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STABILITY AND APPROXIMATIONS OF EIGENVALUES AND
EIGENFUNCTIONS OF THE NEUMANN LAPLACIAN, PART 3

MICHAEL M. H. PANG

Abstract. This article is a sequel to two earlier articles (one of them written
jointly with R. Banuelos) on stability results for the Neumann eigenvalues and
eigenfunctions of domains in R2 with a snowflake type fractal boundary. In
particular we want our results to be applicable to the Koch snowflake domain.
In the two earlier papers we assumed that a domain Ω ⊆ R2 which has a
snowflake type boundary is approximated by a family of subdomains and that
the Neumann heat kernel of Ω and those of its approximating subdomains
satisfy a uniform bound for all sufficiently small t > 0. The purpose of this
paper is to extend the results in the two earlier papers to the situations where
the approximating domains are not necessarily subdomains of Ω. We then
apply our results to the Koch snowflake domain when it is approximated from
outside by a decreasing sequence of polygons.

1. Introduction

This paper is a sequel to the papers [1, 7]. The goal of these three papers is to
prove stability results for the Neumann eigenvalues and eigenfunctions of domains
in R2 with a snowflake type fractal boundary. In particular we want our results
to be applicable to the Koch snowflake domain. In [1] and [7] we assumed that
a domain Ω ⊆ R2 which has a snowflake type boundary is approximated by a
family of subdomains and that the Neumann heat kernel of Ω and those of its
approximating subdomains satisfy a uniform bound for all sufficiently small t > 0
(see Hypothesis 1.1 of [1] and [7]). The referee of [1] asked whether stability results
similar to those in [1] and [7] are still true if the approximating domains of Ω
are not necessarily subdomains of Ω and whether the proofs in [1] and [7] can
be extended to those situations. If the results and methods in [1] and [7] can be
extended to those situations, then they can be applied to domains, such as the Koch
snowflake domain, which can be approximated by a familiar decreasing sequence of
polygons from outside. The method in [1, 7] can be extended to situations when the
approximating domains are not necessarily subdomains of Ω, but not in a straight
forward manner. The purpose of this paper is to work out such an extension and
to apply it to the Koch snowflake domain when it is approximated from outside by
a decreasing sequence of polygons.
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To state our results we first fix notation. Let Ω ⊆ RN , N ≥ 2, be a bounded
Sobolev extension domain. Let ε0 > 0 be sufficiently small, depending on Ω. For
each ε ∈ (0, ε0], let Ωε, Ωε and Ω(ε) be bounded Sobolev extension domains in RN

satisfying the following assumptions:

Ωε ⊇ {x ∈ Ω : dist(x, ∂Ω) > ε},
Ωε ⊆ {x ∈ RN : dist(x,Ω) < ε},

Ωε ⊆ Ω(ε) ⊆ Ωε.

(1.1)

We shall assume that

Ωε1 ⊇ Ωε2 if 0 < ε1 ≤ ε2 ≤ ε0 (1.2)

and that
Ωε1 ⊆ Ωε2 if 0 < ε1 ≤ ε2 ≤ ε0. (1.3)

Let −∆ε, −∆, −∆ε, −∆(ε) be the Neumann Laplacian defined on Ωε, Ω, Ωε and
Ω(ε), respectively, and let Pε(t, x, y), P (t, x, y), P ε(t, x, y) and P (ε)(t, x, y) be the
heat kernel of e−∆εt, e−∆t, e−∆εt and e−∆(ε)t, respectively. We shall assume that
there exists a positive continuous function c : (0, 1] → (0,∞) such that for all
0 < ε ≤ ε0 and all 0 < t ≤ 1 we have

Pε(t, x, y) ≤ c(t) (x, y ∈ Ωε),

P (t, x, y) ≤ c(t) (x, y ∈ Ω),

P ε(t, x, y) ≤ c(t) (x, y ∈ Ωε),

P (ε)(t, x, y) ≤ c(t) (x, y ∈ Ω(ε)).

