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INITIAL-VALUE PROBLEMS FOR FIRST-ORDER
DIFFERENTIAL RECURRENCE EQUATIONS WITH

AUTO-CONVOLUTION

MIRCEA CÎRNU

Abstract. A differential recurrence equation consists of a sequence of dif-
ferential equations, from which must be determined by recurrence a sequence
of unknown functions. In this article, we solve two initial-value problems for
some new types of nonlinear (quadratic) first order homogeneous differential
recurrence equations, namely with discrete auto-convolution and with com-
binatorial auto-convolution of the unknown functions. In both problems, all
initial values form a geometric progression, but in the second problem the first
initial value is exempted and has a prescribed form. Some preliminary results
showing the importance of the initial conditions are obtained by reducing the
differential recurrence equations to algebraic type. Final results about solving
the considered initial value problems, are shown by mathematical induction.
However, they can also be shown by changing the unknown functions, or by
the generating function method. So in a remark, we give a proof of the first
theorem by the generating function method. Different cases of first order differ-
ential recurrence equations and their solutions are presented, including those
from a previous work. Applications of the equations considered here will be
given in subsequent articles.

1. Introduction

We consider first-order differential recurrence equations of the form

Gn

(
x′n(t)

)
, xn(t), xn−1(t), . . . , x0(t)

)
= 0, n = 0, 1, 2, . . . ,

with unknowns x0(t), x1(t), . . . , xn(t), . . . , complex-valued differentiable functions
defined on an open interval I of real numbers, the functions Gn being given. For t0 ∈
I, is called Cauchy initial-value problem for such an equation, the determination of
its solutions xn(t), with given initial values xn(t0), n = 0, 1, 2, . . . .

In this article we solve some initial-value problems for first order homogeneous
differential recurrence equations with (discrete) auto-convolution

x′n(t) = a(t)
n∑

k=0

xk(t)xn−k(t), ∀t ∈ I, n = 0, 1, 2, . . . , (1.1)
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and with combinatorial auto-convolution

y′n(t) = a(t)
n∑

k=0

(
n

k

)
yk(t)yn−k(t), ∀t ∈ I, n = 0, 1, 2, . . . , (1.2)

where a(t) 6≡ 0 is a given integrable function.
The second type of equation reduces to the first by change of unknown functions

yn(t) = n!xn(t), n = 0, 1, 2, . . . .
Equations (1.1) and (1.2) are considered for the first time, they being different

from those verified by special functions, from de Branges equation (see [8]) or other
types of differential recurrence equations, studied so far (see, for example, [6, 7]).

The discret convolution or Cauchy product of numerical sequences and its inverse-
discrete deconvolution (see [5] for these definitions) were formely used by the author
in a series of papers [1, 2, 3] for solving numerical difference, differential and poly-
nomial equations.

In the following we denote

A(t) =
∫

a(t)dt, B(t) = 1 + x0(t)A(t0)− x0(t0)A(t) 6= 0, ∀t ∈ I . (1.3)

Obviously,
B(t0) = 1, B′(t) = −x0(t0)a(t), ∀t ∈ I. (1.4)

2. Algebraic recurrence equation with auto-convolution

Lemma 2.1. Let bn 6= 0, n = 0, 1, 2, . . . , be a sequence of real or complex numbers.
Following statements are equivalent:

(i) (n + 1)b0bn =
∑n

k=0 bkbn−k, n = 0, 1, 2, . . . ;
(ii) (n− 1)b0bn =

∑n−1
k=1 bkbn−k, n = 2, 3, . . . ;

(iii) bn = b1
b0

bn−1, n = 2, 3, . . . ;
(iv) The numbers bn, n = 0, 1, 2, . . . , are in geometric progression, namely

bn = b0

[b1

b0

]n

=
bn
1

bn−1
0

, n = 0, 1, 2, . . . . (2.1)

Proof. (i)⇔ (ii) and (iii)⇔ (iv) are obvious.
(iv)⇒ (i) If the sequence bn is given by formula (2.1), we have

n∑
k=0

bkbn−k =
n∑

k=0

bk
1

bk−1
0

bn−k
1

bn−k−1
0

=
n∑

k=0

bn
1

bn−2
0

= (n + 1)
bn
1

bn−2
0

= (n + 1)b0bn,

n = 0, 1, 2, . . . , hence the sequence bn satisfies (i) in Lemma 2.1.
(ii) ⇒ (iv) (First proof by induction) For n = 2, from (ii) we obtain b2 = b21

b0
.

For n ≥ 2, we suppose that bk = bk
1

bk−1
0

, for k = 0, 1, . . . , n−1. Then from (ii) results

bn =
1

(n− 1)b0

n−1∑
k=1

bkbn−k =
1

(n− 1)b0

n−1∑
k=1

bk
1

bk−1
0

bn−k
1

bn−k−1
0

=
1

(n− 1)b0

n−1∑
k=1

bn
1

bn−2
0

=
1

(n− 1)b0
(n− 1)

bn
1

bn−2
0

=
bn
1

bn−1
0

.

