) ⊂
(0,∞), supx∈RN V (x) = b > 0 and the measure of the set {x ∈ RN : V (x) < b− ε}
is finite for all ε > 0. Then the infimum in (1.5) is attained at some u ≥ 0. If
V ≥ 0, then u > 0 in RN .

Proof. Since V + is bounded, E = W 1,p(RN ) here. Let ub be the radially symmetric
positive solution of the equation

−div(|∇u|p−2∇u) + b|u|p−2u = |u|q−2u, x ∈ RN .

It is well known that such ub exists, is unique and minimizes

Nb = inf
u∈E\{0}

∫
RN (|∇u|p + b|u|p)dx

‖u‖p
q

(3.1)

(see [12]). So if V ≡ b, the proof is complete. Otherwise we may assume without
loss of generality that V (0) < b. Then

M = inf
u∈E\{0}

∫
RN (|∇u|p + V (x)|u|p)dx

‖u‖p
q

≤
∫

RN (|∇ub|p + V (x)|ub|p)dx

‖ub‖p
q

<

∫
RN (|∇ub|p + b|ub|p)dx

‖ub‖p
q

= Nb = Mb,

where the last equality follows from the fact that Vb = b. To apply Lemma 2.2 we
need to show that M < Mb−ε for some ε > 0. A simple computation shows that if
λ > 0, then Nλb is attained at

uλb(x) = λ
1

(q−p) ub(λ
1
p x) and Nλb = λrNb,

where r = 1− N
p + N

q .
Choosing λ = (b− ε)/b we see that Nb−ε < Nb and Nb−ε → Nb as ε → 0. So for

ε small enough we have

M < Nb−ε = inf
u∈E\{0}

∫
RN (|∇u|p + (b− ε)|u|p)dx

‖u‖p
q

≤ inf
u∈E\{0}

∫
RN (|∇u|p + Vb−ε(x)|u|p)dx

‖u‖p
q

= Mb−ε.

(3.2)

Hence M is attained at some u. If u is replaced by |u|, the expression on the
right-hand side of (1.5) does not change, we may assume u ≥ 0. By the maximum
principle, if V ≥ 0, then u > 0 in RN . �



8 M. WU, Z. YANG EJDE-2010/96

Theorem 3.2. Suppose V ≥ 0 and (V1), (V2), (P1) are satisfied. Then there
exists Λ > 0 such that for each λ ≥ Λ the infimum in (1.5) is attained at some
uλ > 0. Here V (x) replaced by λV (x).

Proof. Here V = V +. Let b be as in (V2) and

Mλ = inf
u∈E\{0}

∫
RN (|∇u|p + λV (x)|u|p)dx

‖u‖p
q

,

Mλ
b = inf

u∈E\{0}

∫
RN (|∇u|p + λVb(x)|u|p)dx

‖u‖p
q

.

(3.3)

It suffices to show that Mλ < Mλ
b for all λ large enough. We may assume V (0) < b

and choose ε, δ > 0 so that V (x) < b−ε whenever |x| < 2δ. Let ϕ ∈ C∞
0 (RN , [0, 1])

be a function such that ϕ(x) = 1 for |x| ≤ δ and ϕ(x) = 0 for |x| ≥ 2δ. Set
wλb(x) = ϕ(x)uλb(x) = λ

1
q−p ub(λ

1
p x)ϕ(x), where ub is as in the proof of Theorem

3.1. Then for all sufficiently large λ and some C0 > 0,

Mλ ≤
∫

RN (|∇wλb|p + λV (x)|wλb|p)dx

‖wλb‖p
q

≤
∫

RN (|∇wλb|p + λ(b− ε)|wλb|p)dx

‖wλb‖p
q

≤ λr(

∫
RN (|∇ub|p + λb|ub|p)dx− ε

∫
RN |ub|pdx

‖ub‖p
q

+ ε)

≤ λr(Nb − C0ε)

where Nb is defined in (3.1) and r in (3.2). Using (3.2) and (3.3) we also see that

Mλ
b ≥ inf

u∈E\{0}

∫
RN (|∇u|p + λb|u|p)dx

‖u‖p
q

= Nλb = λrNb, (3.4)

hence Mλ < Mλ
b . By the argument at the end of the proof of Theorem 3.1, the

infimum is attained at some uλ > 0. �

Next we consider the existence of multiple solutions under the hypothesis that
V −1(0) has nonempty interior.

Theorem 3.3. Suppose V ≥ 0, V −1(0) has nonempty interior and (V1), (V2),
(P1) are satisfied. For each k ≥ 1 there exists Λk > 0 such that if λ ≥ Λk, then
(1.2) has at the least k pairs of nontrivial solutions in E.

Proof. For a fixed k we can find ϕ1,. . . ,ϕk ∈ C∞
0 (RN ) such that suppϕj , 1 ≤ j ≤ k,

is contained in the interior of V −1(0) and suppϕi ∩ supp ϕj = ∅ whenever i 6= j.
Let

Fk = span {ϕ1, . . . , ϕk}.

Since V ≥ 0, Φ(u) = 1
p‖u‖

p − 1
q‖u‖

q
q and therefore there exist α, ρ > 0 such that

Φ|Sρ
≥ α. Denote the set of all symmetric (in the sense that −A = A) and closed

subsets of E by Σ, for each A ∈ Σ let γ(A) be the Krasnoselski genus and

i(A) = min
h∈Γ

γ(h(A) ∩ Sρ)
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where Γ is the set of all odd homeomorphisms h ∈ C(E,E). Then i is a version of
Benci’s pseudoindex. Let

Φλ(u) =
1
p

∫
RN

(|∇u|p + λV (x)|u|p)dx− 1
q

∫
RN

|u|qdx, λ ≥ 1

and
cj = inf

i(A)≥j
sup
u∈A

Φλ(u), 1 ≤ j ≤ k.

