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A REGULARITY CRITERION FOR THE NAVIER-STOKES
EQUATIONS IN TERMS OF THE HORIZONTAL DERIVATIVES

OF THE TWO VELOCITY COMPONENTS

WENYING CHEN, SADEK GALA

Abstract. In this article, we consider the regularity for weak solutions to the
Navier-Stokes equations in R3. It is proved that if the horizontal derivatives
of the two velocity components

∇heu ∈ L2/(2−r)(0, T ;Ṁ2,3/r(R3)), for 0 < r < 1,

then the weak solution is actually strong, where Ṁ2,3/r is the critical Morrey-

Campanato space and eu = (u1, u2, 0), ∇heu = (∂1u1, ∂2u2, 0).

1. Introduction

We consider the following Cauchy problem for the incompressible Navier-Stokes
equations in R3 × (0, T ),

∂tu + (u · ∇)u +∇p = ∆u,

∇.u = 0,

u(x, 0) = u0(x),
(1.1)

where u = (u1, u2, u3) is the velocity field, p(x, t) is a scalar pressure, and u0(x)
with ∇.u0 = 0 in the sense of distribution is the initial velocity field.

Although a global weak solution of (1.1) was first constructed by Leray [11]
in 1934, the fundamental problem on uniqueness and regularity of weak solutions
still remains open, although huge contributions have been made in an effort to
understand regularities of the weak solution. It is well-known that regularity can
be persistent under certain condition, which was introduced in the celebrated work
of Serrin [14], and can be described as follows (see also Struwe [15]).

A weak solution u is regular if it satisfies the growth condition

u ∈ Lp(0, T ;Lq(R3)) ≡ Lp
t L

q
x, for

2
p

+
3
q

= 1, 3 < q ≤ ∞ . (1.2)
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Regularity was also extended by Beirão da Veiga [1] with (1.2) replaced by the
velocity gradient growth condition:

∇u ∈ Lp
t L

q
x, for

2
p

+
3
q

= 2,
3
2

< q ≤ ∞. (1.3)

We recall that the condition (1.2) is important from the point of view of the
relation between scaling invariance and partial regularity of weak solutions. In
fact, the conditions (1.2) and (1.3) involve all components of the velocity vector
field u = (u1, u2, u3) and are known as degree −1 growth condition, since

‖u(λx, λ2t)‖Lp(0,T ;Lq(R3)) = λ−( 2
p + 3

q )‖u(x, t)‖Lp(0,λ2T ;Lq(R3))

= λ−1‖u‖Lp(0,λ2T ;Lq(R3)),

‖∇u(λx, λ2t)‖Lp(0,T ;Lq(R3)) = λ1−( 2
p + 3

q )‖∇u(x, t)‖Lp(0,λ2T ;Lq(R3))

= λ−1‖∇u‖Lp(0,λ2T ;Lq(R3)).

The degree −1 growth condition is critical due to the scaling invariance property.
That is, u solves (1.1) if and only if uλ(x, t) = λu(λx, λ2t) is also a solution of (1.1).

Regularity criteria in terms of only one component of the velocity were given
in celebrated works by Zhou. It was proved in [16] (see also [13] and [17]) that
regularity keeps under one of the following two conditions:

∇u3 ∈ Lp
t L

q
x, for

2
p

+
3
q

=
3
2
, 2 < q ≤ ∞,

u3 ∈ Lp
t L

q
x, for

2
p

+
3
q

=
1
2
, 6 < q ≤ ∞.

Later on, some improvements and extensions were given by many authors, say [3,
4, 8, 18, 19]. Recently, Dong and Zhang [2] proved that if the horizontal derivatives
of the two velocity components∫ T

0

‖∇hũ(., s)‖Ḃ0
∞,∞

ds < ∞,

where ũ = (u1, u2, 0) and ∇hũ = (∂1ũ, ∂2ũ, 0), then the solution keeps smoothness
up to time T .