(1.4)

Since the domains Ωε, Ω, Ωε and Ω(ε) are assumed to be bounded, (1.4) implies that
−∆ε, −∆, −∆ε and −∆(ε) all have compact resolvents (see [4, Theorem 2.1.5]).
We shall write {µi}∞i=1 for the eigenvalues of −∆, where {µi}∞i=1 is a non-decreasing
sequence with µ1 = 0 and the eigenvalues are listed repeatedly according to multi-
plicity. Similarly, for 0 < ε ≤ ε0, we shall write {µi,ε}∞i=1, {µε

i}∞i=1, and {µi(ε)}∞i=1

for the eigenvalues of −∆ε, −∆ε and −∆(ε), respectively. We shall write {ϕi}∞i=1,
{ϕi,ε}∞i=1, {ϕε

i}∞i=1 and {ϕi(ε)}∞i=1 for the corresponding eigenfunctions of −∆, −∆ε,
−∆ε and −∆(ε), respectively. We may, and shall, assume that {ϕi}∞i=1, {ϕi,ε}∞i=1,
{ϕε

i}∞i=1 and {ϕi(ε)}∞i=1 are complete orthonormal systems in L2(Ω), L2(Ωε), L2(Ωε)
and L2(Ω(ε)), respectively. We define the sequence {ki}∞i=1 of positive integers using
the multiplicities of the eigenvalues {µi}∞i=1 of −∆ as follows:

Let k1 = 1 and, for i = 2, 3, 4, . . . , we define ki by:

0 = µ1 < µ2 = µ3 = · · · = µk2 < µk2+1 = µk2+2 = · · · = µk3

< µk3+1 = µk3+2 = · · · = µk4 < µk4+1 = . . . .
(1.5)

For all j = 1, 2, 3, . . . and all ε ∈ (0, ε0] we write

ϕj |Ω∩Ω(ε) =
∞∑

`=1

aj,`(ε)ϕ`(ε) ∈ L2(Ω ∩ Ω(ε)) ⊆ L2(Ω(ε)). (1.6)

Let p ≥ 1 be an integer. For i = kp + 1, . . . , kp+1 and ε ∈ (0, ε0] let

ψ̂i(ε) =
( kp+1∑

`=kp+1

ai,`(ε)ϕ`(ε)
)∣∣∣

Ω∩Ω(ε)
(1.7)
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and let
ψi(ε) = ‖ψ̂i(ε)‖−1

L2(Ω∩Ω(ε))ψ̂i(ε). (1.8)

We now state our results:

Theorem 1.1. For all i = 1, 2, 3, . . . , we have

lim
ε↓0

µi(ε) = µi. (1.9)

Theorem 1.2. Let K be a compact subset of Ω. Then we have

lim
ε↓0
{sup

x∈K
|ϕj(x)− ψj(ε)(x)|} = 0 (1.10)

for j = 1, 2, 3, . . . .

To apply Theorems 1.1 and 1.2 to the Koch snowflake domain, we have

Theorem 1.3. Let Ω ⊆ R2 be the Koch snowflake domain. Let {Ωout(n)}∞n=1

be the usual decreasing sequence of polygons approximating Ω from outside, with
Ωout(1) being a regular hexagon. Let {Ωin(n)}∞n=1 be the usual increasing sequence
of polygons approximating Ω from inside, with Ωin(1) being an equilateral triangle.
Let PΩ(t, x, y), PΩout(n)(t, x, y) and PΩin(n)(t, x, y) be the Neumann heat kernels
on Ω, Ωout(n) and Ωin(n), respectively. Then there exists c ≥ 1, independent of n,
such that

PΩ(t, x, y) ≤ ct−1 (x, y ∈ Ω),

PΩout(n)(t, x, y) ≤ ct−1 (x, y ∈ Ωout(n)),

PΩin(n)(t, x, y) ≤ ct−1 (x, y ∈ Ωin(n)),

(1.11)

for all 0 < t ≤ 1 and n = 1, 2, 3, . . . .

Remark 1.4. (i) The third inequality in (1.11) was proved in [7, Theorem 1.3].
(ii) Since Ω, Ωout(n), Ωin(n), n = 1, 2, 3, . . . , are bounded Sobolev extension

domains, Theorem 1.3 enables one to apply Theorems 1.1 and 1.2 to the case
when Ω is the Koch snowflake domain approximated from outside by the sequence
{Ωout(n)}∞n=1 by putting {Ωε} = {Ωin(n)}∞n=1 and {Ωε} = {Ω(ε)} = {Ωout(n)}∞n=1.

In Section 2 we shall prove some abstract approximation results for families of
non-negative self-adjoint operators with domains in Hilbert spaces. In Section 3 we
consider the case when these non-negative self-adjoint operators are the Neumann
Laplacians defined on domains of RN . It will be seen that results in Sections 2 and
3 imply Theorems 1.1 and 1.2. Theorem 1.3 will be proved in Section 4.

We refer to the references in [1, 7] for recent papers on numerical studies on
the Neumann eigenvalues and eigenfunctions of the Koch snowflake domain and
on stability results for Neumann eigenvalues and eigenfunctions. In addition, we
mention the excellent recent survey paper [2], and references therein, for stability
results for eigenvalues and eigenfunctions of elliptic operators defined on domains
with either Dirichlet or Neumann boundary conditions.

