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EXISTENCE OF GLOBAL SOLUTIONS TO THE 2-D
SUBCRITICAL DISSIPATIVE QUASI-GEOSTROPHIC EQUATION

AND PERSISTENCY OF THE INITIAL REGULARITY

MAY RAMZI, EZZEDDINE ZAHROUNI

Abstract. In this article, we prove that if the initial data θ0 and its Riesz
transforms (R1(θ0) and R2(θ0)) belong to the space

(S(R2))
B1−2α,∞
∞ , 1/2 < α < 1,

then the 2-D Quasi-Geostrophic equation with dissipation α has a unique
global in time solution θ. Moreover, we show that if in addition θ0 ∈ X for
some functional space X such as Lebesgue, Sobolev and Besov’s spaces then
the solution θ belongs to the space C([0, +∞[, X).

1. Introduction and statement of main results

In this article, we are study the initial value-problem for the two-dimensional
quasi-geostrophic equation with sub-critical dissipation

∂tθ + (−∆)αθ +∇.(θu) = 0 on R+
∗ × R2

θ(0, x) = θ0(x), x ∈ R2
(1.1)

where α ∈] 12 , 1[ is a fixed parameter and ∇ denotes the divergence operator with
respect to the space variable x ∈ R2. The scalar function θ represents the potential
temperature. The velocity u = (u1, u2) is divergence free and determined from θ
through the Riesz transforms

u = R⊥(θ) ≡ (−R2(θ),R1(θ)).

The non local operator (−∆)α is defined through the Fourier transform,

F((−∆)αf)(ξ) = |ξ|2αF(f)(ξ)

where F(f) is the Fourier transform of f defined by

F(f)(ξ) = f̂(ξ) =
∫

R2
f(x)e−i〈x,ξ〉dx.

To study the existence of solutions to (1.1), we follow the Fujita-Kato method.
Thus we convert (1.1) into the fixed point problem:

θ(t) = e−t(−∆)α

θ0 + Bα[θ, θ](t). (1.2)
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Here (e−t(−∆)α

)t>0 is the semi-group defined by

F(e−t(−∆)α

f)(ξ) = e−t|ξ|2α

F(f)(ξ)

and Bα is the bi-linear operator

Bα[θ1, θ2](t) = −Lα(θ1R⊥(θ2)) (1.3)

where, for v = (v1, v2),

Lα(v)(t) =
∫ t

0

∇.e−(t−s)(−∆)α

vds. (1.4)

In the sequel, by a mild solution on ]0, T [ to (1.1) with data θ0, we mean a function θ
belonging to the space L2

loc([0, T [, F2) and satisfying in D′(]0, T [×R2) the equation
(1.2) where F2 is the completion of S(R2) with respect to the norm

‖f‖F2 ≡ sup
x0∈R2

(‖1B(x0,1)f‖2 + ‖1B(x0,1)R⊥(f)‖2).

One of the main properties of (1.1) is the following scaling invariance property: If
θ is a solution of (1.1) with data θ0 then, for any λ > 0, the function θλ(t, x) ≡
λ2α−1θ(λ2αt, λx) is a solution of (1.1) with data θ0,λ(x) ≡ λ2α−1θ0(λx). This leads
us to introduce the following notion of super-critical space: A Banach space X will
be called super-critical space if S(R2) ↪→ X ↪→ S(R2) and there exists a constant
CX ≥ 0 such that for all f ∈ X,

sup
0<λ≤1

λ2α−1‖f(λ.)‖X ≤ CX‖f‖X .

For instance, the Lebesgue space Lp(R2) (respectively, the Sobolev space Hs(R2))
is super-critical space if p ≥ pc ≡ 2

2α−1 (respectively, s ≥ sc ≡ 2 − 2α). Moreover,
one can easily prove that the Besov space B1−2α,∞

∞ (R2) is the greatest super-critical
space. The first purpose of this paper, is to prove the global existence of smooth
solutions of the equations (1.1) for initial data in a super-critical space B̃α closed
to the space B1−2α,∞

∞ (R2). Our space B̃α is the completion of S(R2) with respect
to the norm

‖f‖B̃α ≡ ‖f‖B1−2α,∞
∞

+ ‖R⊥(f)‖B1−2α,∞
∞

.

Before setting precisely our global existence result, let us recall some known results
in this direction: in [22], Wu proved that for any initial data θ0 in the space Lp(R2)
with p > pc = 2

2α−1 the equations (1.1) has a unique global solution θ belonging to
the space L∞([0,+∞[, Lp(R2)). Similarly, Constantin and Wu [4] showed the global
existence and uniqueness for arbitrary initial data in the Sobolev space Hs(R2)
where s > sc = 2− 2α. However, we notice that these results don’t cover the limit
cases p = pc and s = sc, that are critical regularity exponents.

We recall that global solutions are obtained under smallness size assumption on
the initial data by several authors. For instance, one can quote the results of Wu
[21] for θ0 ∈ Ḃ

sp,∞
p (R2) (critical spaces) with sp = 2

p−(2α−1), Niche and Schonbek,
[15] for θ0 ∈ Lpc(R2), with pc = 2

2α−1 , Lemarié-Rieusset and Marchand [11] for θ0 ∈
L

2
2α−1 ,∞(R2) and finally the work May and Zahrouni [12] where they considered

initial data in the greatest critical homogeneous Besov space Ḃ−(2α−1),∞
∞ (R2). The

later one contains all the preceding critical spaces. Indeed, we have

L̇p,sp(R2) ⊂ Ḃsp,∞
p (R2) ⊂ Ḃ−(2α−1),∞

∞ (R2).
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Our space of initial data B̃α introduced above contains all known critical spaces,
in particular we have

Ḃ−(2α−1),∞
∞ (R2) ⊂ B̃α.

Now we give our first result overcoming the above mentioned smallness assumption.
Our global existence result reads as follows.

Theorem 1.1. Let ν = 1 − (1/2α). For any initial data θ0 ∈ B̃α, equation (1.1)
has a unique global solution θ belonging to the space ∩T>0Eν

T , where Eν
T is the

completion of C∞c (]0, T ]× R2) with respect to the norm

‖v‖Eν
T
≡ sup

0<t≤T
tν(‖v(t)‖∞ + ‖R⊥(v)(t)‖∞).

Moreover,
θ ∈ C([0,+∞[, B̃α).

The proof of the above theorem is far from being a direct consequence of an
application of a Fixed Point Theorem. We will establish a local existence result
and will be able to get global existence that is essentially based on a new adapted
version of the well-known maximal principle (Lemma 2.11) that we stated and
proved in second section.