In conformity with induction axiom, formula (2.1) is true for every n = 0, 1, 2, . . . .
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(i)⇒ (iv) (Second proof by the generating function method, [9]) Denoting G(z) =∑∞
n=0 bnzn generating function of the numerical sequence bn, given by a formal

series, item (i) in Lemma 2.1 gives a differential equation with the successive forms

b0

[
zG(z)

]′ = G2(z), b0zG′(z) + b0G(z) = G2(z),

b0G
′(z)

G(z)
[
G(z)− b0

] =
1
z
,

G′(z)
G(z)− b0

− G′(z)
G(z)

=
1
z
.

Integrating results in ln
∣∣G(z)−b0

G(z)

∣∣ = ln
∣∣k̃z

∣∣, hence G(z)−b0
G(z) = kz, so G(z) = b0

1−kz =

b0

∑∞
k=0 knzn, where k̃ and k = ±k̃ are arbitrary constants. It results bn = b0k

n,
n = 0, 1, 2, . . . . For n = 1, we have b1 = b0k, hence k = b1

b0
and bn = bn

1

bn−1
0

,
n = 0, 1, 2, . . . . �

Corollary 2.2. For a 6= 0 a given number, the sequence bn 6= 0, n = 2, 3, . . . , is
solution of the equation

(n− 1)b0bn = a

n−1∑
k=1

bkbn−k, n = 2, 3, . . . , (2.2)

if and only if

bn =
an−1bn

1

bn−1
0

, n = 1, 2, . . . . (2.3)

Proof. Making the change of variables b0 = ab̃0, bn = b̃n, n = 1, 2, . . . , the equation
(2.2) reduces to (n − 1)̃b0b̃n =

∑n−1
k=1 b̃k b̃n−k, n = 2, 3, . . . . In conformity with

Lemma 2.1, we have bn = b̃n =
ebn
1ebn−1

0
= an−1bn

1

bn−1
0

, n = 1, 2, . . . . �

Corollary 2.3. The sequence bn 6= 0, n = 0, 1, 2, . . . , is solution of the equation

(n + 1)b0bn =
n∑

k=0

(
n

k

)
bkbn−k, n = 0, 1, 2, . . . ,

if and only if

bn =
n!bn

1

bn−1
0

, n = 0, 1, 2, . . . .

Proof. Making the change of variables bn = n!̃bn, n = 0, 1, 2, . . . , the considered
equation reduces to (n + 1)̃b0b̃n =

∑n
k=0 b̃k b̃n−k, n = 0, 1, 2, . . . , and Corollary 2.3

follows from Lemma 2.1. �

Remark. Other results, related to those of Lemma 2.1 and its Corollary 2.3, were
given in [4, Theorem 1.1 and Corollary 1.2] .

3. First initial-value problem

Lemma 3.1. The functions

xn(t) =
xn(t0)

Bn+1(t)
, ∀t ∈ I, n = 0, 1, 2, . . . , (3.1)

are solutions of (1.1) if and only if their initial values xn(t0) 6= 0 n = 0, 1, 2, . . . ,
are in geometric progression.
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Proof. If the functions xn(t) are given by formula (3.1), the equation (1.1) takes
successively the form

− (n + 1)xn(t0)B′(t)
Bn+2(t)

= a(t)
n∑

k=0

xk(t0)
Bk+1(t)

xn−k(t0)
Bn−k+1(t)

,

(n + 1)xn(t0)x0(t0)a(t)
Bn+2(t)

=
a(t)

Bn+2(t)

n∑
k=0

xk(t0)xn−k(t0),

(n + 1)x0(t0)xn(t0) =
n∑

k=0

xk(t0)xn−k(t0) .

In conformity with Lemma 2.1, the last equality is true if and only if the values
xn(t0), n = 0, 1, 2, . . . , are in geometric progression. �

Theorem 3.2. The differentiable functions xn(t), n = 0, 1, 2, . . . , with initial val-
ues xn(t0) 6= 0, n = 0, 1, 2, . . . , in geometric progression, are solutions of (1.1) if
and only if they are given by (3.1).

Proof. We suppose that the functions xn(t) are solutions of (1.1) and have their
initial values xn(t0), n = 0, 1, 2, . . . , are in geometric progression, hence

xn(t0) = x0(t0)
[x1(t0)
x0(t0)

]n =
xn

1 (t0)
xn−1

0 (t0)
, n = 0, 1, 2, . . . . (3.2)

For n = 0, the equation (1.1) has the form x′0(t) = a(t)x2
0(t), hence x′0(t)

x2
0(t)

= a(t).