2. Quadratic forms and approximations

In this section we prove the abstract theorems we shall need in the proofs of the
mains results stated in Section 1. If U and V are Hilbert spaces and if U ⊆ V, then
we shall denote the orthogonal projection of V onto U by PV,U and write U⊥V for
the orthogonal compliment of U in V. We shall also write IU for the identity map
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on U . We shall let H be a fixed Hilbert space. For all sufficiently small ε > 0, let
Hε and Hε be Hilbert spaces satisfying the following assumptions:

(A1) If 0 < ε2 ≤ ε1, then Hε2 ⊆ Hε1 .
(A2) If 0 < ε2 ≤ ε1, then Hε2 ⊇ Hε1 .
(A3) ∩ε>0Hε = H = ∪ε>0Hε.
(A4) For all f ∈ H we have

‖f − PH,Hε
f‖H → 0 as ε ↓ 0,

where ‖ · ‖H denotes the norm in H.
(A5) If ε1 > 0 and if f ∈ Hε1 , then

‖PHε1 ,Hf − PHε1 ,Hεf‖Hε → 0 as ε ↓ 0.

For all sufficiently small ε > 0 let A(ε) and B(ε) be Hilbert spaces satisfying the
following assumptions:

(A6) Hε ⊆ B(ε) ⊆ H ∩A(ε) ⊆ A(ε) ⊆ Hε,
(A7) For all f ∈ H we have

‖f − PH,B(ε)f‖H → 0 as ε ↓ 0.

We assume that for all sufficiently small ε > 0 there exists a closed subspace C(ε)
of A(ε) satisfying the following assumptions:

(A8) C(ε) ⊆ H⊥Hε.

Lemma 2.1. If ε1 > 0, then for all f ∈ Hε1 , we have

‖PHε1 ,C(ε)f‖Hε1 → 0 as ε ↓ 0.

Proof. Let f ∈ Hε1 . Then

‖PH⊥Hε,C(ε)(PHε,H⊥Hε(PHε1 ,Hεf))‖Hε1

= ‖PH⊥Hε,C(ε)[(IHε − PHε,H)(PHε1 ,Hεf)]‖Hε1

≤ ‖PH⊥Hε,C(ε)‖‖PHε1 ,Hεf − PHε1 ,H f‖Hε1

≤ ‖PHε1 ,Hεf − PHε1 ,H f‖Hε1 → 0 as ε ↓ 0.

�

We assume that for all sufficiently small ε > 0 there exists a closed subspace
D(ε) of A(ε) satisfying the following assumptions:

(A9) A(ε) = B(ε)⊕ C(ε)⊕D(ε), where ⊕ denotes orthogonal direct sum.
(A10) If ε1 > 0, then, for all f ∈ Hε1 ,

‖PHε1 ,D(ε)f‖Hε1 → 0 as ε ↓ 0.

For all sufficiently small ε > 0 let Qε and Qε be non-negative closed quadratic
forms with domains Dom(Qε) ⊆ Hε and Dom(Qε) ⊆ Hε, respectively. Let Q be a
non-negative closed quadratic form with domain Dom(Q) ⊆ H. We assume that
Q, Qε and Qε satisfy the following assumptions:
(A11) For all sufficiently small ε > 0, we have

(i) Dom(Qε) is dense in Hε,
(ii) Dom(Qε) is dense in Hε,
(iii) Dom(Q) is dense in H.

(A12) For 0 < ε2 ≤ ε1 we have
(i) PHε1 ,Hε2 (Dom(Qε1)) = Dom(Qε2),
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(ii) PHε1 ,H(Dom(Qε1)) = Dom(Q).
(A13) If ε1 > 0, then, for all sufficiently small ε > 0, we have

PHε1 ,Hε
(Dom(Qε1)) = Dom(Qε).

(A14) For 0 < ε2 ≤ ε1 we have
(i) PHε2,Hε1

(Dom(Qε2)) = Dom(Qε1),
(ii) PH,Hε1

(Dom(Q)) = Dom(Qε1).

Definition 2.2. Let ε0 > 0 be fixed. For 0 < ε ≤ ε0 let Q̂ε be the quadratic form
with domain

Dom(Q̂ε) = Dom(Qε)⊕ (Hε)⊥Hε0

and, if f, g ∈ Dom(Qε) and h, i ∈ (Hε)⊥Hε0 , we define Q̂ε(f ⊕ h, g ⊕ i) by

Q̂ε(f + h, g + i) = Qε(f, g) = Qε(PHε0 ,Hε(f + h), PHε0 ,Hε(g + i)).

