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A GENERALIZATION OF OSGOOD’S TEST AND A
COMPARISON CRITERION FOR INTEGRAL EQUATIONS

WITH NOISE

MARCOS J. CEBALLOS-LIRA, JORGE E. MACÍAS-DÍAZ, JOSÉ VILLA

Abstract. In this article, we prove a generalization of Osgood’s test for the
explosion of the solutions of initial-value problems. We also establish a com-
parison criterion for the solution of integral equations with noise, and provide
estimations of the time of explosion of problems arising in the investigation of
crack failures where the noise is the absolute value of the Brownian motion.

1. Introduction

Let x0 be a positive, real number, let b be a positive, real-valued function defined
on [0,∞), and suppose that y is an extended real-valued function with the same
domain as b. The present work is motivated by a criterion for the explosion of the
solutions of ordinary differential equations of the form

dy(t)
dt

= b(y(t)), t > 0,

y(0) = x0.
(1.1)

More precisely, the time of explosion of the solution of this initial-value problem is
the nonnegative, extended real number te = sup{t ≥ 0 : y(t) < ∞}. The above-
mentioned criterion is called Osgood’s test after its author [9], and it states that te
is finite if and only if

∫∞
x0

ds/b(s) < ∞. In such case, te =
∫∞

x0
ds/b(s).

A natural question readily arises about the possibility to extend Osgood’s test to
more general, initial-value problems, say, to problems in which the drift function b
in the ordinary differential equation of (1.1) is multiplied by a suitable, nonnegative
function of t. Another direction of investigation would be to investigate conditions
under which the solutions of the integral form of such equation with a noise function
added, explode in a finite time. Evidently the consideration of these two problems
as a single one is an interesting topic of study per se. In fact, the purpose of this
paper is to provide a generalization of Osgood’s test to integral equations with noise,
which generalize the problem presented in (1.1). Important, as it is in the recent
literature [5, 7], the problem of establishing analytical conditions under which the
time of explosion of the problem under investigation is finite, is tackled here. In
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the way, we establish a comparison criterion for the solutions of integral equations
with noise, and show some applications to the spread of cracks in rigid surfaces.

Our manuscript is divided in the following way: Section 2 introduces the integral
equation with noise that motivates this manuscript, along with a convenient sim-
plification for its study; a generalization of Osgood’s test is presented in this stage
for the associated initial-value problem for both scenarios: noiseless and noisy sys-
tems. Section 3 establishes a comparison criterion for the solutions of two noiseless
systems with comparable initial conditions. A necessary condition for the explo-
sion of the solutions of the problem under investigation is provided in this section,
together with an illustrative counterexample and a partial converse. In Section
4, we give upper and lower bounds for the value of the time of explosion of our
integral equation. Finally, Section 5 provides estimates of probabilities associated
to the time of explosion of a system in which the noise is the absolute value of the
Brownian motion.

2. Osgood’s test

Let R denote the set of extended real numbers. Throughout, a, b : [0,∞) → R
will represent positive, continuous functions, while the function g : [0,∞) → R will
be continuous and nonnegative. For physical reasons, the function g is called a
noise. In this work, x0 will denote a positive, real number, and X : [0,∞) → R will
be a nonnegative function whose dependency on t ≥ 0 is represented by Xt. We
are interested in establishing conditions under which the solutions of the integral
equation

Xt = x0 +
∫ t

0

a(s)b(Xs)ds + g(t), t ≥ 0, (2.1)

explode in finite time. More precisely, we define the time of explosion of X as the
nonnegative, extended real number TX

e = sup{t ≥ 0 : Xt < ∞}. In this manuscript,
we investigate conditions under which the time of explosion of X is a real number.

Letting Yt = Xt − g(t), one sees immediately that the problem under considera-
tion is equivalent to finding the time of explosion of the solution Y of the equation

Yt = x0 +
∫ t

0

a(s)b(Ys + g(s))ds, t ≥ 0. (2.2)

As a matter of fact, TX
e = TY

e . From this point on, this common, extended real
number will be denoted simply by Te for the sake of briefness.

Remark 2.1. It is worth noticing that (2.2) can be presented in differential form
as the equivalent, initial-value problem

dYt

dt
= a(t)b(Yt + g(t)), t > 0,

Y0 = x0,
(2.3)

a problem for which the existence of solutions is guaranteed, for instance, when b
is locally Lipschitzian and a is regulated (see [4, (10.4.6)])

Let r be a real number such that 0 < r ≤ x0. We define the functions A :
[0,∞) → R and Br : [x0 − r,∞) → R by

A(t) =
∫ t

0

a(s)ds and Br(x) =
∫ x

x0−r

ds

b(s)
.
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For the sake of convenience, we let B be the function B0. Evidently, both of these
functions are nonnegative, increasing and continuous, and so are their inverses. On
the other hand, if r ≥ −x0, we let B̃r : [x0 + r,∞) → R be given by B̃r = B−r. For
every fixed x ≥ x0, we define B̃x : [−x0, x− x0] → R by B̃x(r) = B̃r(x); we prefer
this second notation in either case. Additionally, we define β : [−x0,∞) → R by
β(t) = B̃∞(t). All of these functions and their inverses are nonnegative, continuous
and decreasing in their domains.