By integration, we obtain − 1
x0(t)

= A(t) + C0, hence x0(t) = − 1
A(t)+C0

, where C0

is an arbitrary constant. For t = t0, it results in C0 = − 1+x0(t0)A(t0)
x0(t0)

; therefore,

x0(t) = − 1

A(t)− 1+x0(t0)A(t0)
x0(t0)

=
x0(t0)

1 + x0(t0)A(t0)− x0(t0)A(t)
.

In conformity with (1.3),

x0(t) =
x0(t0)
B(t)

. (3.3)

For n = 1, the equation (1.1) has the form x′1(t) = 2a(t)x0(t)x1(t), hence

x′1(t)
x1(t)

= −2
B′(t)
B(t)

.

By integration, we obtain x1(t) = C1
B2(t) , with C1 an arbitrary constant. For t = t0,

it results C1 = x1(t0), hence

x1(t) =
x1(t0)
B2(t)

. (3.4)

For n ≥ 2, equation (1.1) has the form

x′n(t) = 2a(t)x0(t)xn(t) + a(t)
n−1∑
k=1

xk(t)xn−k(t),

hence, using the relation a(t) = − B′(t)
x0(t0)

, obtained from (1.4),

x′n(t) + 2
B′(t)
B(t)

xn(t) = a(t)
n−1∑
k=1

xk(t)xn−k(t),
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with general solution

xn(t) = exp
(
− 2

∫
B′(t)
B(t)

dt
)[ ∫

exp
(
2

∫
B′(t)
B(t)

dt
)
a(t)

n−1∑
k=1

xn(t)xn−k(t)dt + Cn

]
=

1
B2(t)

[
Cn −

1
x0(t0)

∫
B2(t)B′(t)

n−1∑
k=1

xk(t)xn−k(t)dt
]
,

(3.5)
where Cn is an arbitrary constant.

For n = 2, from (3.4) and (3.5), it results

x2(t) =
1

B2(t)

[
C2 −

1
x0(t0)

∫
B2(t)B′(t)x2

1(t)dt
]

=
1

B2(t)

[
C2 −

x2
1(t0)

x0(t0)

∫
B′(t)
B2(t)

dt
]

=
1

B2(t)

[
C2 +

x2
1(t0)

x0(t0)B(t)

]
.

(3.6)

From (3.6) for t = t0 and (3.2) for n = 2, it results

x2(t0) = C2 +
x2

1(t0)
x0(t0)

=
x2

1(t0)
x0(t0)

,

hence C2 = 0, and (3.6) becomes

x2(t) =
x2

1(t0)
x0(t0)B3(t)

. (3.7)

For n ≥ 2 fixed and k = 0, 1, 2, . . . , n− 1, we suppose that

xk(t) =
xk

1(t0)
xk−1

0 (t0)Bk+1(t)
.

Then
n−1∑
k=1

xk(t)xn−k(t) =
n−1∑
k=1

xk
1(t0)

xk−1
0 (t0)Bk+1(t)

xn−k
1 (t0)

xn−k−1
0 (t0)Bn−k+1(t)

=
n−1∑
k=1

xn
1 (t0)

xn−2
0 (t0)Bn+2(t)

=
(n− 1)xn

1 (t0)
xn−2

0 (t0)Bn+2(t)

and (3.5) becomes

xn(t) =
1

B2(t)

[
Cn −

(n− 1)xn
1 (t0)

xn−1
0 (t0)

∫
B′(t)
Bn(t)

dt
]

=
1

B2(t)

[
Cn +

xn
1 (t0)

xn−1
0 (t0)Bn−1(t)

]
.

(3.8)

From which, for t = t0 and (3.2), results xn(t0) = Cn + xn
1 (t0)

xn−1
0 (t0)

= xn
1 (t0)

xn−1
0 (t0)

, hence

Cn = 0, and (3.8) becomes

xn(t) =
xn

1 (t0)
xn−1

0 (t0)Bn+1(t)
, n = 0, 1, 2, . . . . (3.9)

According to induction axiom, (3.9) is satisfied for any natural number n. From
(3.2) and (3.9), it results (3.1).
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Reciprocally, if the functions xn(t) are given by (3.1), with the initial values in
geometric progression, then we have (3.9), hence

x′n(t) = − (n + 1)xn
1 (t0)B′(t)

xn−1
0 (t0)Bn+2(t)

=
(n + 1)xn

1 (t0)a(t)
xn−2

0 (t0)Bn+2(t)
= a(t)

n∑
k=0

xn
1 (t0)

xn−2
0 (t0)Bn+2(t)

= a(t)
n∑

k=0

xk
1(t0)

xk−1
0 (t0)Bk+1(t)

xn−k
1 (t0)

xn−k−1
0 (t0)Bn−k+1(t)