In this paper we want to prove the analogous result in the critical Morrey-
Campanato space. More precisely, we show that the Leray-Hopf weak solution is
regular on (0, T ] if the following growth condition with degree −1 is satisfied.,∫ T

0

‖∇hũ(., s)‖2/(2−r)

Ṁ2,3/r
ds < ∞.

2. Preliminaries and main result

Now, we recall the definition and some properties of the space that will be useful
in the sequel. These spaces play an important role in studying the regularity of
solutions to partial differential equations; see e.g. [6] and references therein.

Definition 2.1. For 0 ≤ r < 3/2, the space Ẋr is defined as the space of f(x) ∈
L2

loc(R3) such that
‖f‖Ẋr

= sup
‖g‖Ḣr≤1

‖fg‖L2 < ∞.
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where we denote by Ḣr(R3) the completion of the space C∞
0 (R3) with respect to

the norm ‖u‖Ḣr = ‖(−∆)r/2u‖L2 .

We have the homogeneity properties: for all x0 ∈ R3,

‖f(. + x0)‖Ẋr
= ‖f‖Ẋr

,

‖f(λ.)‖Ẋr
=

1
λr
‖f‖Ẋr

, λ > 0.

The following imbedding holds

L3/r ⊂ Ẋr, 0 ≤ r <
3
2

.

Now we recall the definition of Morrey-Campanato spaces (see e.g. [7]).

Definition 2.2. For 1 < p ≤ q ≤ +∞, the Morrey-Campanato space is

Ṁp,q =
{
f ∈ Lp

loc(R
3) : ‖f‖Ṁp,q

= sup
x∈R3

sup
R>0

R3/q−3/p‖f‖Lp(B(x,R)) < ∞
}
. (2.1)

It is easy to check that

‖f(λ.)‖Ṁp,q
=

1
λ3/q

‖f‖Ṁp,q
, λ > 0.

We have the following comparison between Lorentz and Morrey-Campanato
spaces: For p ≥ 2,

L
3
r (R3) ⊂ L3/r,∞(R3) ⊂ Ṁp,3/r(R3).

The relation
L

3
r ,∞(R3) ⊂ Ṁp, 3

r
(R3)

is shown as follows. Let f ∈ L3/r,∞(R3). Then

‖f‖Ṁ
p, 3

r

≤ sup
E
|E| r

3−
1
2

( ∫
E

|f(y)|pdy
)1/p

=
(

sup
E
|E|

pr
3 −1

∫
E

|f(y)|pdy
)1/p

∼=
(

sup
R>0

R|{x ∈ R3 : |f(y)|p > R}|
pr
3 Big)1/p

= sup
R>0

R
∣∣{x ∈ Rp : |f(y)| > R

}∣∣r/3

∼= ‖f‖L3/r,∞ .

For 0 < r < 1, we use the fact that

L2 ∩ Ḣ1 ⊂ Ḃr
2,1 ⊂ Ḣr.

Thus we can replace the space Ẋr by the pointwise multipliers from Besov space
Ḃr

2,1 to L2. Then we have the following lemma given in [10].

Lemma 2.3. For 0 ≤ r < 3/2, the space Żr is defined as the space of f(x) ∈
L2

loc(R3) such that
‖f‖Żr

= sup
‖g‖Ḃr

2,1
≤1

‖fg‖L2 < ∞.

Then f ∈ Ṁ2,3/r if and only if f ∈ Żr with equivalence of norms.

To prove our main result, we need the following lemma.
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Lemma 2.4. For 0 < r < 1, we have

‖f‖Ḃr
2,1
≤ C‖f‖1−r

L2 ‖∇f‖r
L2 .