Lemma 2.2 (Generalized Osgood’s test). The initial-value problem

dy(t)
dt

= a(t)b(y(t)), t > 0,

y(0) = x0,
(2.4)

has a unique solution given by y(t) = B−1(A(t)), for t < A−1(B(∞)). The
solution explodes in finite time if and only if B(∞) < A(∞), in which case,
T y

e = A−1(B(∞)).

Proof. The function y(t) = B−1(A(t)) is evidently a solution of (2.4). Additionally,
expressing the differential equation in (2.4) as y′(s)/b(y(s)) = a(s), integrating both
sides over [0, t] and performing a suitable substitution, we obtain that B(y(t)) =
A(t), whence the uniqueness follows. Moreover, y(t) is real if and only if t <
A−1(B(∞)).

Now, if the solution of (2.4) explodes at the time te < ∞, then B(∞) = A(te) <
A(∞). Conversely, the number A−1(B(∞)) is real, so that

B(y(A−1(B(∞)))) = A(A−1(B(∞))) = B(∞).

This implies that T y
e ≤ A−1(B(∞)), and the opposite inequality follows from the

fact that the solution of (2.4) exists for t < A−1(B(∞)). �

As a consequence, the solution of (2.4) is nonnegative, continuous and increasing
on [0, T y

e ), and so is its inverse on [x0,∞). Likewise, the function B : [x0,∞) → R,
given by the formula

B(y) =
∫ y

x0

ds

b(s + g(Y −1(s)))
,

is nonnegative, continuous and increasing.

Corollary 2.3. The solution of (2.3) can be expressed as Yt = B
−1

(A(t)), for
every t < A−1(B(∞)).

The proof of the above corollary follows as in Osgood’s test.

3. A comparison theorem

Theorem 3.1 (Comparison criterion). Let 0 < x0 ≤ x1, let b be non-decreasing,
and assume that the functions u, v : [0,∞) → R satisfy

v(t) ≥ x1 +
∫ t

0

a(s)b(v(s))ds and u(t) = x0 +
∫ t

0

a(s)b(u(s))ds, t ≥ 0.

Then, v(t) ≥ u(t) for every t ≥ 0, and T v
e ≤ A−1(B(∞)).
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Proof. It is sufficient to show that v ≥ u because, in such case, T v
e ≤ Tu

e =
A−1(B(∞)). Assume first that x0 < x1, and let N = {t ≥ 0 : u(s) ≤ v(s), s ∈
[0, t]}. The set N is nonempty, so T̃ = supN exists in R. If T̃ were a real number,
then

L = lim
ε→0+

(v(T̃ + ε)− u(T̃ + ε)) ≥ x1 − x0 + lim
ε→0+

∫ eT+ε

eT a(s)[b(v(s))− b(u(s))]ds

by the fact that v(s)−u(s) ≥ 0, for every s ∈ [0, T̃ ]. It follows that L ≥ x1−x0. By
definition, there exists δ > 0 such that v(T̃ + s)− u(T̃ + s) > 0 for every s ∈ [0, δ),
whence it follows that T̃ + δ

2 ∈ N , a contradiction. Consequently, u(t) ≤ v(t) for
every t ≥ 0. Now, in case that x0 = x1, the solution of the equation

ur(t) = x0 − r +
∫ t

0

a(s)b(ur(s))ds, 0 < r < x0,

satisfies v(t) ≥ ur(t), for every t ≥ 0. Using Osgood’s test and the continuity of
B−1

r , we obtain

v(t) ≥ lim
r→0+

ur(t) = lim
r→0+

B−1
r (A(t)) = B−1(A(t)) = u(t).

�

Theorem 3.2. Suppose that b is non-decreasing, and B(∞) < A(∞). Then the
solution of (2.3) explodes in finite time. The time of explosion of Y is te =
A−1

(
B(∞)

)
.

Proof. The fact that b is non-decreasing yields

Yt = x0 +
∫ t

0

a(s)b(Ys + g(s))ds ≥ x0 +
∫ t

0

a(s)b(Ys)ds.