= a(t)
n∑

k=0

xk(t)xn−k(t);

therefore, the functions xn(t) satisfy (1.1). This also results by Lemma 3.1. �

Remark. Theorem 3.2 can also be demonstrated using the generating function
G(t, z) =

∑∞
n=0 xn(t)zn, of the sequence of functions xn(t), n = 0, 1, 2, . . . , given

by a formal series. Then (1.1) is equivalent to equation ∂
∂tG(t, z) = a(t)G2(t, z),

with solution G(t, z) = 1
u(z)−A(t) , where u(z) is an arbitrary function. For z = 0,

we obtain x0(t) = G(t, 0) = 1
u(0)−A(t) . Let v(z) = u(0)−u(z), with v(0) = 0. Using

geometric series, we have

G(t, z) =
1

u(0)−A(t)− v(z)

=
1

u(0)−A(t)
1

1− v(z)
u(0)−A(t)

=
∞∑

n=0

vn(z)(
u(0)−A(t)

)n+1 .

The choice v(z) = Cz, where C is an arbitrary constant, gives

G(t, z) =
∞∑

n=0

Cn(
u(0)−A(t)

)n+1 zn,

hence

xn(t) =
Cn(

u(0)−A(t)
)n+1 , n = 0, 1, 2, . . . . (3.10)

For t = t0 and n = 0, from (3.10) it results x0(t0) = 1
u(0)−A(t0)

, hence u(0) =
1+x0(t0)A(t0)

x0(t0)
, and

u(0)−A(t) =
1 + x0(t0)A(t0)

x0(t0)
−A(t) =

B(t)
x0(t0)

. (3.11)

For t = t0 and n = 1, from (3.10) results x1(t0) = C(
u(0)−A(t0)

)2 = Cx2
0(t0), hence

C =
x1(t0)
x2

0(t0)
. (3.12)

From (3.10), (3.11) and (3.12) it results

xn(t) =
xn

1 (t0)
x2n

0 (t0)
xn+1

0 (t0)
Bn+1(t)

=
xn

1 (t0)
xn−1

0 (t0)Bn+1(t)
, n = 0, 1, 2, . . . . (3.13)

For t = t0, from (3.13) we obtain (3.2), hence (3.13) takes the form (3.1) and
the initial values xn(t0), n = 0, 1, 2, . . . , are in geometric progression. This last
statement also follows by Lemma 3.1. The reciprocal affirmation results both by
direct calculation as above or by Lemma 3.1.



EJDE-2011/02 DIFFERENTIAL RECURRENCE EQUATIONS 7

Corollary 3.3. The differentiable functions yn(t), n = 0, 1, 2, . . . , whose initial
values are

yn(t0) =
n!yn

1 (t0)
yn−1
0 (t0)

, n = 0, 1, 2, . . . ,

are solutions of the differential recurrence equation with combinatorial auto-
convolution (1.2) if and only if they are given by

yn(t) =
yn(t0)

Bn+1(t)
, ∀t ∈ I, n = 0, 1, 2, . . . .

4. Second initial-value problem

Lemma 4.1. If A(t0) 6= 0 and

x0(t0) =
x2

1(t0)
x2(t0)

− 1
A(t0)

6= 0, (4.1)

then the functions

x0(t) =
x0(t0)
B(t)

, xn(t) =
xn(t0)An−1(t)

An−1(t0)Bn+1(t)
, ∀t ∈ I, n = 1, 2, . . . . (4.2)

are solutions of (1.1) if and only if the initial values xn(t0) 6= 0, n = 1, 2, . . . , are
in geometric progression.

Proof. If the functions xn(t) are given by formula (4.2), then (1.1) is obviously
satisfied for n = 0 and n = 1. For n = 2, 3, . . . , it takes successively the form

xn(t0)
An−1(t0)

(n− 1)An−2(t)A′(t)Bn+1(t)− (n + 1)Bn(t)B′(t)An−1(t)
B2n+2(t)

=
2a(t)x0(t0)xn(t0)An−1(t)

An−1(t0)Bn+2(t)

+ a(t)
n−1∑
k=1

xk(t0)Ak−1(t)
Ak−1(t0)Bk+1(t)

xn−k(t0)An−k−1(t)
An−k−1(t0)Bn−k+1(t)

,

xn(t0)
An−1(t0)

(n− 1)An−2(t)a(t)Bn+1(t) + (n + 1)x0(t0)Bn(t)a(t)An−1(t)
B2n+2(t)

=
2a(t)x0(t0)xn(t0)An−1(t)

An−1(t0)Bn+2(t)
+

a(t)An−2(t)
An−2(t0)Bn+2(t)

n−1∑
k=1

xk(t0)xn−k(t0),

xn(t0)
A(t0)

[
(n− 1)B(t) + (n + 1)x0(t0)A(t)

]
=

2x0(t0)xn(t0)A(t)
A(t0)

+
n−1∑
k=1

xk(t0)xn−k(t0),

(n− 1)
xn(t0)
A(t0)

[
B(t) + x0(t0)A(t)

]
=

n−1∑
k=1

xk(t0)xn−k(t0).