Similarly we write Q̂ and Q̂ε for the quadratic forms with domains

Dom(Q̂) = Dom(Q)⊕H⊥Hε0 ,

Dom(Q̂ε) = Dom(Q)⊕ (Hε)⊥Hε0 ,

respectively, and, for all f, g ∈ Hε0 , we define Q̂(f, g) and Q̂ε(f, g) by

Q̂(f, g) = Q(PHε0 ,H f, PHε0 ,H g),

Q̂ε(f, g) = Qε(PHε0 ,Hεf, PHε0 ,Hεg),

respectively. We assume that these quadratic forms satisfy the following assump-
tions:
(A15) If 0 < ε2 ≤ ε1 ≤ ε0, then, for all f ∈ Hε1 , we have

(i) Qε1(f, f) ≥ Qε2(PHε1 ,Hε2 f, PHε1 ,Hε2 f),
(ii) Qε1(f, f) ≥ Q(PHε1 ,H f, PHε1 ,H f).

(A16) For all ε1, ε2 ∈ (0, ε0] and all f ∈ Hε1 , we have

Qε1(f, f) ≥ Qε2(PHε1 ,Hε2
f, PHε1 ,Hε2

f).

(A17) If 0 < ε2 ≤ ε1 ≤ ε0, then, for all f ∈ Hε2 , we have

Qε2(f, f) ≥ Qε1(PHε2 ,Hε1
f, PHε2 ,Hε1

f).

(A18) For all 0 < ε ≤ ε0 and all f ∈ H, we have

Q(f, f) ≥ Qε(PH,Hε
f, PH,Hε

f).

(A19) For all f ∈ H we have

Q(f, f) = lim
ε↓0

Qε(PH,Hεf, PH,Hεf).

(A20) For all f ∈ Dom(Qε0) we have

Q(PHε0 ,H f, PHε0 ,H f) = lim
ε↓0

Qε(PHε0 ,Hεf, PHε0 ,Hεf).

Definition 2.3. For 0 < ε ≤ ε0 let Hε ≥ 0 be the self-adjoint operator associated
to Qε with domain D(Hε) ⊆ Hε. Similarly, let Hε ≥ 0 and H ≥ 0 be the self-
adjoint operators associated to Qε and Q, respectively, with domains D(Hε) ⊆ Hε

and D(H) ⊆ H.
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Assumptions (A11)–(A18) imply that we have an increasing family of non-
negative quadratic forms:

· · · ≤ Q̂ε1 ≤ · · · ≤ Q̂ε2 ≤ · · · ≤ Q̂ ≤ · · · ≤ Q̂ε3 ≤ · · · ≤ Q̂ε4 ≤ . . . (2.1)

where
0 < ε2 ≤ ε1 ≤ ε0 and 0 < ε3 ≤ ε4 ≤ ε0. (2.2)

So by [3, Theorem 4.17] we have, for all λ > 0,

. . . ≥ (λ+Hε1)
−1 ⊕ λ−1 ≥ · · · ≥ (λ+Hε2)

−1 ⊕ λ−1 ≥ . . .

. . . ≥ (λ+H)−1 ⊕ λ−1 ≥ · · · ≥ (λ+Hε3)−1 ⊕ λ−1 ≥ . . .

. . . ≥ (λ+Hε4)−1 ⊕ λ−1 ≥ . . .

if ε1, ε2, ε3, ε4 satisfy (2.2), where (λ + Hε1)
−1 ⊕ λ−1 is the operator defined on

Hε0 = Hε1 ⊕ (Hε1)
⊥Hε0 by

[(λ+Hε1)
−1 ⊕ λ−1](f + g) = (λ+Hε1)

−1f + λ−1g

for all f ∈ Hε1 and all g ∈ (Hε1)
⊥Hε0 . Similarly the operators (λ + H)−1 ⊕ λ−1

and (λ+Hε)−1⊕λ−1 are defined on Hε0 = H⊕H⊥Hε0 and Hε0 = Hε⊕ (Hε)⊥Hε0 ,
respectively.

For 0 < ε ≤ ε0 let Q(ε) be a closed non-negative quadratic form with domain
Dom(Q(ε)) ⊆ A(ε) satisfying the following assumptions:
(A21) Dom(Q(ε)) is dense in A(ε).
(A22) For 0 < ε ≤ ε0 we have

(i) PHε,A(ε)(Dom(Qε)) = Dom(Q(ε)),
(ii) PA(ε),Hε

(Dom(Q(ε))) = Dom(Qε).
(A23) If 0 < ε ≤ ε0, then, for all f ∈ Hε, we have

Qε(f, f) ≥ Q(ε)(PHε,A(ε)f, PHε,A(ε)f),

and, for all g ∈ A(ε), we have

Q(ε)(g, g) ≥ Qε(PA(ε),Hε
g, PA(ε),Hε

g).