We can recover the results quoted above using our second main result that is
a persistency Theorem stating that, the solution θ given by Theorem 1.1 keeps
any further Besov or Lebesgue regularity of its initial data. Precisely, our theorem
states as follows.

Theorem 1.2. Let X be one of the following Banach spaces:
• X = Lp(R2) with 1 ≤ p ≤ ∞;
• X = Bs,q

p (R2) with s > −1 and 1 < p <∞, 1 ≤ q ≤ ∞;
• X = Ḃs,q

p (R2) with s > 0 and 1 ≤ p, q ≤ ∞.

Assume θ0 ∈ B̃α ∩ X. Then the mild solution θ of the equation (1.1) given by

Theorem 1.1 belongs to the space L∞loc([0,+∞[, X). Moreover, if θ0 ∈ B̃α ∩S(R2)
X

then θ belongs to C([0,+∞[, S(R2)
X

).

As a consequence of the previous theorems, we have the following theorem that
generalizes the existence results of Wu [22] and Constantin and Wu [4] recalled
above.

Theorem 1.3. Let X be the Lebesgue space Lp(R2) with p ≥ pc = 2
2α−1 or the

Sobolev space Hs(R2) with s ≥ sc = 2 − 2α. Assume θ0 ∈ X. Then the equation
(1.1) with initial data θ0 has a unique global mild solution θ belonging to the space
C([0,+∞[, X).

We emphasize that the above stated results are new since the initial data con-
sidered here are in the nonhomogeneous space B̃α, that is our knowledge the first
time employed in this context. Moreover, we are allowed to obtain global solutions
for this initial data without assuming any smallness assumption on its size. Thus
we have a better results than those of Wu [21] and [4]. As a by product of our
method we are able to extend the result of Wu to a large class of Lp spaces, for
which we have also obtained the uniqueness issue. We focus on the fact that we
have established the propagation of any further regularity of initial data belonging
to B̃α.
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Our next challenge is to extend the use of our method to the critical Quasi-
geostrophic equations.

The remainder of this paper is as follows: in section 2 we recall some definitions
and we give some useful Lemmas that will be used in this paper. In section 3, we
prove Theorem 1.1. Section 4 is devoted to the proof of Theorem 1.2 and in section
4, we will prove Theorem 1.3.

2. Preliminaries

2.1. Notation. In this subsection, we introduce some notation that will be used
frequently in this paper.

(1) Let X be a Banach space such that S(R2) ↪→ X ↪→ S′(R2). We denote by
XR the space

XR = {f ∈ X : R⊥(f) ∈ X2}
endowed with the norm

‖f‖XR = ‖f‖X + ‖R⊥(f)‖X .

We recall that R⊥(f) = (−R2f,R1f) where R1 and R2 are Riesz trans-
forms.

(2) Let T > 0, r ∈ [1,∞] and X be a Banach space. Lr
TX denotes the space

Lr([0, T [, X). In particular, Lr
TL

p will denote the space Lr([0, T [, Lp(R2)).
(3) Let X be a Banach space, T > 0 and µ ∈ R. we denote by L∞µ ([0, T ], X)

the space of functions f :]0, T ] → X such that

‖f‖L∞µ ([0,T ],X) ≡ sup
0<t≤T

tµ‖f(t)‖X <∞ and lim
t→0

tµ‖f(t)‖X = 0.

The sub-space C0
µ([0, T ], X) of L∞µ ([0, T ], X) is defined by

C0
µ([0, T ], X) ≡ L∞µ ([0, T ], X) ∩ C(]0, T ], X).

(4) Let A and B be two reals functions. The notation A . B means that there
exists a constant C, independent of the effective parameters of A and B,
such that A ≤ CB.

2.2. Besov spaces. The standard definition of Besov spaces passes through the
Littlewood-Paley dyadic decomposition [1]. [7], and [10]. To this end, we take an
arbitrary function ψ ∈ S(R2) whose Fourier transform ψ̂ is such that supp(ψ̂) ⊂
{ξ, 1

2 ≤ |ξ| ≤ 2}, and for ξ 6= 0,
∑

j∈Z ψ̂( ξ
2j ) = 1, and define ϕ ∈ S(R2) by ϕ̂(ξ) =

1 −
∑

j≥0 ψ̂( ξ
2j ). For j ∈ Z, we write ϕj(x) = 22jϕ(2jx) and ψj(x) = 22jψ(2jx)

and we denote the convolution operators Sj and ∆j , respectively, the convolution
operators by ϕj and ψj .

Definition 2.1. Let 1 ≤ p, q ≤ ∞, s ∈ R.
1. A tempered distribution f belongs to the (inhomogeneous) Besov space Bs,q

p if
and only if

‖f‖Bs,q
p
≡ ‖S0f‖p + (

∑
j>0

2jsq‖∆jf‖q
p)

1
q <∞.

2. The homogeneous Besov space Ḃs,q
p is the space of f ∈ S ′(R2)/R[X] such that

‖f‖Ḃs,q
p
≡ (

∑
j∈Z

2jsq‖∆jf‖q
p)

1
q <∞,
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Where R[X] is the space of polynomials [17].

An equivalent definition more adapted to the Quasi-geostrophic equations in-
volves the semigroup (e−t(−∆)α

)t>0.

Proposition 2.2. If s < 0 and q = ∞. Then

f ∈ Ḃs,∞
p ⇐⇒ sup

t>0
t
−s
2α ‖e−t(−∆)α

f‖p <∞, (2.1)

f ∈ Bs,∞
p ⇐⇒ ∀T > 0, sup

0<t<T
t
−s
2α ‖e−t(−∆)α

f‖p ≤ CT . (2.2)

The proof the above proposition can be easily done by following the same lines
as in the proof in [10, Theorem 5.3] in the case of the heat Kernel. One can see
also the proof in [13, Proposition 2.1].

2.3. Intermediate results. We shall frequently use the following estimates on the
operator e−t(−∆)α

.

Proposition 2.3. For t > 0, we set Kt the kernel of e−t(−∆)α

. Then for all
r ∈ [1,∞] we have

‖Kt‖r = C1rt
σr , (2.3)

‖∇Kt‖r = C2rt
σr− 1

2α , (2.4)

‖Rj∇Kt‖r = C3rt
σr− 1

2α , (2.5)

where σr = 1
α ( 1

r − 1) and C1r, C2r and C3r are constants independent of t.