From (1.4) and (4.1) it results

B(t) + x0(t0)A(t) = 1 + x0(t0)A(t0) =
x2

1(t0)A(t0)
x2(t0)

, ∀t ∈ I; (4.3)
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therefore, (1.1) is still equivalent to the relations

(n− 1)
xn(t0)
A(t0)

x2
1(t0)A(t0)
x2(t0)

=
n−1∑
k=1

xk(t0)xn−k(t0),

(n− 1)x0(t0)xn(t0) =
x0(t0)x2(t0)

x2
1(t0)

n−1∑
k=1

xk(t0)xn−k(t0).

By Corollary 2.2, for bn = xn(t0), n = 0, 1, 2, . . . and a = x0(t0)x2(t0)
x2
1(t0)

, the last
equality is equivalent to the relation

xn(t0) =
xn−1

0 (t0)xn−1
2 (t0)

x2n−2
1 (t0)

xn
1 (t0)

xn−1
0 (t0)

=
xn−1

2 (t0)
xn−2

1 (t0)
= x1(t0)

[x2(t0)
x1(t0)

]n−1

,

where n = 1, 2, . . . ; hence with the fact that the initial values xn(t0), n = 1, 2, . . . ,
are in geometric progression. �

Theorem 4.2. If A(t0) 6= 0, while x0(t0) is given by (4.1), then the differentiable
functions xn(t), n = 0, 1, 2, . . . , with initial values xn(t0), n = 1, 2, . . . , in geometric
progression, are solutions of (1.1) if and only if they are given by (4.2).

Proof. We suppose that the functions xn(t), n = 0, 1, 2, . . . , are solutions of (1.1)
and the initial values xn(t0), n = 1, 2, . . . , are in geometric progression, hence

xn(t0) = x1(t0)
[x2(t0)
x1(t0)

]n−1

=
xn−1

2 (t0)
xn−2

1 (t0)
, n = 1, 2, . . . . (4.4)

As was shown in the proof of Theorem 3.2, the functions x0(t), x1(t), xn(t) for
n ≥ 2, and x2(t) are given by (3.3), (3.4), (3.5) and (3.6). From (3.6) and (1.3) we
have

x2(t) =
C2x0(t0)B(t) + x2

1(t0)
x0(t0)B3(t)

=
C2x0(t0)

[
1 + x0(t0)A(t0)

]
− C2x

2
0(t0)A(t) + x2

1(t0)
x0(t0)B3(t)

.

(4.5)

We take

C2 = − x2
1(t0)

x0(t0)
[
1 + x0(t0)A(t0)

] = − x2(t0)
x0(t0)A(t0)

. (4.6)

the above equality resulting from (4.3), which in turn resulted from (4.1). From
(4.5) and (4.6) it results

x2(t) = −C2x0(t0)A(t)
B3(t)

=
x2(t0)A(t)
A(t0)B3(t)

. (4.7)

From (3.5), for n = 3, (3.4) and (4.7), it results

x3(t) =
1

B2(t)

[
C3 −

2
x0(t0)

∫
B2(t)B′(t)x1(t)x2(t)dt

]
=

1
B2(t)

[
C3 −

2x1(t0)x2(t0)
x0(t0)A(t0)

∫
A(t)B′(t)

B3(t)
dt

]
.

(4.8)

Using (1.3) and (1.4), we obtain A′(t) = a(t) = − B′(t)
x0(t0)

; hence[A(t)
B(t)

]′
=

A′(t)B(t)−A(t)B′(t)
B2(t)

= − [B(t) + x0(t0)A(t)]B′(t)
x0(t0)B2(t)

. (4.9)
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Using again (4.3), formula (4.9) takes the form[A(t)
B(t)

]′
= − x2

1(t0)A(t0)B′(t)
x0(t0)x2(t0)B2(t)

,

from which we obtain

B′(t)
B2(t)

= −x0(t0)x2(t0)
x2

1(t0)A(t0)

[A(t)
B(t)

]′
. (4.10)

From (4.8) and (4.10), it results

x3(t) =
1

B2(t)

[
C3 +

2x2
2(t0)

x1(t0)A2(t0)

∫
A(t)
B(t)

[A(t)
B(t)

]′
dt

]
=

1
B2(t)

[
C3 +

x2
2(t0)A

2(t)
x1(t0)A2(t0)B2(t)

]
.