Definition 2.4. For 0 < ε ≤ ε0 we define the quadratic form Q̂(ε), with domain

Dom(Q̂(ε)) = Dom(Q(ε))⊕A(ε)⊥Hε0 ⊆ Hε0

by
Q̂(ε)(f, g) = Q(ε)(PHε0 ,A(ε)f, PHε0 ,A(ε)g)

for all f, g ∈ Hε0 . We let H(ε) ≥ 0 be the self-adjoint operator associated to Q(ε)
with domain D(H(ε)) ⊆ A(ε).

Assumption (A23) implies that if 0 < ε ≤ ε0, then

Q̂ε ≤ Q̂(ε) ≤ Q̂ε (2.3)

and hence, by [3, Theorem 4.17],

(λ+Hε)−1 ⊕ λ−1 ≥ (λ+H(ε))−1 ⊕ λ−1 ≥ (λ+Hε)−1 ⊕ λ−1 (2.4)

for all λ > 0, where (λ +H(ε))−1 ⊕ λ−1 is the operator defined on Hε0 = A(ε) ⊕
A(ε)⊥Hε0 by

((λ+H(ε))−1 ⊕ λ−1)(f + g) = (λ+H(ε))−1f + λ−1g

for all f ∈ A(ε) and g ∈ A(ε)⊥Hε0 .
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Proposition 2.5 ([3, Theorem 4.32]). Let Kn ≥ 0 be an increasing sequence of
non-negative self-adjoint operators with domains in a Hilbert space U . Put

E = ∩nD(K1/2
n )

and let Û be the closure of E. Then there exists a self-adjoint operator K ≥ 0 with
domain D(K) ⊆ Û such that its associated quadratic form domain equal E and that

〈K1/2f,K1/2f〉 = lim
n→∞

〈K1/2
n f,K1/2

n f〉 (f ∈ E).

Moreover
lim

n→∞
{ sup
0≤t≤a

‖e−Kntf − e−Ktf‖} = 0

for all a ≥ 0 and f ∈ Û . Hence for all λ > 0 we have

‖(λ+Kn)−1f − (λ+K)−1f‖ → 0 as n→∞

for all f ∈ Û .

Definition 2.6. For 0 < ε ≤ ε0 we let Ĥε and Ĥε be the operators with domains
D(Ĥε) = D(Hε)⊕(Hε)⊥Hε0 and D(Ĥε) = D(Hε)⊕(Hε)⊥Hε0 , respectively, defined
by

Ĥε(f + g) = Hεf = HεPHε0 ,Hε
(f + g)

for all f + g ∈ D(Hε)⊕ (Hε)⊥Hε0 , and

Ĥε(f + g) = Hεf = HεPHε0 ,Hε(f + g)

for all f + g ∈ D(Hε) ⊕ (Hε)⊥Hε0 . Similarly we write Ĥ to denote the operator
with domain D(Ĥ) = D(H)⊕H⊥Hε0 defined by

Ĥ(f + g) = Ĥf = ĤPHε0 ,H (f + g)

for all f + g ∈ D(H)⊕H⊥Hε0 .

We also write ˆ̂
Hε for the operator with domainD( ˆ̂

Hε) = D(Hε)⊕(Hε)⊥H defined
by

ˆ̂
Hε(f + g) = Hεf = HεPH,Hε(f + g)

for all f + g ∈ D(Hε)⊕ (Hε)⊥H.

Lemma 2.7. We have

(i) limε↓0{sup0≤t≤a ‖e−
ˆ̂
Hεtf − e−Htf‖H} = 0 for all f ∈ H and a ≥ 0. Also

lim
ε↓0

‖(λ+ ˆ̂
Hε)−1f − (λ+H)−1f‖H = 0

for all f ∈ H and a ≥ 0.
(ii) limε↓0{sup0≤t≤a ‖e−Ĥεtf − e−Ĥtf‖Hε0} = 0 for all f ∈ Hε0 and a ≥ 0.

Also
lim
ε↓0

‖(λ+ Ĥε)−1f − (λ+ Ĥ)−1f‖Hε0 = 0

for all f ∈ Hε0 and λ > 0.