Proof. This propostion was previously proved in [22]. Equalities (2.3) and (2.4) can
be found in [13]. Estimate (2.5) can be obtained by following the same argument
as in [10, Proposition 11.1]. �

Following the work of Lemarié-Rieusset, we introduce the notion of shift invariant
functional space.

Definition 2.4. A Banach space X is called shift invariant functional space if
• S(R2) ↪→ X ↪→ S ′(R2),
• for all ϕ ∈ S(R2) and f ∈ X, ‖ϕ ∗ f‖X ≤ CX‖ϕ‖1‖f‖X .

Remark 2.5. The Lebesgue spaces, the inhomogeneous Besov spaces Bs,q
p , with

s ∈ R, 1 ≤ p, q ≤ ∞, and the homogeneous Besov spaces Ḃs,q
p , with s > 0, 1 ≤

p, q ≤ ∞, are shift invariant functional spaces.

The proof of Theorem 1.1 requires the following lemmas.

Lemma 2.6. Let X be a shift invariant functional space. If f ∈ X then

sup
t>0

‖e−t(−∆)α

f‖X ≤ CX‖f‖X . (2.6)

Moreover, if f ∈ S(R2)
X

, then e−t(−∆)α

f ∈ C(]0,∞[, S(R2)
X

) and e−t(−∆)α

f →
f in X as t→ 0+.

Proof. One obtain easily (2.6) from (2.3). Let us prove the last assertion. For t > 0,
we denote by Kt the kernel of the operator e−t(−∆)α

. Then Kt(.) = t−
1
αK(t−

1
2α .)

where K = Kt=1. Since K ∈ L1(R2) and
∫
K(x)dx = 1, there exists a sequence

(K(n))n ∈ (C∞c (R2))N such that for all n,
∫
K(n)(x)dx = 1 and (K(n))n → K in
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L1(R2). Let (fn)n be a sequence in C∞c (R2) satisfying (fn)n → f in X. Now we
consider the functions (un)n and u defined on R+∗ × R2 by

u(t, x) = Kt ∗ f and un(t, x) = K(n),t ∗ fn

where K(n),t(.) = t−
1
αK(n)(t−

1
2α .) and ∗ denotes the convolution in R2.

One can easily verify that for all n, the function ûn(t, ξ) = K̂(n)(t
1
2α ξ)f̂n(ξ)

belongs to the space C(R+∗, S(R2)) and satisfies ûn(t, .) → f̂n in S(R2) as t goes to
0+. This implies that for all n, un can be extended to a function in C(R+, S(R2))
with fn as value at t = 0. Consequently, to conclude the proof of the Lemma, we
just need to show that the sequence (un)n converges to u in the space L∞(R+, X).
To do this, we notice that for any t > 0 and any n ∈ N we have

un(t)− u(t) = K(n),t ∗ (fn − f) + (K(n),t −Kt) ∗ f.

Hence,

‖un(t)− u(t)‖X ≤ ‖K(n),t‖1‖fn − f‖X + ‖K(n),t −Kt‖1‖f‖X

≤ C‖fn − f‖X + ‖K(n) −K‖1‖f‖X ,

which leads to the desired result. �

The next lemma will be useful in the sequel.

Lemma 2.7. Let X be a shift invariant functional space, T > 0 and µ < 1. Then,
for all f ∈ L∞µ ([0, T ], X), the function Lα(f) belongs to L∞µ′ ([0, T ], XR) and satisfies

‖Lα(f)‖L∞
µ′ ([0,T ],XR) ≤ C‖f‖L∞µ ([0,T ],X)

where µ′ = µ−1+ 1
2α and C is a constant depending only on µ, α and X. Moreover,

if f belongs to L∞µ ([0, T ], S(R2)
X

) then Lα(f) belongs to C0
µ′([0, T ], (S(R2)

X
)R).

Proof. The first assertion is a an immediate consequence of estimates (2.4)-(2.5).
The last assertion can be easily proved by using the previous lemma and the
Lebesgue’s dominated convergence theorem, we left details to the reader. �

Lemma 2.8. Let T > 0. Then the following assertions hold:

(1) The linear operator e−t(−∆)α

is continuous from B̃α to Eν
T .

(2) The bilinear operator Bα is continuous from Eν
T × Eν

T → Eν
T and its norm

is independent of T .

Proof. The first assertion follows from the characterization of Besov spaces by the
kernel e−t(−∆)α

and the definition of B̃α The second assertion, is a direct conse-
quence of the previous lemma and the fact that Eν

T = C0
ν ([0, T ], (C0(R2))R) �

The following lemma, which is a direct consequence of the preceding one, will be
useful in the proof of Theorem 1.2.

Lemma 2.9. Let θ0 ∈ B̃α. The sequence φn(θ0) defined by

φ0(θ0) = e−t(−∆)α

θ0,

φn+1(θ0) = e−t(−∆)α

θ0 + Bα[φn(θ0), φn(θ0)],
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belongs to ∩T>0Eν
T . Moreover, there exists a constant µ0 > 0 (depending only on

α ) such that if for some T > 0 we have ‖φ0(f)‖Eν
T
≤ µ0 then for all n ∈ N∗,

‖φn(θ0)‖Eν
T
≤ 2‖φ0(θ0)‖Eν

T
, (2.7)

‖φn+1(θ0)− φn(θ0)‖Eν
T
≤ 1

2n
. (2.8)

In particular, the sequence (φn(θ0))n converges in the space Eν
T and its limit θ is a

mild solution to the equation (1.1) with initial data θ0.

The following elementary lemma will play a crucial role in this paper.

Lemma 2.10 (Gronwall type Lemma). Let T > 0, c1, c2 ≥ 0, κ ∈]0, 1[ and f ∈
L∞(0, T ) such that for all t ∈ [0, T ],

f(t) ≤ c1 + c2

∫ t

0

f(s)
(t− s)κ

ds.

Then for all t ∈ [0, T ],
f(t) ≤ 2c1eνt, (2.9)

where ν = νκ,c2 > 0.

Proof. Let ν > 0 to be precise in the sequel and consider the function g defined on
[0, T ] by

g(t) = sup
0<s<t

e−νsf(s).

Clearly, we have

g(t) ≤ c1 + c2

∫ t

0

e−ν(t−s)

(t− s)κ
g(s)ds,≤ c1 + c2γκν

κ−1g(t),

where γκ =
∫∞
0

e−t

tκ . Thus, if we choose ν > 0 such that c2γκν
κ−1 = 1

2 , we obtain
the estimate (2.9). �

Lemma 2.11 (Maximal Principle). Let θ be a mild solution of (1.2) belonging to
the space C([0, T ], (C0(R2))R). Then for all t ∈ [0, T ], we have

‖θ(t)‖∞ ≤ ‖θ0‖∞, (2.10)

‖R⊥(θ)(t)‖∞ ≤ 2‖R⊥(θ0)‖∞eηt, (2.11)

where η = ηα,‖θ0‖∞ > 0.