(4.11)

From which for t = t0 and (4.4) for n = 3, it results

x3(t0) = C3 +
x2

2(t0)
x1(t0)

=
x2

2(t0)
x1(t0)

,

hence C3 = 0 and formula (4.11) becomes

x3(t) =
x2

2(t0)A
2(t)

x1(t0)A2(t0)B4(t)
. (4.12)

For n ≥ 3 fixed and k = 1, 2, . . . , n− 1, we suppose that

xk(t) =
xk−1

2 (t0)Ak−1(t)
xk−2

1 (t0)Ak−1(t0)Bk+1(t)
. (4.13)

Then
n−1∑
k=1

xk(t)xn−k(t)

=
n−1∑
k=1

xk−1
2 (t0)Ak−1(t)

xk−2
1 (t0)Ak−1(t0)Bk+1(t)

xn−k−1
2 (t0)An−k−1(t)

xn−k−2
1 (t0)An−k−1(t0)Bn−k+1(t)

=
(n− 1)xn−2

2 (t0)An−2(t)
xn−4

1 (t0)An−2(t0)Bn+2(t)
.

(4.14)

From (3.5) and (4.14) it results

xn(t) =
1

B2(t)

[
Cn −

(n− 1)xn−2
2 (t0)

x0(t0)xn−4
1 (t0)An−2(t0)

∫
An−2(t)B′(t)

Bn(t)
dt

]
. (4.15)

From (4.10) and (4.15), it results

xn(t) =
1

B2(t)

[
Cn +

(n− 1)xn−1
2 (t0)

xn−2
1 (t0)An−1(t0)

∫ [A(t)
B(t)

]n−2[A(t)
B(t)

]′
dt

]
=

1
B2(t)

[
Cn +

xn−1
2 (t0)An−1(t)

xn−2
1 (t0)An−1(t0)Bn−1(t)

]
.

(4.16)
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From this euqality for t = t0 and (4.4), it results xn(t0) = Cn + xn−1
2 (t0)

xn−2
1 (t0)

= xn−1
2 (t0)

xn−2
1 (t0)

,

hence Cn = 0 and formula (4.16) becomes

xn(t) =
xn−1

2 (t0)An−1(t)
xn−2

1 (t0)An−1(t0)Bn+1(t)
. (4.17)

In conformity with induction axiom, formula (4.17) is satisfied for every natural

number n ≥ 1. For t = t0, from (4.17) it results xn(t0) = xn−1
2 (t0)

xn−2
1 (t0)

, hence (4.17)

reduces to second formula (4.2).
Reciprocally, if the functions xn(t), n = 0, 1, 2, . . . , are given by (4.2), and

the initial values xn(t0), n = 1, 2, . . . , are in geometric progression, then we have
x0(t) = x0(t0)

B(t) and

xn(t) =
xn(t0)An−1(t)

An−1(t0)Bn+1(t)
=

xn−1
2 (t0)An−1(t)

xn−2
1 (t0)An−1(t0)Bn+1(t)

,

hence for n = 1, 2, . . . , using (4.3), we have

x′n(t)− 2a(t)x0(t)xn(t)

=
xn(t0)

[
(n− 1)An−2(t)A′(t)Bn+1(t)− (n + 1)An−1(t)Bn(t)B′(t)

]
An−1(t0)B2n+2(t)

− 2x0(t0)xn(t0)a(t)An−1(t)
An−1(t0)Bn+2(t)

=
xn(t0)a(t)An−2(t)
An−1(t0)Bn+2(t)

[
(n− 1)B(t) + (n + 1)x0(t0)A(t)− 2x0(t0)A(t)

]
=

(n− 1)xn−1
2 (t0)a(t)An−2(t)

xn−2
1 (t0)An−1(t0)Bn+2(t)

[
B(t) + x0(t0)A(t)

]
=

(n− 1)xn−2
2 (t0)a(t)An−2(t)

xn−4
1 (t0)An−2(t0)Bn+2(t)

= a(t)
n−1∑
k=1

xk−1
2 (t0)Ak−1(t)

xk−2
1 (t0)Ak−1(t0)Bk+1(t)

xn−k−1
2 (t0)An−k−1(t)

xn−k−2
1 (t0)An−k−1(t0)Bn−k+1(t)

= a(t)
n−1∑
k=1

xk(t)xn−k(t) ;

therefore, the functions xn(t) given by (4.2) satisfy (1.1). This also results by
Lemma 4.1. �

Remark. From (4.1) it results that in hypotheses of the Theorem 4.2, those of
Theorem 3.2 are not satisfied. The solutions of the second initial values problem
are different from those of the first problem, because in the proof of Theorem 3.2
all arbitrary constants Cn, n ≥ 2, that arise in solving the differential equations
are zero, while in the proof of Theorem 4.2, the constant C2 is non-zero, given by
formula (4.6).