Theorem 3.1 gives that Te ≤ A−1(B(∞)) when we compare Y with the solution of
Ỹt = x0 +

∫ t

0
a(s)b(Ỹs)ds. On the other hand, A(te) = B(∞) ≤ B(∞) < A(∞),

which implies that te is real. The expression of te and Corollary 2.3 yield A(te) =
B(YTe) = A(Te). We conclude that Te = te. �

Intuitively, it is not generally true that the explosion of the solutions of (2.3) in
finite time is a sufficient condition for the inequality B(∞) < A(∞) to be satisfied.
This assertion follows after noticing that A and B do not depend of the noise
function; however, the time of explosion does. We will establish our claim precisely
through the following counter-example.

Example 3.3. Let x0 = 1, and let a, b and g be given by the expressions a(t) = e−t,
b(t) = 1

4 t3, and g(t) = et, for every t > 0. Expanding the expression (Ys + es)3 in
(2.2), we obtain Yt ≥ 1 + 1

4

∫ t

0
Y 2

s ds. Then Yt ≥ (1 − 1
4 t)−1, which implies that Y

explodes in finite time. However, B(∞) = 2 > 1 = A(∞).

The following result is a partial converse of Theorem 3.2. We let ĝ(t) = sup{g(s) :
s ∈ [0, t]}, for every t ≥ 0.

Proposition 3.4. Suppose that b is non-decreasing, and that

ĝ(t) < b(x0)
∫ ∞

t

a(s)ds.

If the solution Y of (2.2) explodes in finite time, then B(∞) < A(∞).
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Proof. By Corollary 2.3, B(∞) = B(YTe) = A(Te). Since b is non-decreasing and
g(Y −1

s ) ≤ ĝ(Te) for every s ∈ [x0,∞), we obtain∫ ∞

x0

ds

b(s + ĝ(Te))
≤ A(Te).

Separating the integral in the definition of B(∞) as the sum of the integrals over the
intervals [x0, x0 + ĝ(Te)] and [x0 + ĝ(Te),∞), using the facts that b is positive and
non-decreasing, and employing the last inequality and the hypothesis, we obtain

B(∞) ≤
∫ x0+bg(Te)

x0

ds

b(x0)
+

∫ ∞

x0

ds

b(s + ĝ(Te))

≤ ĝ(Te)
b(x0)

+ A(Te) < A(∞).

�

4. Approximation of the explosion time

It is important to notice that the time of explosion of Y , as given by the Theorem
3.2, presents the disadvantage of depending on the solution Y itself. In this section,
we will derive some approximations to Te which do not present this shortcoming.
For the remainder of this manuscript and for the sake of convenience, we let T =
A−1(B(∞)). Throughout this section, b will be a non-decreasing function.

The Comparison criterion and Osgood’s test yield that the time of explosion of
the solution Y of (2.2) satisfies Te ≤ T . On the other hand,

Yt ≤ x0 +
∫ t

0

a(s)b(Ys + ĝ(T ))ds,

and the Comparison criterion leads us to conclude that

A−1
(
β(ĝ(T ))

)
≤ Te ≤ T. (4.1)

In general, the function b : [0,∞) → R is sub-multiplicative if there exists a
positive constant c such that b(xy) ≤ cb(x)b(y), for every x, y ≥ 0. Evidently,
exponential and power functions are sub-multiplicative.

Suppose that b is a sub-multiplicative function, and let c be the positive num-
ber provided by the definition of sub-multiplicativity. In the following, it will be
convenient to define the function Ã : [0,∞) → R by

Ã(t) = c

∫ t

0

a(s)b
( 1

x0
g(s) + 1

)
ds.

This function is nonnegative, continuous and increasing and, thus, it is invertible,
and has a continuous and increasing inverse.

Proposition 4.1. Let b be a sub-multiplicative function. Then Te ≥ Ã−1(B(∞)).

Proof. Since Ys ≥ x0 for every s ≥ 0, we obtain

g(s) + Ys = Ysg(s)
( 1

Ys
+

1
g(s)

)
≤ Ysg(s)

( 1
x0

+
1

g(s)

)
= Ys

( 1
x0

g(s) + 1
)
.
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Monotonicity and sub-multiplicativity of b, along with (2.2), yield

Yt ≤ x0 + c

∫ t

0

a(s)b
( 1

x0
g(s) + 1

)
b(Ys)ds.

The conclusion of the proposition follows now from the Comparison criterion and
Osgood’s test. �

5. An application

Throughout this section, we consider the stochastic differential equation (2.1)
with noise function |Wt|, where W is the Brownian motion. The noise function is
taken in absolute value in view of physical considerations on the dynamics of cracks
growth under fatigue loading. In fact, it has been established experimentally that
cracks in the subcritical stage grow with a velocity that increases with the crack
length [10]. The governing equation is called Paris’ equation, and it is a power
law (which is a sub-multiplicative function) in which the exponent is determined
empirically. As a matter of fact, it has been established that Paris’ law is valid for
a wide range of materials [1, 2, 8, 11].