Since Φλ(u) ≥ Φ(u) ≥ α for all u ∈ Sρ and since i(Fk) = dim Fk = k,

α ≤ c1 ≤ · · · ≤ ck ≤ sup
u∈Fk

Φλ(u) = C.

It is clear that C depends on k but not on λ. As in (3.4), we have

Mλ
b ≥ Nλb = λrNb

where r > 0, and therefore Mλ
b → ∞. Hence C < ( 1

p −
1
q )(Mλ

b )
q

(q−p) whenever λ

is large enough and it follows from Lemma 2.3 that for such λ the Palais-Smale
condition is satisfied at all levels c ≤ C. By the usual critical point theory Theorem
2.4, all cj are critical levels and Φλ has at least k pairs of nontrivial critical points.

�

Theorem 3.4. Suppose (V1), (V2), (P1) are satisfied and V −1(0) has nonempty
interior Ω. Let um ∈ E be a solution of the equation

−div(|∇u|p−2∇u) + λmV (x)|u|p−2u = |u|q−2u, x ∈ RN . (3.5)

If λm →∞ and ‖um‖λm
≤ C for some C > 0, then, up to a subsequence, um → u

in Lq(RN ), where u is a weak solution of the equation

−div(|∇u|p−2∇u) = |u|q−2u, x ∈ Ω, (3.6)

and u = 0 a.e. in RN \V −1(0). If moreover V ≥ 0, then um → u in E as m →∞.

Proof. Since λm ≥ 1, ‖um‖ ≤ ‖um‖λm
≤ C. Passing to a subsequence, um ⇀ u in

E and um → u in Lq
loc(RN ) as m →∞. Since 〈Φλm

′(um), ϕ〉 = 0, we see that

lim
m→∞

∫
RN

V (x)|um|p−2umϕdx = 0,

∫
RN

V (x)|u|p−2uϕdx = 0

and for all ϕ ∈ C∞
0 (RN ). Therefore, u = 0 a.e. in RN \ V −1(0).

We claim that um → u in Lq(RN ) as m →∞. Assuming the contrary, it follows
from Lion vanishing lemma that∫

Bρ(xm)

|um − u|pdx ≥ γ

for some {xm} ⊂ RN , ρ, γ > 0 and almost all m, where Bρ(x) denotes the open
ball of radius ρ and center x.

Since um → u in Lq
loc(RN ), |xm| → ∞. Therefore, the measure of the set

Bρ(xm) ∩ {x ∈ RN : V (x) < b} tends to 0 and

lim
m→∞

‖um‖p
λm

≥ lim
m→∞

λmb

∫
Bρ(xm)∩{V≥b}

|um|pdx

= lim
m→∞

λmb(
∫

Bρ(xm)

|um − u|pdx) = ∞,

which is a contradiction.
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Let now V ≥ 0. Since um satisfies (3.5), 〈Φ′λm
(um), u〉 = 0 and u = 0 whenever

V > 0, it follows that
‖um‖p ≤ ‖um‖p

λm
= ‖um‖q

q

and
‖u‖p = ‖u‖p

λm
= ‖u‖q

q.

Hence lim supm→∞ ‖um‖p ≤ ‖u‖q
q = ‖u‖p; therefore, um → u in E as m →∞. �

Theorem 3.5. Suppose (V1), (V2), (P1) are satisfied and V −1(0) has nonempty
interior, V ≥ 0, um ∈ E is a solution of (3.5), λm →∞ and Φλm

(um) is bounded
and bounded away from 0. Then the conclusion of Theorem 3.4 is satisfied and
u 6= 0.

Proof. We have

Φλm
(um) =

1
p
‖um‖p

λm
− 1

q
‖um‖q

q

and
Φλm

(um) = Φλm
(um)− 1

p
〈Φ′λm

(um), um〉 = (
1
p
− 1

q
)‖um‖q

q

Hence ‖um‖q, and therefore also ‖um‖λm
is bounded. So the conclusion of Theorem

3.4 holds. Moreover, as ‖um‖q is bounded away from 0, u 6= 0. �

As a consequence of this corollary, if k is fixed, then any sequence of solutions
um of (1.2) with λ = λm → ∞ obtained in Theorem 3.3 contains a subsequence
concentrating at some u 6= 0. Moreover, it is possible to obtain a positive solution
for each λ, either via Theorem 3.1 or by the mountain pass theorem. It follows
that each sequence {um} of such solutions with λm → ∞ has a subsequence con-
centrating at some u which is positive in Ω. Corresponding to um are solutions
vm = ε

p/(q−p)
m um of (1.3), where εp

m = λ−1
m . Then vm → 0 and ε

−p/(q−p)
m vm → u.

subsection*Remark In the proof of Lemmas 2.2 and 2.3 and Theorems 3.1–3.3,
the condition (V1) can be replaced by

(V1’) v ∈ L1
loc(RN ) and V − = max {−V, 0} ∈ Lq(RN ), where q = N/p if N ≥

p + 1, q > 1 if N = p and q = 1 if N < p.
Meanwhile in Theorems 3.4 and 3.5 we also need V ∈ Lq

loc(RN ).
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