Corollary 4.3. If A(t0) 6= 0, and y0(t0) = y2
1(t0)

y2(t0)
− 1

A(t0)
6= 0, then the differentiable

functions yn(t), n = 0, 1, 2, . . . , with yn(t0) = n!yn−1
2 (t0)

yn−2
1 (t0)

, n = 1, 2, . . . , are solutions



EJDE-2011/02 DIFFERENTIAL RECURRENCE EQUATIONS 11

of the recurrence equation with combinatorial auto-convolution (1.2) if and only if
they are

y0(t) =
y0(t0)
B(t)

, yn(t) =
yn(t0)An−1(t)

An−1(t0)Bn+1(t)
, t ∈ I, n = 1, 2, . . . .

5. Examples

We give some examples that illustrate the above results, including those from
[4].

(1) x′n(t) =
∑n

k=0 xk(t)xn−k(t), n = 1, 2, . . . . Here a(t) = 1, so A(t) = t.
(a) For the initial values xn(0) = 1, n = 0, 1, 2, . . . , we have B(t) = 1 +

x0(0)A(0) − x0(0)A(t) = 1 − t, hence we obtain the solutions xn(t) = xn(0)
Bn+1(t) =

1
(1−t)n+1 , n = 0, 1, 2, . . . . Because, A(0) = 0, second initial values problem can not
be considered.

(b) If xn(1) = 1
2n , we obtain xn(t) = 1

2n(2−t)n+1 , n = 0, 1, 2, . . . . The second
initial values problem can not be considered when xn(1) = 1

2n , n = 1, 2, . . . , because

x0(1) = x2
1(1)

x2(1)
− 1

A(t) = 0.
(c) If xn(1) = 1

2n−1 , n = 0, 1, 2, . . . , then x0(1) = 2, B(t) = 1 + x0(t)A(t) −
x0(t)A(t) = 3− 2t, hence xn(t) = 1

2n−1(3−2t)n+1 , n = 0, 1, 2, . . . . The second initial
values problem when xn(t) = 1

2n−1 , n = 1, 2, . . . , can also be considered and will be
given in the next example.

(d) Let xn(1) = 1
2n−1 , n = 1, 2, . . . , and x0(1) = x2

1(1)
x2(1)

− 1
A(1) = 1. Then

B(t) = 2− t, hence x0(t) = x0(1)
B(t) = 1

2−t and xn(t) = xn(1)An−1(t)
An−1(1)Bn+1(t) = tn−1

2n−1(2−t)n+1 ,
n = 1, 2, . . . .

(2) y′n(t) =
∑n

k=0

(
n
k

)
yk(t)yn−k(t), n = 0, 1, 2, . . . .

(a) If yn(0) = n!, then yn(t) = n!
(1−t)n+1 , n = 0, 1, 2, . . . .

(b) If yn(1) = n!
2n , then yn(t) = n!

2n(2−t)n+1 , n = 0, 1, 2, . . . .
(c) If yn(1) = n!

2n−1 , then yn(t) = n!
2n−1(3−2t)n+1 , n = 0, 1, 2, . . . .

(d) If y0(1) = 1 and yn(1) = n!
2n−1 , n = 1, 2, . . . , then y0(t) = 1

2−t and yn(t) =
n!tn−1

2n−1(2−t)n+1 , n = 1, 2, . . . .
(3) x′n(t) = et

∑n
k=o xk(t)xn−k(t), n = 0, 1, 2, . . . . Here a(t) = A(t) = et.

If xn(0) = 1, n = 0, 1, 2, . . . , we obtain the solutions xn(t) = 1
(2−et)n+1 , n =

0, 1, 2, . . . . The second problem can not be considered when xn(0) = 1, n = 1, 2, . . . ,
because x0(0) = x2

1(0)
x2(0)

− 1
A(0) = 0.

(4) x′n(t) = sin t
∑n

k=0 xk(t)xn−k(t), n = 0, 1, 2, . . . . Here A(t) = − cos t.
(a) Let xn(0) = 1, n = 0, 1, 2, . . . . Then B(t) = 1+x0(0)A(0)−x0(0)A(t) = cos t,

hence xn(t) = 1
cosn+1 t , n = 0, 1, 2, . . . .

(b) If xn(0) = 1, n = 1, 2, . . . , and x0(0) = x2
1(0)

x2(0)
− 1

A(0) = 2, then B(t) =

2 cos t− 1, hence x0(t) = x0(0)
B(t) = 2

2 cos t−1 and

xn(t) =
xn(0)An−1(t)

An−1(0)Bn+1(t)
=

cosn−1 t

(2 cos t− 1)n+1
, n = 1, 2, . . . .