Proof. The inequality (2.10) is proved in [18], [5] and [22], for sufficiently smooth
solution θ. To prove it in our case, we will proceed by linearization of the equations
and regularization of the initial data. We consider a sequence of linear system

∂tv − (−∆)αv +∇.(unv) = 0

v(0, .) = θn(.).
(2.12)

where (θn)n is a given sequence in C∞c (R2) converging to θ(0) in the space L∞(R2)
and un = ωn ∗ R⊥(θ) with ωn(.) = n2ω(n.) where ω ∈ C∞c (R2) and

∫
ωdx = 1.

Let n ∈ N. By converting the system (2.12) into the integral equation

v(t) = e−t(−∆)α

θn −
∫ t

0

∇.e−(t−s)(−∆)α

(unv)ds (2.13)
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and by following a standard method, one can easily prove that the system (2.12)
has a unique global solution vn ∈ ∩k∈NC

∞([0, T ],Hk(R2)). Hence we are allowed
to make the following computations: Let p ∈ [2,∞[. For any t ∈ [0, T ] we have

1
p

d

dt
‖vn(t)‖p = −

∫
((−∆)αv)v|v|p−2dx−

∫
∇.(unv)v|v|p−2dx

≡ I1(t) + I2(t).

Firstly, a simple integration by parts implies that I2(t) = −I2(t) and so

I2(t) = 0.

Secondly, by the positivity Lemma (see [18] and [6]), we have

I1(t) ≤ 0.

Therefore,
sup

t∈[0,T ]

‖vn(t)‖p ≤ ‖θn‖p.

Letting p→ +∞, yields

sup
t∈[0,T ]

‖vn(t)‖∞ ≤ ‖θn‖∞.

Consequently, to obtain (2.10), we just need to show that the sequence (vn)n con-
verges to the function θ in the space L∞([0, T ], L∞(R2)). To do this, we consider
the sequence (wn)n = (vn − θ)n. Let t ∈ [0, T ] and n ∈ N. We have

wn(t) = e−t(−∆)α

(wn(0))−
∫ t

0

∇.e−(t−s)(−∆)α

((un −R⊥(θ))vn)ds

−
∫ t

0

∇.e−(t−s)(−∆)α

(R⊥(θ)wn)ds.

Thus, by using the Young inequality and Proposition 2.3, we easily get

‖wn(t)‖∞ ≤ ‖θn − θ(0)‖∞ + CαT
νAnBn + CαMθ

∫ t

0

‖wn(s)‖∞
(t− s)1/2α

ds

where Cα is a constant depending only on α,

An = sup
0≤t≤T

‖un(t)−R⊥(θ)(t)‖∞,

Bn = sup
0≤t≤T

‖vn(t)‖∞,

Mθ = sup
0≤t≤T

‖R⊥(θ)(t)‖∞.

Applying Lemma 2.10, we obtain

sup
0≤t≤T

‖wn(t)‖∞ ≤ C[‖θn − θ(0)‖∞ + CαT
νAnBn]

where C is a constant depending on α, T and θ only.
Therefore, to obtain the desired conclusion, we just have to notice that the

sequence (Bn)n is bounded and that An → 0 as n → ∞ thanks to the uniform
continuity of the function R⊥(θ) on [0, T ]×R2, which is a consequence of the fact
R⊥(θ) ∈ C([0, T ], C0(R2))
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Now, let us establish the inequality (2.11). For any t ∈ [0, T ], we have

R⊥(θ)(t) = e−t(−∆)α

(R⊥(θ)(0))−
∫ t

0

R⊥∇.e−(t−s)(−∆)α

(R⊥(θ)θ)ds.

Applying the Young inequality and (2.5), we obtain

‖R⊥(θ)(t)‖∞ ≤ ‖R⊥(θ)(0)‖∞ + C‖θ(0)‖∞
∫ t

0

‖R⊥(θ)(s)‖∞
(t− s)1/2α

ds

where the constant C depends only on α. Hence, Lemma 2.10 leads the desired
inequality. �

3. Proof of Theorem 1.1

According to Lemma 2.8, there exists T > 0 such that ‖e−t(−∆)α

θ0‖Eν
T
≤ µ0

where µ0 is the real defined by Lemma 2.9. Therefore, the same lemma ensures that
the equation (1.1) with initial data θ0 has a mild solution θ belonging to the space
Eν

T . Following a standard arguments (see for example [10] and [2]), the uniqueness
of the solution θ can be easily deduced from the continuity of the operator Bα on
the space Eν

T . Hence, there exists a unique maximal solution,

θ ∈ ∩0<T<T∗Eν
T .

where T ∗ is the maximal time existence. Let us show that θ ∈ C([0, T ∗), B̃α).
Thanks to the embedding,

(C0(R2))R ⊂ B̃α,

and Lemma 2.6, we just need to prove the continuity of N(θ)(t) = Bα[θ, θ](t) at
t = 0+ in the space B̃α. Furthermore, we show that

lim
t→0+

N(θ)(t) = 0, in B̃α.

For that, we use Proposition 2.3, the Young inequality and estimates (2.4)-(2.5), to
obtain

‖N(θ)(t)‖B̃α . sup
0<t′<1

t
′ν

∫ t

0

(t+ t
′
− τ)−

1
2α τ−2νdτ ‖θ‖2Eν

t
. ‖θ‖2Eν

t
.

Since ‖θ‖Eν
t

goes to 0 as t goes 0+ we obtain the desired result.
It remains to show that the solution θ is global, that is T ∗ = ∞. We argue by

contradiction. If T ∗ <∞ then, from Lemma 2.9, we must have for all 0 < t0 < T ∗,

‖et(−∆)α

θ(t0)‖Eν
T∗−t0

≥ µ0,

which yields by the Young inequality

‖θ(t0)‖∞ + ‖R⊥(θ)(t0)‖∞ ≥ c

(T ∗ − t0)ν
, (3.1)

where c > 0 is a universal constant. Which contradicts the Maximal Principle
(Lemma 2.10).

