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NON-LOCAL PROBLEMS FOR PARABOLIC-HYPERBOLIC
EQUATIONS WITH DEVIATION FROM THE

CHARACTERISTICS AND THREE TYPE-CHANGING LINES

ABDUMAUVLEN S. BERDYSHEV, NILUFAR A. RAKHMATULLAEVA

Abstract. We prove the existence and uniqueness of solutions for a partial
differential equations of mixed type (parabolic-hyperbolic type). We use en-
ergy integrals and methods from integral equations to study a problem that
has deviation from the characteristics and three lines where the type changes.

1. Introduction and formulation of the problem

The need for studying boundary-value problems of parabolic-hyperbolic type
was emphasized by Gelfand [7] in 1959. Later Zolina [12] considered several of
these problems and gave some physical interpretations. Among the applications of
these problems, we have irrigation models found in the monograph by Serbina [11].
Omitting many works for local and nonlocal problems, we mention some recent
works that are closely related to the present investigation. Berdyshev [1] studied
the unique solvability of Bitsadze-Samarskii type problem with deviation from the
characteristics for parabolic-hyperbolic equations with one line where type changes
In [2, 5, 8, 9], the unique solvability of nonlocal problems for parabolic-hyperbolic
type equations with continuous and special gluing conditions were studied. Eleev
and Lesev [4] studied Parabolic-hyperbolic type equations with lines where the
type changes. Boundary value problems with nonlocal conditions for parabolic-
hyperbolic equations with three lines where the type changes were studied in [3].

We use energy integrals and methods from integral equations, to prove the unique
solvability of a boundary-value problems with nonlocal conditions. This conditions
relate values of the unknown function on the line where the type changes, with
values of its derivatives on curves lying inside of hyperbolic part of the domain.

Consider the equation

uxx +
sgn(xy(1− x))− 1

2
uyy +

sgn(xy(x− 1))− 1
2

uy = 0 (1.1)

on a domain Ω = Ω0 ∪ Ω1 ∪ Ω2 ∪ Ω3 ∪ AB ∪ AA0 ∪ BB0. Here Ω0 = {(x, y) :
0 < x < 1, 0 < y < 1} and Ω1, Ω2, Ω3 are characteristic triangles with endpoints
A(0, 0), B(1, 0), C( 1

2 ,− 1
2 ); D(− 1

2 , 1
2 ), A0(0, 1); E( 3

2 , 1
2 ), B0(1, 1), respectively.
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Problem NP. Find a regular solution of the (1.1), satisfying conditions

[ux − uy]θ1(t) + µ1(t)[ux − uy]θ∗1(t) = ϕ1(t), (1.2)

[ux − uy]θ2(t) + µ2(t)[ux − uy]θ∗2(t) = ϕ2(t), (1.3)

[ux + uy]θ3(t) + µ3(t)[ux + uy]θ∗3(t) = ϕ3(t), (1.4)

and u(A) = 0, u(B) = 0.
Here θ1(t), θ2(t), θ3(t), [θ∗1(t), θ∗2(t), θ∗3(t)] are affixes of intersection’s points of

characteristics, outgoing from the points (x, 0) ∈ AB; (0, y) ∈ AA0; (1, y) ∈ BB0

with AC;AD;BE [AN ;AK;BM ], respectively. AN : y = −γ1(x), 0 ≤ x ≤ l1,
1/2 ≤ l1 ≤ 1, AK : x = −γ2(y), 0 ≤ y ≤ l2, 1/2 ≤ l2 ≤ 1, BM : x = −γ3(y),
0 ≤ y ≤ l3, 1/2 ≤ l3 ≤ 1; µi(t) and ϕi(t)(i = 1, 3) are given functions.

Regarding to curves γi(t) we assume the following conditions:
• γi(0) = 0, li + γi(li) = 1, 0 < γ′i(0) < 1, γi(t) > 0, t > 0;
• t− γi(t), t + γi(t) are monotonically increasing;
• γi(t) are twice continuously differentiable functions.

2. Unique solvability of the problem

Theorem 2.1. If µi(t) 6= −1 and µi(t), ϕi(t) ∈ C1[0, 1], for i = 1, 3, 0 ≤ t ≤ 1,
then problem NP has unique solution.