Proof. To prove (i) we apply Proposition 2.5 with U = H, Kn = ˆ̂Hε and then use
Assumptions (A17), (A18) and (A19). Similarly, to prove (ii) we apply Proposition
2.5 with U = Hε0 and Kn = Ĥε, and then use Assumptions (A17), (A18) and
(A19). �
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Definition 2.8. Let U be a Hilbert space and let Q ≥ 0 be a closed quadratic form
with domain Dom(Q) ⊆ U . (Note that Dom(Q) is not necessarily dense in U .) Let
H ≥ 0 be the self-adjoint operator associated to Q with domain D(H) ⊆ Dom(Q).
If φ : R → R is a bounded measurable function, then we define the bounded
operator φ(H) on U = Dom(Q)⊕ ((Dom(Q))⊥U) by

φ(Q)(f + g) = φ(H)f = φ(H)(PU,Dom(Q)
(f + g)) (2.5)

for all f ∈ Dom(Q) and g ∈ (Dom(Q))⊥U .

Similarly, on U = Dom(Q) ⊕ ((Dom(Q))⊥U), we define the bounded operator
[φ(Q)]M by

[φ(Q)]M (f + g) = φ(H)f + g

= φ(H)PU,Dom(Q)
(f + g) + PU,(Dom(Q))

⊥U (f + g) (2.6)

for all f ∈ Dom(Q) and g ∈ (Dom(Q))⊥U .
In both (2.5) and (2.6), φ(H) is the bounded operator on Dom(Q) defined using

the spectral theorem.

Definition 2.9. Let U be a Hilbert space and for n = 1, 2, 3, . . . let Qn ≥ 0 be
a closed quadratic form with domain Dom(Qn) ⊆ U . (Dom(Qn) is not necessarily
dense in U .) Let Q ≥ 0 be a closed quadratic form with domain in U . (Dom(Q) is
not necessarily dense in U .) We say that Qn converges to Q in the strong resolvent
sense (srs) if for some λ > 0 we have

lim
n→∞

(λ+Qn)−1f = (λ+Q)−1f (f ∈ U).

Lemma 2.10. Let U , Qn and Q be as in Definitions 2.8 and 2.9. Let Pn be the
orthogonal projection of U onto Dom(Qn). Suppose that for all f ∈ U we have

‖Pnf − f‖ → 0 as n→∞.

Suppose also that Dom(Q) = U . Then Qn
srs−→ Q as n→∞ is equivalent to

[(λ+Qn)−1]M f → [(λ+Q)−1]Mf as n→∞
for some λ > 0 and for all f ∈ U .

The proof of this lemma is obvious.

Proposition 2.11 ([4, Theorem 1.2.3]). Let Kn ≥ 0, n = 1, 2, 3, . . . , and K ≥ 0
be self-adjoint operators with domains in a Hilbert space U . Suppose that

K1 ≥ K2 ≥ · · · ≥ Kn ≥ Kn+1 ≥ · · · ≥ K

and that their associated quadratic forms satisfy

〈K1/2f,K1/2f〉 = lim
n→∞

〈K1/2
n f,K1/2

n f〉

for all f in a form core of K. Then Kn converges to K in the strong resolvent
sense.

Definition 2.12. We let C be the subspace of Dom(Q̂) defined by

C = ∪0<ε≤ε0 Dom(Qε)⊕ (Hε)⊥Hε0 .

(Note that C is a subspace of Dom(Q̂) by Assumption (A15).)

Lemma 2.13. C is a form core of Q̂.
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Proof. We first recall that, by Assumption (A12),

Dom(Q) = PHε,H(Dom(Qε)) (0 < ε ≤ ε0).

Let f = g + h ∈ Dom(Q̂), where g ∈ Dom(Q) and h ∈ H⊥Hε0 . Let α ∈ Dom(Qε0)
such that

PHε0 ,Hα = g.

For 0 < ε ≤ ε0 let

gε = PHε0 ,Hεα = PHε,H gε + PHε,H⊥Hεgε

= PHε0 ,Hα+ PHε,H⊥Hεgε

= g + PHε,H⊥Hεgε

and let
hε = PH⊥Hε0 ,(Hε)⊥Hε0h

and let
fε = gε + hε

= PHε0 ,Hα+ PHε,H⊥Hεgε + hε

= g + PHε,H⊥Hεgε + hε.