4. Proof of Theorem 1.2

Along this section, we consider θ0 a given initial data belonging to the space B̃α

and we denote by θ the solution to (1.1) given by Theorem 1.1. We will establish
the persistency of the regularity of the initial data. That is, if moreover θ0 ∈ X for
a suitable Banach spaces X then the solution θ ∈ C([0,∞), X).
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4.1. Propagation of the Lp regularity. In this subsection we will prove the
propagation of the initial Lp regularity. Precisely, we prove the following proposi-
tion.

Proposition 4.1. Let X = Lp with p ∈ [1,∞]. If θ0 ∈ X then θ belongs to⋂
T>0 L

∞([0, T ], X). Moreover, if θ0 ∈ S(R2)
X

then θ ∈ C([0,∞), S(R2)
X

)

Proof. Assume θ0 ∈ X and let T > 0. We consider the Banach spaces Z1 = Eν
T

and Z2 = L∞([0, T ], X) endowed respectively with the norms

‖v‖Z1 = sup
0<t<T

e−λttν‖v(t)‖∞ and ‖v‖Z2 = sup
0<t<T

e−λt‖v(t)‖p,

where λ > 0 to be fixed later. We consider the linear integral equation,

v = Ψθ(v) ≡ et(−∆)α

θ0 + Bα[θ, v]. (4.1)

Let k ∈ {1; 2}. According to Lemma 2.7, the affine functional Ψθ : Zk → Zk is
continuous. Let us estimate the norm of its linear part

Kθ(v) = Bα[θ, v].

Let ε > 0 to be chosen later. A direct computation using (2.4) gives

‖Kθ‖L(Z1) = sup
‖v‖Z1≤1

‖Kθ(v)‖Z1

≤ C1 sup
0<t<T

tν
∫ t

0

(t− τ)−
1
2α τ−2νe−λ(t−τ)‖θ‖Eν

τ
dτ

≤ C2

(
‖θ‖Eν

ε
sup

0<t<ε
tν

∫ t

0

(t− τ)−
1
2α τ−2νdτ + T νε−2ν‖θ‖Eν

T
λ−νΓ(ν)

)
≤ C3

(
‖θ‖Eν

ε
+ T νε−2νλ−ν‖θ‖Eν

T

)
.

where the constants C1, C2, C3 depend only on α. Similarly, we prove the estimate

‖Kθ‖L(Z2) ≤ C(‖θ‖Eν
ε

+ T νε−2νλ−ν‖θ‖Eν
T
),

where C is a constant depending only on α. Since ‖θ‖Eν
ε
→ 0 as ε → 0+, one

can choose, successively, ε small enough and λ large enough so that Ψθ becomes
a contraction on Z1 and Z2 and therefore on Z1 ∩ Z2. Let v1 and v1,2 be the
unique fixed point of Ψθ respectively in Z1 and Z1 ∩ Z2. Now, since Z1 ∩ Z2 ⊂ Z1

then v1 = v1,2. Moreover, by construction θ is a fixed point of Ψθ in Z1 thus
θ = v1 = v1,2 and hence θ ∈ L∞([0, T ], X).

The proof of the last statement of the proposition is identically similar, we have
only to replace Z2 by C([0, T ], S(R2)X). �

4.2. Propagation of Ḃs,q
p regularity for s > 0. In this section, we prove an

abstract result, which implies in particular the persistence of the Ḃs,q
p regularity for

s > 0. Our result states as follows.

Proposition 4.2. Let X be a shift invariant functional space such that for a con-
stant C and all f, g ∈ X ∩ L∞(R2),

‖fg‖X ≤ C(‖f‖∞‖g‖X + ‖g‖∞‖f‖X). (4.2)

If the initial data θ0 is in XR then the solution θ belongs to ∩T>0L
∞([0, T ], XR).

Moreover, if θ0 belongs to (S(R2)
X

)R then θ belongs to C(R+, (S(R2)
X

)R)).
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The proof of this proposition relies essentially on the two following lemmas. The
first one is an elementary compactness lemma.

Lemma 4.3. Let λ > 0 and K a compact subset of B̃α. Then there exists δ =
δ(K,λ) > 0 such that for all f ∈ K,

‖e−t(−∆)α

f‖Eν
δ
≤ λ.

Proof. For n ∈ N∗, we set

Vn =
{
f ∈ B̃α, ‖e−t(−∆)α

f‖Eν
1/n

< λ
}
.

We claim that for all n ∈ N∗, Vn is an open subset of B̃α and ∪nVn = B̃α. This
follows easily from the continuity of the linear operator e−t(−∆)α

from B̃α into Eν
T

for all T > 0 and the propriety: For all f ∈ B̃α,

lim
T→0

‖e−t(−∆)α

f‖Eν
T

= 0.

Thus, since K is a compact subset of B̃α, there exists a finite subset I ⊂ N∗ such
that K ⊂ ∪IVn = Vn∗ where n∗ = max(n ∈ I). Hence, we conclude that the choice
δ = 1/n∗ is suitable. �

The second lemma establishes a local in time propagation of the X regularity.

Lemma 4.4. Let X be as in Prop. 4.2. If θ0 belongs to XR (resp. (S(R2)
X

)R)
then there exists δ = δ(X,α) > 0 such that the solution θ ∈ L∞([0, δ], XR) (resp.

C([0, δ], (S(R2)
X

)R). Moreover, the time δ is bounded below by,

sup
{
T > 0, ‖e−t(−∆)α

θ0‖Eν
T
≤ µ

}
,

where µ is a non negative constant depending on X and α only.

Proof. Let us consider the case of θ0 ∈ XR. The proof in the other case is similar.
Let µ ∈]0, µ0[ to be chosen later and let T > 0 such that ‖e−t(−∆)α

θ0‖Eν
T
≤ µ.

According to Lemma 2.9, the sequence (φn(θ0))n converges in Eν
T to the solution θ

and satisfies the following estimates

sup
n
‖φn(θ0)‖Eν

T
≤ µ (4.3)

∀n ∈ N, ‖φn+1(θ0)− φn(θ0)‖Eν
T
≤ 2−n. (4.4)

Then, to conclude we just need to show that (φn(θ0))n is a Cauchy sequence in the
Banach space ZR = L∞([0, T ], XR) endowed with its natural norm,

‖v‖ZR = sup
0<t<T

(‖v(t)‖X + ‖R⊥(v)(t)‖X).