We introduce the following notation

u(x,±0) = τ±1 (x), uy(x,±0) = ν±1 (x), (2.1)

u(±0, y) = τ±2 (y), ux(±0, y) = ν±2 (y), (2.2)

u(1± 0, y) = τ±3 (y), ux(1± 0, y) = ν±3 (y) . (2.3)

It is known [10] that the solution of Cauchy’s problem of (1.1) in the domain Ω1

has the form

u(x, y) =
1
2
{τ−1 (x + y) + τ−1 (x− y) +

∫ x+y

x−y

ν−1 (t)dt}. (2.4)

Calculating derivatives, we have

ux =
1
2
{τ−1 ′(x + y) + τ−1

′(x− y) + ν−1 (x + y)− ν−1 (x− y)},

uy =
1
2
{τ−1 ′(x + y)− τ−1

′(x− y) + ν−1 (x + y) + ν−1 (x− y)},

ux − uy = τ−1
′(x− y)− ν−1 (x− y).

By the conditions on the function γ1(x), an equation of the curve AN in charac-
teristic coordinates ξ = x + y, η = x − y can be given as ξ = λ1(η), 0 ≤ η ≤ 1,
moreover 0 < λ1

′(0) < 1, λ1(η) < η. Then

θ1(t) =
( t

2
;− t

2
)
, θ∗1(t) =

(λ1(t) + t

2
;
λ1(t)− t

2
)
.

Then we calculate

[ux − uy]θ1(t) = τ−1
′(t)− ν−1 (t), [ux − uy]θ∗1(t) = τ−1

′(t)− ν−1 (t).

Using condition (1.2), we find

ν−1 (t) = τ−1
′(t)− ϕ1(t)

1 + µ1(t)
, µ1(t) 6= −1. (2.5)
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Similarly, using conditions (1.3) and (1.4), we obtain functional relations on lines
AA0 and BB0, reduced from the domains Ω2, Ω3, respectively:

ν−2 (t) = τ−2
′(t)− ϕ2(t)

1 + µ2(t)
, µ2(t) 6= −1, (2.6)

ν+
3 (t) = −τ+

3
′(t) +

ϕ3(t)
1 + µ3(t)

, µ3(t) 6= −1. (2.7)

On the domain Ω0 we obtain the equality∫∫
Ω0

u2
x(x, y) dx dy +

∫ 1

0

τ+
2 (y)ν+

2 (y)dy −
∫ 1

0

τ−3 (y)ν−3 (y)dy

+
1
2

∫ 1

0

u2(x, 1)dx− 1
2

∫ 1

0

[τ+
1 (x)]2dx = 0.

(2.8)

To obtain this equality, first we multiplied (1.1) by u(x, y) and then integrated
along the domain Ω0. Then apply the Green’s formula [10] and use the introduced
notation to obtain (2.8).

2.1. Uniqueness of the solution. To prove the uniqueness, as usual we suppose
that the problem has two solutions u1 and u2. Taking difference of these solution we
obtain a homogeneous problem regarding for the new function u = u1 − u2. Below
we prove that homogeneous problem NP has only the trivial solution. Consequently,
given functions ϕi(t) are equal to zero.

Let us to prove that u(x,±0) = τ+
1 (x) = τ−1 (x) = 0. Passing to the limit in the

domain Ω0, at y → +0 from the equation uxx − uy = 0, we obtain

τ+
1
′′(x)− ν+

1 (x) = 0. (2.9)

Consider the integral I1 =
∫ 1

0
τ+
1 (x)ν+

1 (x)dx. Taking (2.9) into account, we have

I1 =
∫ 1

0

τ+
1 (x)τ+

1
′′(x)dx = −

∫ 1

0

(τ+
1
′(x))2dx.

It is obvious that I1 ≤ 0.
From relation (2.5) we obtain ν−1 (x) = τ−1

′(x). Considering τ−1 (x) = τ+
1 (x),

ν−1 (x) = ν+
1 (x), ϕ1(t) = 0, we obtain

I1 =
∫ 1

0

τ+
1 (x)τ+

1

′
(x)dx =

1
2
(τ+

1 (x))2
∣∣1
0

= 0. (2.10)

Further, consider the integrals

I2 =
∫ 1

0

τ+
2 (y)ν+

2 (y)dy ≥ 0, I3 =
∫ 1

0

τ−3 (y)ν−3 (y)dy ≤ 0.

Using the functional relation ν+
2 (y) = τ+

2

′
(y), we have

I2 =
∫ 1

0

τ+
2 (y)τ+

2
′(y)dy =

1
2
(τ+

2 (1))2 ≥ 0, (2.11)

Similarly, we obtain

I3 = −
∫ 1

0

τ−3 (y)τ−3
′(y)dy = −1

2
(τ−3 (1))2 ≤ 0. (2.12)
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Taking (2.11), (2.12) and τ1(x) = 0 into account, from (2.8), we obtain ux(x, y) = 0.
Since u(x, y) ∈ C(Ω), u(x, y) ≡ 0 in the domain Ω. The uniqueness of the solution
for the problem NP is proved.