(2.7)

Then, by (A12), fε ∈ Dom(Qε)⊕ (Hε)⊥Hε0 . Since

h = PH⊥Hε0 ,(Hε)⊥Hε0h+ (IH⊥Hε0 − PH⊥Hε0 , (Hε)⊥Hε0 )h

= hε + (IH⊥Hε0 − PH⊥Hε0 ,(Hε)⊥Hε0 )h,

we have
f − fε = g + h− (g + PHε,H⊥Hεgε + hε)

= g + hε + (IH⊥Hε0 − PH⊥Hε0 ,(Hε)⊥Hε0 )h− (g + PHε,H⊥Hεgε + hε)

= (IH⊥Hε0 − PH⊥Hε0 ,(Hε)⊥Hε0 )h− PHε,H⊥Hεgε

= (IH⊥Hε0 − PH⊥Hε0 ,(Hε)⊥Hε0 )h− PHε0 ,H⊥Hεα

= (IHε − PHε,H)PHε0 ,Hεh− (IHε − PHε,H)PHε0 ,Hεα

→ 0 as ε ↓ 0 (by (A5)).

(2.8)

Also, by (2.8),

Q̂(f − fε, f − fε) = Q̂(PHε,H⊥HεPHε0 ,Hε(h− α), PHε,H⊥HεPHε0 ,Hε(h− α))
= 0

since PHε,H⊥HεPHε0 ,Hε(h − α) ∈ H⊥Hε0 . Also, by Assumption (A12), it is not
difficult to show that C is closed under addition and scalar multiplication. Hence C
is a form core of Q̂. �

Theorem 2.14. We have Ĥε srs−→ Ĥ as ε ↓ 0.

Proof. Let δ ∈ (0, ε0] and let f ∈ Dom(Qδ) ⊕ (Hδ)⊥Hε0 . Then, for 0 < ε < δ, we
have, by (A5),

PHε0 ,Hεf = PHε0 ,Hεf − PHε0 ,Hf + PHε0 ,Hf → PHε0 ,Hf as ε ↓ 0.

Hence, for 0 < ε < δ, we have, by (A20),

Q̂ε(f, f) = Qε(PHε0 ,Hεf, PHε0 ,Hεf)

→ Q(PHε0 ,Hf, PHε0 ,Hf) = Q̂(f, f) as ε ↓ 0.
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Thus for all f ∈ C we have

Q̂(f, f) = lim
ε↓0

Q̂ε(f, f). (2.9)

The theorem now follows from Proposition 2.11 together with (2.1), (2.9) and
Lemma 2.13. �

Definition 2.15. For 0 < ε ≤ ε0 we let Ĥ(ε) be the operator with domain
D(Ĥ(ε)) = D(H(ε))⊕A(ε)⊥Hε0 defined by

Ĥ(ε)(f + g) = H(ε)f = H(ε)PHε0 ,A(ε)(f + g)

for all f ∈ D(H(ε)) and g ∈ A(ε)⊥Hε0 . Thus Ĥ(ε) ≥ 0 is the self-adjoint operator
associated to the quadratic form Q̂(ε) defined in Definition 2.4. By (2.4) we have

(λ+ Ĥε)−1 ≥ (λ+ Ĥ(ε))−1 ≥ (λ+ Ĥε)−1

for all λ > 0 and 0 < ε ≤ ε0; i.e.,

〈(λ+ Ĥε)−1f, f〉 ≥ 〈(λ+ Ĥ(ε))−1f, f〉 ≥ 〈(λ+ Ĥε)−1f, f〉 (2.10)

for all f ∈ Hε0 , λ > 0 and 0 < ε ≤ ε0.

Lemma 2.16. We have

〈(λ+ Ĥ)−1f, f〉 = lim
ε↓0
〈(λ+ Ĥ(ε))−1f, f〉

for all f ∈ Hε0 and λ > 0.

Proof. This lemma follows from the second inequality of Lemma 2.7(ii), Theo-
rem 2.14 and (2.10). �

Theorem 2.17. For all λ > 0 we have

(λ+ Ĥ)−1f = lim
ε↓0

(λ+ Ĥ(ε))−1f

for all f ∈ Hε0 . Hence for all a > 0 and f ∈ Hε0 we have

lim
ε↓0
{ sup
0≤t≤a

‖e−Ĥ(ε)tf − e−Ĥtf‖Hε0} = 0.

Proof. By Lemma 2.7(ii), we have, for all λ > 0,

(λ+ Ĥ)−1f = lim
ε↓0

(λ+ Ĥε)−1f (f ∈ Hε0).