Proof. The idea comes from [12]. According to the definition of Besov spaces,

‖f‖Ḃr
2,1

=
∑
j∈Z

2jr‖∆jf‖L2

≤
∑
j≤k

2jr‖∆jf‖L2 +
∑
j>k

2j(r−1)2j‖∆jf‖L2

≤
( ∑

j≤k

22jr
)1/2( ∑

j≤k

‖∆jf‖2L2

)1/2

+
( ∑

j>k

22j(r−1)
)1/2( ∑

j>k

22j‖∆jf‖2L2

)1/2

≤ C
(
2rk‖f‖L2 + 2k(r−1)‖f‖Ḣ1

)
= C

(
2rkA−r + 2k(r−1)A1−r

)
‖f‖1−r

L2 ‖f‖r
Ḣ1 ,

where A = ‖f‖Ḣ1/‖f‖L2 . Choose k such that 2rkA−r ≤ 1; that is, k ≤ [log Ar], we
thus obtain

‖f‖Ḃr
2,1
≤ C

(
1 + 2k(r−1)A1−r

)
‖f‖1−r

L2 ‖f‖r
Ḣ1 ≤ C‖f‖1−r

L2 ‖∇f‖r
L2 .

�

Additionally, for 2 < p ≤ 3
r and 0 ≤ r < 3

2 , we have the following inclusion
relations [9, 10],

Ṁp,3/r(R3) ⊂ Ẋr(R3) ⊂ Ṁ2,3/r(R3) = Żr(R3).

The relation
Ẋr(R3) ⊂ Ṁ2,3/r(R3)

is shown as follows. Let f ∈ Ẋr(R3), 0 < R ≤ 1, x0 ∈ R3 and φ ∈ C∞
0 (R3), φ ≡ 1

on B(x0
R , 1). We have

Rr− 3
2

( ∫
|x−x0|≤R

|f(x)|2dx
)1/2

= Rr
( ∫

|y− x0
R |≤1

|f(Ry)|2dy
)1/2

≤ Rr(
∫

y∈R3
|f(Ry)φ(y)|2dy)1/2

≤ Rr‖f(R.)‖Ẋr
‖φ‖Hr

≤ ‖f‖Ẋr
‖φ‖Hr

≤ C‖f‖Ẋr
.

We recall the following definition of Leray-Hopf weak solution.

Definition 2.5. Let u0 ∈ L2(R3) and ∇·u0 = 0. A measurable vector field u(x, t)
is called a Leary-Hopf weak solution to the Navier-Stokes equations (1.1) on (0, T ),
if u has the following properties:

(i) u ∈ L∞(0, T ;L2(R3)) ∩ L2(0, T ;H1(R3));
(ii) ∂tu + (u · ∇)u +∇π = ∆u in D′((0, T )× R3);
(iii) ∇ · u = 0 in D′((0, T )× R3);
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(iv) u satisfy the energy inequality

‖u(t)‖2L2
x

+ 2
∫ t

0

∫
R3
|∇u(x, s)|2 dxds ≤ ‖u0‖2L2

x
, for 0 ≤ t ≤ T. (2.2)

By a strong solution we mean a weak solution u of the Navier-Stokes equations
(1.1) that satisfies

u ∈ L∞(0, T ;H1(R3)) ∩ L2(0, T ;H2(R3)). (2.3)

It is well known that strong solutions are regular and unique in the class of weak
solutions.

The following theorem is the main result of this article.

Theorem 2.6. Suppose u0 ∈ H1(R3) and ∇ · u0 = 0 in the sense of distributions.
Assume that u(x, t) is a Leray-Hopf weak solution of (1.1) on (0, T ). If

∇hũ ∈ L2/(2−r)(0, T ;Ṁ2,3/r(R3)), for 0 < r < 1, (2.4)

then u is a regular solution in (0, T ] in the sense that u ∈ C∞((0, T )× R3).

3. A priori estimates

Now we want to establish an a priori estimate for the smooth solution.