Firstly, using Lemma 2.7 and the fact that (φn(θ0))n ∈ Eν
T , we infer inductively

that the sequence (φn(θ0))n belongs to the space ZR. Secondly, once again the
Lemma 2.7, implies that the sequence (ωn+1)n ≡ (φn+1(θ0)−φn(θ0))n satisfies the
inequality

‖ωn+1‖ZR ≤ C(‖φn(θ0)‖ZR + ‖φn−1(θ0)‖ZR)‖ωn‖Eν
δ

+ C(‖φn(θ0)‖Eν
T

+ ‖φn−1(θ0)‖Eν
δ
)‖ωn‖ZR ,
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where C = C(X,α) > 0. This inequality combined with the estimates (4.3)-(4.4)
yields

‖ωn+1‖ZR ≤ C(
1
2
)n(‖φn(θ0)‖ZR + ‖φn−1(θ0)‖ZR) + 4Cµ‖ωn‖ZR

Finally, if we choose µ > 0 such that 4Cµ < 1 one can conclude the proof by using
the following lemma which is inspired from [8]. �

Lemma 4.5. Let (xn)n be a sequence in a normed vector space (Z, ‖.‖). If there
exist a constant λ ∈ [0, 1[ and (σn)n ∈ l1(N) such that for all n ∈ N∗,

‖xn+1 − xn‖ ≤ σn(‖xn‖+ ‖xn−1‖) + λ‖xn − xn−1‖, (4.5)

then the series
∑

n ‖xn+1−xn‖ converges. In particular, (xn)n is a Cauchy sequence
in Z.

Proof. Let us define the sequence Mn = supk≤n ‖xk‖. It follows inductively from
(4.5),

‖xn+1 − xn‖ ≤ 2
n−1∑
k=0

σn−kMn−kλ
k ≤ $nMn, (4.6)

where $n = 2
∑n−1

k=0 σn−kλ
k. Noticing that since ($n)n is a convolution of two

sequences in l1(N) then ($n)n belongs to l1(N). Therefore, we just need to show
that the sequence (Mn)n is bounded. This is somehow obvious. In fact, using the
triangular inequality ‖xn+1‖ ≤ ‖xn‖+ ‖xn+1 − xn‖, (4.6) yields

Mn+1 ≤ (1 +$n)Mn.

Which in turn implies

Mn ≤ Πn−1
k=0(1 +$k) ≤ e

P
k≥0 $n .

The proof is complete. �

Now let us show how the two previous lemmas allow to prove Proposition 4.2.

Proof. As usual we consider only the case of θ0 ∈ XR. Let T > 0. By Theorem 1.1,
the solution θ is continuous from R+ into B̃α, thenK ≡ θ([0, T ]) is a compact subset
of B̃α. Therefore, by Lemma 4.3, there exists δ > 0 such that for all τ ∈ [0, T ],

‖e−t(−∆)α

θ(τ)‖Eν
δ
≤ µ0, (4.7)

where µ0 is the real given by Lemma 4.4. Now, we consider a partition 0 = t0 <
· · · < tN+1 = T of the interval [0, T ] such that supi ti+1 − ti ≤ δ

2 . We will show
inductively that

θ ∈ L∞([ti, ti+1], XR), (4.8)

which implies in turn the desired result θ ∈ L∞([0, T ], XR). First, by Lemma 4.4,
the claim (4.8) is true for i = 0. Assume that, it is also true for i ≤ N . Then there
exists τ0 in ]ti, ti+1[ such that θ̃0 ≡ θ(τ0) ∈ X∩B̃α. We notice that θ̃ ≡ θ(.+τ0) is the
unique solution given by Theorem 1.1 of the Quasi-geostrophic equation with initial
data θ̃0. Then according to Lemma 4.4 and (4.7), we obtain θ ∈ L∞([τ0, τ0+δ], XR).
Hence, we are ready to conclude since [ti+1, ti+2] ⊂ [τ0, τ0 + δ]. �
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4.3. Propagation of Bs,q
p regularity for s < 0.

Proposition 4.6. Let X be Bs,q
p or Ḃs,q

p with −1 < s < 0 and 1 ≤ p, q ≤ ∞. If
θ0 belongs to XR then the solution θ belongs to ∩T>0L

∞([0, T ], XR) and satisfies

t−
s
2α θ ∈ ∩T>0L

∞([0, T ], (Lp)R).

As in the case s > 0, by using the compactness Lemma 4.3 we just need to prove
the following local persistency result.

Lemma 4.7. If θ0 ∈ XR then there exists δ > 0 such that θ ∈ L∞([0, δ], XR) and
satisfies

t−
s
2α θ ∈ L∞([0, δ], (Lp)R).

Moreover, the time δ is bounded below by

sup
{
T > 0/‖e−t(−∆)α

θ0‖Eν
T
≤ µ0

}
,

where µ0 is given by Lemma 2.9.

Proof. We consider only the case of X = Bs,q
p . The proof in the other case is

similar. Let T > 0 such that

‖e−t(−∆)α

θ0‖Eν
T
≤ µ0.

According to Lemma 2.9 the sequence (φn(θ0))n satisfies

‖φn+1(θ0)− φn(θ0)‖Eν
T
≤ 1

2n
, (4.9)

and converges to the solution θ in Eν
T . Our first task is to prove that (φn(θ0))n is

a Cauchy sequence in the space

XT
σ,p = {v : (0, T ] → Lp ‖v‖XT

σ,p
≡ sup

0<t<T
t

σ
2α (‖v(t)‖p + ‖R⊥(v)(t)‖p) <∞},

where σ = −s.
Thanks to the Besov characterization (2.2) and Lemma 2.7, we can show induc-

tively that (φn(θ0)) belongs to XT
σ,p and satisfies

‖φn+1(θ0)− φn(θ0)‖XT
σ,p

≤ C‖φn(θ0)− φn−1(θ0)‖Eν
T

max(‖φn(θ0)‖XT
σ,p
, ‖φn−1(θ0)‖XT

σ,p
).