(c) For xn

(
π
2

)
= 1, n = 0, 1, 2, . . . , we obtain xn(t) = 1

(1+cos t)n+1 , n = 0, 1, 2, . . . .
The second problem can not be considered, because A

(
π
2

)
= 0.
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(5) x′n(t) = 1
t

∑n
k=0 xk(t)xn−k(t), xn(1) = 1, n = 0, 1, 2, . . . . Then xn(t) =

1
(1−ln t)n+1 , n = 0, 1, 2, . . . . The second problem can not be considered, because
A(1) = 0.

(6) x′n(t) = 1
t2

∑n
k=0 xk(t)xn−k(t), n = 0, 1, 2, . . . . Here a(t) = 1

t2 , so A(t) = − 1
t .

(a) If xn(1) = 1, then B(t) = 1
t , hence xn(t) = tn+1, n = 0, 1, 2, . . . .

(b) Let xn(1) = 1, n = 1, 2, . . . , and x0(1) = x2
1(1)

x2(1)
− 1

A(1) = 2. Then B(t) = 2−t
t ,

hence the solutions are x0(t) = x0(1)
B(t) = 2t

2−t , xn(t) = xn(1)An−1(t)
An−1(1)Bn+1(t) = t2

(2−t)n+1 ,
n = 1, 2, . . . .

(c) If xn(2) = (−1)n+14, then B(t) = 3t−4
t , hence xn(t) = (−1)n+14tn+1

(3t−4)n+1 , n =
0, 1, 2, . . . .

(d) Let xn(2) = (−1)n+14, n = 1, 2, . . . , x0(2) = x2
1(2)

x2(2)
− 1

A(2) = −2. Then

B(t) = 2(t−1)
t , hence the solutions are x0(t) = t

1−t , xn(t) = t2

(1−t)n+1 , n = 1, 2, . . . .
(7) y′n(t) = 1

t2

∑n
k=0

(
n
k

)
yk(t)yn−k(t), n = 0, 1, 2, . . . .

(a) If yn(1) = n!, then yn(t) = n!tn+1, n = 0, 1, 2, . . . .
(b) If y0(1) = 2, and yn(1) = n!, n = 1, 2, . . . , then y0(t) = 2t

2−t , and yn(t) =
n!t2

(2−t)n+1 , n = 1, 2, . . . .

(c) If yn(2) = (−1)n+1n!4, then yn(t) = (−1)n+1n!4tn+1

(3t−4)n+1 , n = 0, 1, 2, . . . .
(d) If y0(2) = −2, and yn(2) = (−1)n+1n!4, n = 1, 2, . . . , then y0(t) = t

1−t , and

yn(t) = n!t2

(1−t)n+1 , n = 1, 2, . . . .
(8) tz′n(t) + zn(t) =

∑n
k=0 zk(t)zn−k(t), n = 0, 1, 2, . . . . We make the change of

unknown functions xn(t) = tzn(t), n = 0, 1, 2, . . . .
(a) If zn(1) = 1, then zn(t) = tn, n = 0, 1, . . . . This example was given in [4,

Theorem 4.1 (a)].
(b) Let z0(1) = 2, zn(1) = 1, n = 1, 2, . . . . Then z0(t) = 2

2−t , zn(t) = t
(2−t)n+1 ,

n = 1, 2, . . . .
(c) If zn(2) = (−1)n+12, then zn(t) = (−1)n+14tn

(3t−4)n+1 , n = 0, 1, 2, . . . .
(d) Let z0(2) = −1, and zn(2) = (−1)n+12, n = 1, 2, . . . . Then z0(t) = 1

1−t and
zn(t) = t

(1−t)n+1 , n = 1, 2, . . . . This example was given in [4, theorem 4.1 (b)].
(9) tu′n(t) + un(t) =

∑n
k=0

(
n
k

)
uk(t)un−k(t), n = 0, 1, 2, . . . .

(a) If un(1) = n!, n = 0, 1, 2, . . . . Then un(t) = n!tn, n = 0, 1, 2, . . . . This
example was given in [4, corollary of theorem 4.1 (a)].

(b) If u0(1) = 2, un(1) = n!, n = 1, 2, . . . , then u0(t) = 2
2−t , un(t) = n!t

(2−t)n+1 ,
n = 1, 2, . . . .

(c) If un(2) = (−1)n+1n!2, n = 0, 1, 2, . . . , then un(t) = (−1)n+1n!4tn

(3t−4)n+1 , n =
0, 1, 2, . . . .

(d) If u0(2) = −1 and un(2) = (−1)n+1n!2, n = 1, 2, . . . , then u0(t) = 1
1−t , and

un(t) = n!t
(1−t)n+1 , n = 1, 2, . . . . This example was given in [4, corollary of theorem

4.1 (b)], with some mistakes corrected here.
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