2.2. Existence of the solution. Excluding ν+
1 (x) = ν−1 (x) from (2.5) and (2.9),

we have

τ+
1
′′(x)− τ+

1
′(x) = − ϕ1(x)

1 + µ1(x)
.

from here and considering τ+
1 (0) = τ+

1 (1) = 0, we obtain

τ+
1 (x) =

∫ x

0

ϕ1(t)[1− ex−t]
1 + µ1(t)

dt +
ex − 1
e− 1

∫ 1

0

ϕ1(t)[e1−t − 1]
1 + µ1(t)

dt.

By the unique solvability of the first boundary problem for the heat equation
[6], the solution of (1.1) in the domain Ω0 is represented as

u(x, y) =
∫ 1

0

τ+
1 (x)G(x, y, x1, 0)dx1 +

∫ y

0

τ+
2 (y1)Gx1(x, y, 0, y1)dy1

−
∫ y

0

τ−3 (y1)Gx1(x, y, 1, y1)dy1,

(2.13)

where G(x, y, x1, y1) is Green’s function of the first boundary problem for the heat
equation [6].

Differentiating (2.13) once by x, considering (2.1)-(2.2), we obtain

ν+
2 (y) = F1(y)−

∫ y

0

τ+
2
′(y1)K1(y, y1)dy1 +

∫ y

0

τ−3
′(y1)K2(y, y1)dy1, (2.14)

ν−3 (y) = F2(y)−
∫ y

0

τ+
2
′(y1)K3(y, y1)dy1 +

∫ y

0

τ−3
′(y1)K4(y, y1)dy1, (2.15)

where

F1(y) = −
∫ 1

0

τ+
1
′(y1)K2(y, y1)dy1, F2(y) = −

∫ 1

0

τ+
1
′(y1)K4(y, y1)dy1,

K1(y, y1) =
1√

π(y − y1)

[
1 +

+∞∑
n=−∞, n 6=0

e−
n2

y−y1

]
,

K2(y, y1) =
1

2
√

π(y − y1)

[
2e
− 1

4(y−y1) +
+∞∑

n=−∞, n 6=0

(e−
(2n−1)2

4(y−y1) + e
− (2n+1)2

4(y−y1) )
]
,

K3(y, y1) =
1√

π(y − y1)

[
e
− 1

4(y−y1) +
+∞∑

n=−∞, n 6=0

e
− (2n+1)2

4(y−y1)

]
,

K4(y, y1) =
1

2
√

π(y − y1)

[
1 + e−

1
y−y1 +

+∞∑
n=−∞, n 6=0

(e−
n2

y−y1 + e−
(n+1)2

y−y1 )
]
.

From (2.6) and (2.14), (2.7) and (2.15), excluding ν+
2 (y), ν−3 (y), we have

τ+
2

′
(y) +

∫ y

0

τ+
2

′
(y1)K1(y, y1)dy1 = F3(y), (2.16)

τ−3
′(y) +

∫ y

0

τ−3
′(y1)K4(y, y1)dy1 = F4(y), (2.17)
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where

F3(y) = F1(y) +
ϕ2(y)

1 + µ2(y)
+

∫ y

0

τ−3
′(y1)K2(y, y1)dy1,

F4(y) = −F2(y) +
ϕ3(y)

1 + µ3(y)
+

∫ y

0

τ+
2
′(y1)K3(y, y1)dy1.

Equations (2.16)-(2.17) can be considered as a system of equations regarding un-
known functions τ+

2
′(y) and τ−3

′(y). First we solve equation (2.16) considering
function τ−3

′(y) as known. Equation (2.16) is a Volterra type integral equation
regarding to the function τ+

2
′(y) with continuous right-hand side F3(y). Since the

kernel K1(y, y1) has a weak singularity, one can represent solution of this equation
via the resolvent,

τ+
2
′(y) = F3(y) +

∫ y

0

R1(y, y1)F3(y1)dy1, (2.18)

where R1(y, y1) is the resolvent of the kernel K1(y, y1).
Integrating once, from (2.18), we obtain

τ+
2 (y) =

∫ y

0

F3(t)dt +
∫ y

0

( ∫ t

0

R1(t, y1)F3(y1)dy1

)
dt.

Substituting τ+
2 (y) into (2.17), we obtain the the second kind type Volterra integral

equation regarding τ−3
′(y), which has unique solution [6].

Since, functions τ±1 (x), τ±2 (y), τ±3 (y) are known, using (2.5), (2.6), (2.7) we find
the functions ν±1 (x), ν±2 (y), ν±3 (y).

Finally, one can obtain solution to problem NP in the domain Ω0 by the formula
(2.13), and in domains Ωi, (i = 1, 3) as a solution of the Cauchy’s problem, for
instance (2.4).
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