(4.10)

Thus, By (4.9) and Lemma 4.5 we deduce that (φn(θ0))n is a Cauchy sequence
in XT

σ,p. Therefore its limit θ ∈ XT
σ,p. Now by a simple computation using the

characterization (2.2) we deduce that θ ∈ L∞([0, T0], (Bs,∞
p )R). Moreover, for

ε > 0 such that

− 1 < s± ε < 0, (4.11)

one can show that the nonlinear part N(θ)(t) = Bα[θ, θ](t) satisfies

‖N(θ)(t)‖Bs±ε,∞
p

+ ‖R⊥N(θ)(t)‖Bs±ε,∞
p

≤ Cs,εt
−± ε

2α ‖θ‖Eν
t
‖θ‖XT

σ,p
. (4.12)
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Indeed, we have τ ∈]0, 1[,

τ−
s±ε
2α ‖e−τ(−∆)α

N(θ)(t)‖p

≤ C

∫ t

0

(t+ τ − r)−
1
2α τ−

s±ε
2α r−νr−

σ
2α dr ‖θ‖Eν

t
‖θ‖XT

σ,p
,

≤ C

∫ t

0

(
τ

t+ τ − r
)−

s±ε
2α (t+ τ − r)

−1−(s±ε)
2α r−νr−

σ
2α dr ‖θ‖Eν

t
‖θ‖XT

σ,p
,

≤ C

∫ t

0

(t− r)
−1−(s±ε)

2α r−νr−
σ
2α dr‖θ‖Eν

t
‖θ‖XT

σ,p
,

≤ Ct−
±ε
2α ‖θ‖Eν

t
‖θ‖XT

σ,p
,

(4.13)

Where we have used the facts that, 0 ≤ τ
t+τ−r ≤ 1, t+τ−r ≥ t−r and (4.11). Sim-

ilarly, we have the same estimate (4.13) for the R⊥N(θ)(t). Hence, by Proposition
2.2 we obtain (4.12). Thus, by using the interpolation inequality

‖f‖Bs,1
p
≤

(
‖f‖Bs−ε,∞

p

)1/2(
‖f‖Bs+ε,∞

p

)1/2

we obtain that for all t ∈]0, T ],

‖N(θ)(t)‖Bs,1
p

+ ‖R⊥N(θ)(t)‖Bs,1
p
≤ C‖θ‖Eν

t
‖θ‖XT

σ,p
. (4.14)

Hence N(θ) ∈ L∞([0, T ], (Bs,1
p )R) which implies θ ∈ L∞([0, T ], (Bs,q

p )R). �

Remark 4.8. By replacing the space XT
σ,p by X̃T

σ,p ≡ C0
σ
2α

([0, T ], (Lp)R) in the

proof of Lemma 4.7, one can show that if θ0 is in (S(R2)
Bs,q

p )R with −1 < s < 0
and 1 ≤ p, q ≤ ∞, then the solution θ belongs to the space ∩T>0X̃

T
σ,p.

4.4. The case of null regularity s = 0. In this subsection we aim to prove the
following result.

Proposition 4.9. Let X be B0,q
p or Ḃ0,q

p with 1 ≤ p, q ≤ ∞. If θ0 ∈ X then the
solution

θ ∈ ∩T>0L
∞([0, T ], X).

Thanks to the following imbeddings

Ḃ0,1
p ⊂ Ḃ0,q

p ⊂ Ḃ0,∞
p ,

Ḃ0,1
p ⊂ B0,q

p ⊂ Ḃ0,∞
p ,

the proof of the above proposition is an immediate consequence of the following
lemma.

Lemma 4.10. If θ0 ∈ Ḃ0,∞
p then N(θ) = Bα[θ, θ](t) ∈ ∩T>0L

∞([0, T ], Ḃ0,1
p ).

Proof. By using Young’s inequality we deduce that

Ḃ0,∞
p ∩ Ḃ−(2α−1),∞

∞ ⊂ Ḃ
1
2−α,∞
2p .

Observe that s∗ = 1
2 − α < 0 and hence according to the proof of Proposition 4.6

and to the continuity of the Riesz transforms on homogeneous Besov spaces, we
have θ ∈ ∩T>0X

T
σ∗,2p where σ∗ = α− 1

2 . Let T > 0 and 0 < ε < 2α− 1. The basic
estimate

‖
√
−∆

±ε
∇e−t(−∆)α

f‖p ≤ C0t
−±ε+1

2α ‖f‖p.
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yields immediately

‖(
√
−∆)±εN(θ)(t)‖p ≤ Ct−

±ε
2α ‖θ‖2XT

σ∗,2p
.

Now, we use the interpolation result (see [1, Theorem 6.3])

[(
√
−∆)εLp, (

√
−∆)−εLp] 1

2 ,1 = Ḃ0,1
p ,

to deduce

‖N(θ)(t)‖Ḃ0,1
p
≤ C‖θ‖2XT

σ∗,2p
, ∀0 < t < T, (4.15)

this implies
N(θ) ∈ L∞([0, T ], Ḃ0,1

p ). (4.16)
�

As in the context of the Navier-Stokes equations [3], we observe thanks to (4.16)
and (4.15) that in the case −1 < s ≤ 0, the fluctuation term N(θ) is more regular
than the tendency e−t(−∆)α

θ0. Moreover, we have the following result.

Proposition 4.11. Let X = Bs,∞
p with s]− 1, 0[ and 1 ≤ p ≤ ∞. If θ0 ∈ XR then

N(θ) belongs to the space C([0,∞[; (B0,1
p )R).

Proof. We consider the two cases:
Case s ∈] − 1, 0[: According to Proposition 4.6, t−

s
2α θ ∈ ∩T>0L

∞([0, T ], (Lp)R).
Then a simple computation using that θ ∈ ∩T>0Eν

T gives N(θ) ∈ C(]0,∞[; (Lp)R)
which yieldsN(θ) ∈ C(]0,∞[; (B0,1

p )R) since s < 0. On the other hand, the estimate
(4.14) implies that N(θ)(t) → 0 in (Bs,1

p )R as t goes to 0+. Thus, we obtain the
desired result.
Case s = 0: By interpolation, θ0 ∈ (S(R2)

Bs∗,∞
p∗ )R where s∗ = 1

2 − α and p∗ = 2p.
Hence, according to Remark 4.8, the solution θ belongs to ∩T>0X̃

T
σ∗,p∗ where σ∗ =

−s∗. Let ε ∈ [0, 2α− 1[. A simple computation gives
√
−∆∓εN(θ) ∈ ∩T>0C

0
∓ε/(2α)([0, T ], (Lp)R)

Hence, by interpolation we obtain

N(θ) ∈ ∩T>0C([0, T ], (B0,1
p )R) .

�

Remark 4.12. Let X = Bs,q
p with −1 < s ≤ 0 and 1 ≤ p, q ≤ ∞. If θ0 ∈

(S(R2)
X

)R then Lemma 2.6 and the preceding proposition imply that the solution
θ is in C([0,∞[;XR).

5. Proof of Theorem 1.3

The existence part is a direct consequence of Theorem 1.1, Theorem 1.2 and the
following embedding (consequence of Bernstein’s inequality and the boundedness
of the Riesz transforms on Lebesgue’s and Sobolev’s spaces)

Lp(R2) ⊂ B̃α ∀p ≥ pc,

Hs(R2) = Bs,2
2 (R2) ⊂ B̃α ∀s ≥ sc.