For the remainder of this work, we let Φ(x) represent the probability that a
random variable with standard normal distribution assumes values in [−x, x], for
every x ≥ 0.

Proposition 5.1. Let 0 ≤ t < T . Then

P (Te ≤ t) ≤ 1− Φ
(β−1(A(t))√

T

)
. (5.1)

Proof. We use here the first inequality of (4.1). Notice that

P (Te ≤ t) ≤ P
(
A−1(β(|ŴT |)) ≤ t

)
= P

(
|ŴT | ≥ β−1(A(t))

)
.

Then [6, Section 2.8, Eq. (8.4)] completes the proof. �

For every nonnegative, real number r, we let Tr = inf{t > 0 : |Wt| = r}.
Evidently, |Ws| ≤ r, for every s ∈ [0, Tr].

Proposition 5.2. Let 0 ≤ t ≤ T . For every r ≥ 0,

P (Te ≤ t|Tr < T ) ≤
1− Φ

(
r/

√
A−1(B(B̃−1

r (A(t))))
)

1− Φ
(
r/
√

T
) . (5.2)

Proof. Notice that |ŴT | ≥ r whenever Tr < T . Moreover, Osgood’s test and the
Comparison criterion imply that Yt ≥ B−1(A(t)), for every t ≥ 0. Using (4.1), we
obtain A(Te) ≥ B̃|cWT |(∞) ≥ B̃r(∞) ≥ B̃r(B−1(A(Tr))). Therefore,

P (Te ≤ t|Tr < T ) ≤
P

(
B̃r(B−1(A(Tr))) ≤ A(t)

)
P (Tr < T )

=
P

(
Tr < A−1(B(B̃−1

r (A(t))))
)

P (Tr < T )
.

The conclusion follows now from [6] as in Proposition 5.1. �
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On physical grounds, the function Y may represent the temporal behavior of
the transversal length of a crack failure on some material [10]. In this context, the
parameter x0 represents the initial, transversal length of the crack, and L is the
transversal length of the material. For practical purposes, one may think of the
wing of an airplane which has a fixed transversal length, on which there is a crack
with known initial length. In such case, one investigates the dynamics of the length
of the crack with respect to time, in order to conduct preventive maintenance on
the wing and avoid possible accidents [3].

Proposition 5.3. If L > x0, then

P (Y −1
L ≤ t) ≤ 1− Φ

( B̃−1
A(t)(L)
√

T

)
.

Proof. Let Ỹ the solution of Ỹt = x0 +
∫ t

0
a(s)b(Ỹs + |ŴT |)ds, for every 0 ≤ t < T .

By Osgood’s test and the Comparison criterion, B̃−1

|cWT |
(A(t)) = Ỹt ≥ Yt. Once

again, the conclusion is reached using [6] in the right-most end of the chain of
identities and inequalities

P (Y −1
L ≤ t) ≤ P

(
Ỹ −1

L ≤ t
)

= P
(
B̃|cWT |(L) ≤ A(t)

)
= 1− P

(
|ŴT | ≤ B̃−1

A(t)(L)
)
.

�

Example 5.4. Let x0, a0 and α be positive numbers, and let a(t) = a0 and
b(t) = t1+α, for every t ≥ 0. Observe that A(t) = a0t and, for every r ∈ [0, x0] and
every x ≥ x0,

Br(x) =
1
α

[ 1
(x0 − r)α

− 1
xα

]
,

so that T = (αa0x
α
0 )−1. By (5.1),

P (Te ≤ t) ≤ 1− Φ
( (αa0t)−1/α − x0√

T

)
, (5.3)

for every 0 ≤ t < T . In order to estimate the value of t for which Te ≤ t with a
probability of at most 0.05, Equation (5.3) yields

1− Φ
( (αa0t)−1/α − x0√

T

)
≤ 0.05

whence it follows that t = 1
αa0

[x0 +
√

TΦ−1(0.95)]−α. Proposition 4.1 and mono-
tonicity on the integrand imply that

P (Te ≤ t) ≤ P
(
B(∞) ≤ Ã(t)

)
≤ P

( 1
αxα

0

≤
∫ t

0

a0

( 1
x0
|Ŵt|+ 1

)1+α
ds

)
≤ P

( 1
αxα

0

≤ a0t
( 1
x0
|Ŵt|+ 1

)1+α
)

= 1− Φ
( x0√

t

(
(αa0x

α
0 t)−1/(1+α) − 1

))
.



8 M. J. CEBALLOS-LIRA, J. E. MACÍAS-DÍAZ, J. VILLA EJDE-2011/05

This last estimate of P (Te ≤ t) is better than that given by (5.3), in view of the
fact that αa0x

α
0 t > 1.
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