Theorem 3.1. Suppose T > 0, u0 ∈ H1(R3) and ∇ · u0 = 0 in the sense of
distributions. Assume that u is a smooth solution of (1.1) on R3 × (0, T ) and
satisfies any one of of the three degree −1 growth conditions (2.4). Then

sup
0≤t<T

‖∇u(., t)‖2L2 +
∫ T

0

‖∆u(., t)‖2L2 ds

≤ C‖∇u0‖2L2 exp
( ∫ t

0

‖∇hũ(., s)‖2/(2−r)

Ṁ2,3/r
ds

)
,

(3.1)

for 0 < t < T , holds for some constant C > 0.

To prove this theorem, we need the following lemma.

Lemma 3.2 ([2]). Let u be a smooth solution to the Navier-Stokes system (1.1) in
R3. Furthermore, let ũ = (u1, u2, 0) and ∇hũ = (∂1ũ, ∂2ũ, 0). Then

∣∣ 3∑
i,j,k=1

∫
R3

ui∂iuj∂kkujdx
∣∣ ≤ C

∫
R3
|∇hũ||∇u|2

for some constant C > 0.

The proof of this lemma is simple; see [2, Lemma 2.2]).

Proof of Theorem 3.1. Multiply the first equation of (1.1) by ∆u, and integrating
on R3, after suitable integration by parts, we obtain for t ∈ (0, T ),

1
2

d

dt
‖∇u‖2L2 + ‖∆u(t)‖2L2 ≤ 2

∣∣ 3∑
i,j,k=1

∫
R3

ui∂iuj∂kkujdx
∣∣. (3.2)
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Due to Hölder’ s inequality and Lemma 2.4, the right-hand side (3.2) can be esti-
mated as∣∣ 3∑

i,j,k=1

∫
R3

ui∂iuj∂kkujdx
∣∣ ≤ ‖∇hũ · ∇u‖L2‖∇u‖L2

≤ C‖∇hũ‖Ṁ2,3/r
‖∇u‖

Ḃr
2,1
‖∇u‖L2

≤ C‖∇hũ‖Ṁ2,3/r
‖∇u‖2−r

L2 ‖∆u‖r
L2

≤ C
(
‖∇hũ‖2/(2−r)

Ṁ2,3/r
‖∇u‖2L2

)(2−r)/2

(‖∆u‖2L2)r/2.

By Young’ s inequality, we obtain∣∣ 3∑
i,j,k=1

∫
R3

ui∂iuj∂kkujdx
∣∣ ≤ 1

2
‖∆u‖2L2 + C‖∇hũ‖2/(2−r)

Ṁ2,3/r
‖∇u‖2L2 (3.3)

Substituting (3.3) into (3.2), it follows that
d

dt
‖∇u(., t)‖2L2 + ‖∆u(., t)‖2L2 ≤ C‖∇hũ‖2/(2−r)

Ṁ2,3/r
‖∇u‖2L2 .

Then Gronwall’ s inequality yields

‖∇u(t)‖2L2 +
∫ T

0

∫
R3
‖∆u(x, s)‖2L2 dx ds

≤ C‖∇u0‖2L2 exp
( ∫ t

0

‖∇hũ(., s)‖2/(2−r)

Ṁ2,3/r
ds

)
.

This completes the proof . �

4. Proof of Theorem 2.6

After we established the key estimate in section 2, the proof of Theorem 2.6 is
straightforward.

It is well known [5] that there is a unique strong solution u ∈ C([0, T ∗),H1(R3))∩
C1([0, T ∗),H1(R3)) ∩ C([0, T ∗),H3(R3)) to (1.1) for some T ∗ > 0, for any given
u0 ∈ H1(R3) with ∇.u0 = 0. Since u is a Leray-Hopf weak solution which satisfies
the energy inequality (2.2), we have according to the Serrin’s uniqueness criterion
[14],

ū ≡ u on [0, T ∗).
By the assumption (2.4) and standard continuation argument, the local strong
solution can be extended to time T . So we have proved u actually is a strong
solution on [0, T ). This completes the proof of Theorem 2.6.
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