Let us establish the uniqueness part. First we notice that since for s ≥ sc,

Hs(R2) ↪→ Hsc(R2) ↪→ Lpc(R2).
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We just need to prove the uniqueness in the spaces (C([0, T ], Lp(R2)))p≥pc . This
will be deduced from the following continuity result of the bilinear operator Bα.

Lemma 5.1. Let p ∈]pc,∞[, q ∈]1,∞[ and T > 0. There exists a constant C
independent of T such that:

• For any u, v in L∞T L
p,

‖Bα[u, v]‖L∞T Lp ≤ CT σ‖u‖L∞T Lp‖v‖L∞T Lp , (5.1)

where σ = 1
α ( 1

pc
− 1

p );
• for any u, v in L∞T L

pc ,

‖Bα[u, v]‖Lq
T Lpc + ‖Bα[v, u]‖Lq

T Lpc ≤ C‖u‖L∞T Lpc ‖v‖Lq
T Lpc . ; (5.2)

• for any u ∈ L∞T L∞R and v ∈ Lq
TL

pc ,

‖Bα[u, v]‖Lq
T Lpc + ‖Bα[v, u]‖Lq

T Lpc ≤ C T 1− 1
2α ‖u‖L∞T L∞R

‖v‖Lq
T Lpc . . (5.3)

Proof. Estimate (5.1) follows easily from the continuity of the Riesz transforms
on the Lebesgue spaces Lr(R2) with 1 < r < ∞, the Young and the Hölder in-
equality and the estimate (2.4) on the Lr(R2) norm of the kernel of the operator
∇e−(t−s)(−∆)α

. Estimate (5.2) is a consequence of the continuity of the Riesz trans-
forms on the space Lpc(R2), the Hölder inequality, the Sobolev embedding

‖ ∇
(−∆)α

f‖pc . ‖f‖ pc
2

and the maximal regularity property of the operator (−∆)α,

‖
∫ t

0

(−∆)αe−(t−s)(−∆)α

vds‖Lq
T Lpc . ‖v‖Lq

T Lpc

which can be proved by following [10, Theorem 7.3]. Let us now prove estimate
(5.3). For any t ∈ [0, T ] we have

‖Bα[u, v](t)‖Lpc .
∫ t

0

1
(t− s)1/2α

‖R⊥(u)(s)‖∞‖v(s)‖pcds

. ‖R⊥(u)‖L∞T L∞(1[0,T ]s
− 1

2α ) ∗ (1[0,T ]‖v(s)‖pc)(t)

where the star ∗ denotes the convolution in R. Hence Young’s inequality yields

‖Bα[u, v]‖Lq
T Lpc . ‖R⊥(u)‖L∞T L∞T

1− 1
2α ‖v‖Lq

T Lpc .

Similarly, we obtain

‖Bα[v, u]‖Lq
T Lpc . T 1− 1

2α ‖u‖L∞T L∞‖R⊥(v)‖Lq
T Lpc

. T 1− 1
2α ‖u‖L∞T L∞‖v‖Lq

T Lpc .

Estimate (5.3) is then proved. �

Now we are ready to finish the proof of the uniqueness. Let p ≥ pc and T > 0
be two reals number and let θ1 and θ2 be two mild solutions of the equation (1.1)
with the same data θ0 such that θ1, θ2 ∈ C([0, T ], Lp(R2)). We aim to show that
θ1 = θ2 on [0, T ]. For this, we will argue by contradiction. Then we suppose that
t∗ < T where

t∗ ≡ sup{t ∈ [0, T ] : ∀s ∈ [0, t], θ1(s) = θ2(s)}.
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To conclude, we need to prove that there exists δ ∈]0, T − t∗] such that θ̃1 = θ̃2 on
[0, δ], where θ̃1 and θ̃2 are the functions defined on [0, T − t∗] by

θ̃1(t) = θ1(t+ t∗), θ̃2(t) = θ2(t+ t∗).

We deal separately with the sub-critical case and the critical case.
Case p > pc. Thanks to the continuity of θ1 and θ2 on [0, T ], we have θ1(τ∗) =

θ2(t∗). Hence, the functions θ̃1 and θ̃2 are two mild solutions on [0, δ0 ≡ T − t∗] of
the equation (1.1) with the same data θ1(τ∗). Therefore, the function θ̃ ≡ θ̃1 − θ̃2
satisfies the equation

θ̃ = Bα[θ̃1, θ̃]− Bα[θ̃, θ̃2]. (5.4)
Thus, according to (5.1) we have for any δ ∈]0, δ0],

‖θ̃‖L∞δ Lp ≤ Cδσ(‖θ̃1‖L∞δ Lp + ‖θ̃2‖L∞δ Lp)‖θ̃‖L∞δ Lp

≤ Cδσ(‖θ1‖L∞T Lp + ‖θ2‖L∞T Lp)‖θ̃‖L∞δ Lp ,

where C > 0 is independent on δ. Consequently, for δ small enough, θ̃ = 0 on [0, δ]
which ends the proof in the sub-critical case.

Case p = pc. Choose a fix real q > 1 and let ε > 0 to be chosen later. By
density of smooth functions in the space C([0, T ], Lpc(R2)), one can decompose θ̃1
and θ̃2 into θ̃1 = u1 + v1 and θ̃2 = u2 + v2 with

‖u1‖L∞δ0
Lpc + ‖u2‖L∞δ0

Lpc ≤ ε, (5.5)

‖v1‖L∞δ0
L∞R

+ ‖v2‖L∞δ0
L∞R

≡M <∞. (5.6)

As in the previous case, the function θ̃ ≡ θ̃1 − θ̃2 satisfies

θ̃ = Bα[θ̃1, θ̃] + Bα[θ̃, θ̃2]

= Bα[u1, θ̃] + Bα[θ̃, u2] + Bα[v1, θ̃] + Bα[θ̃, v2].

Now by applying (5.2)-(5.3) and using (5.5)-(5.6) we obtain, for any δ ∈]0, δ0], the
estimate

‖θ̃‖Lq
δLp ≤ C(ε+ δ1−

1
2αM)‖θ̃‖Lq

δLp ,

where C > 0 is a constant depending only on α, p and q.
Thus, by choosing ε small enough, we conclude that there exists δ ∈]0, δ0] such

that ‖θ̃‖Lq
δLp = 0, which implies that θ̃1 = θ̃2 on [0, δ]. The proof is then achieved.

Remark 5.2. The idea of the proof of the uniqueness in the critical case is inspired
from Monniaux [14].
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