This is equivalent to having

lim
ε↓0
{ sup
0≤t≤a

‖e−Ĥεtf − e−Ĥtf‖Hε0} = 0 (f ∈ Hε0) (2.11)

for all a > 0 (see, for example [3, Theorem 3.17]). Similarly, Theorem 2.14 is
equivalent to

lim
ε↓0
{ sup
0≤t≤a

‖e−Ĥεtf − e−Ĥtf‖Hε0} = 0 (f ∈ Hε0) (2.12)

for all a > 0. Since, for λ > 0, we have

(λ+ Ĥε)−1/2f =
∫ ∞

0

1√
πt
e−λte−Ĥεtf dt (f ∈ Hε0),

(λ+ Ĥε)−1/2f =
∫ ∞

0

1√
πt
e−λte−Ĥεtf dt (f ∈ Hε0),
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we have, from (2.11) and (2.12),

lim
ε↓0

(λ+ Ĥε)−1/2f = lim
ε↓0

(λ+ Ĥε)−1/2f = (λ+ Ĥ)−1/2f (2.13)

for all λ > 0 and f ∈ Hε0 . Since, for all λ > 0,

(λ+ Ĥε)−1 ≥ (λ+ Ĥ(ε))−1 ≥ (λ+ Ĥε)−1,

we have
(λ+ Ĥε)−1/2 ≥ (λ+ Ĥ(ε))−1/2 ≥ (λ+ Ĥε)−1/2

for all λ > 0 (see, for example, [3, Lemma 4.19]); i.e., for all 0 < ε ≤ ε0, λ > 0 and
f ∈ Hε0 , we have

〈(λ+ Ĥε)−1/2f, f〉 ≥ 〈(λ+ Ĥ(ε))−1/2f, f〉 ≥ 〈(λ+ Ĥε)−1/2f, f〉. (2.14)

Hence, from (2.13) and (2.14), we have

〈(λ+ Ĥ)−1/2f, f〉 = lim
ε↓0
〈(λ+ Ĥ(ε))−1/2f, f〉 (2.15)

for all λ > 0 and f ∈ Hε0 . The polarization identity (see, for example, [3, p.103])
and (2.15) imply that

〈(λ+ Ĥ)−1/2f, g〉 = lim
ε↓0
〈(λ+H(ε))−1/2f, g〉 (2.16)

for all λ > 0 and f, g ∈ Hε0 . We now need the following result.

Proposition 2.18 (See [3, Problem 4.11]). Let U be a Hilbert space and let f, fn ∈
U for n = 1, 2, 3, . . . . Suppose that

〈f, g〉 = lim
n→∞

〈fn, g〉 (g ∈ U).

Then
lim

n→∞
‖fn − f‖ = 0 if and only if lim

n→∞
‖fn‖ = ‖f‖.

By Lemma 2.16, we have

lim
ε↓0

‖(λ+ Ĥ(ε))−1/2f‖Hε0 = ‖(λ+ Ĥ)−1/2f‖Hε0 (2.17)

for all λ > 0 and f ∈ Hε0 . Proposition 2.18 together with (2.16) and (2.17) imply
that

(λ+ Ĥ)−1/2f = lim
ε↓0

(λ+ Ĥ(ε))−1/2f (2.18)

for all λ > 0 and f ∈ Hε0 . Hence

(λ+ Ĥ(ε))−1f − (λ+ Ĥ)−1f

= (λ+ Ĥ(ε))−1/2[(λ+ Ĥ(ε))−1/2f − (λ+ Ĥ)−1/2f ]

+ (λ+ Ĥ(ε))−1/2(λ+ Ĥ)−1/2f − (λ+ Ĥ)−1/2(λ+ Ĥ)−1/2f → 0 as ε ↓ 0

for all λ > 0 and f ∈ Hε0 . The strong convergence of e−Ĥ(ε)t to e−Ĥt now follows
from [3, Theorem 3.17]. �

We next impose more assumptions on the operators H, Hε, Hε and H(ε), 0 <
ε ≤ ε0:
(A24) H, Hε, Hε, H(ε), 0 < ε ≤ ε0, have compact resolvents in the Hilbert spaces

H, Hε, Hε and A(ε), respectively.
(A25) 0 ∈ Sp(H), 0 ∈ Sp(Hε), 0 ∈ Sp(Hε) and 0 ∈ Sp(H(ε)), 0 < ε ≤ ε0.
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Definition 2.19. We shall write {µi}∞i=1 for the eigenvalues of H, where {µi}∞i=1

is a non-decreasing sequence and the eigenvalues are listed repeatedly according
to multiplicity. Similarly, for 0 < ε ≤ ε0, we shall write {µε

i}∞i=1, {µi,ε}∞i=1, and
{µi(ε)}∞i=1 for the eigenvalues of Hε, Hε and H(ε), respectively. Thus, by (A25),
we have

0 = µ1 = µε
1 = µ1,ε = µ1(ε) (0 < ε ≤ ε0).

We shall also write {ϕi}∞i=1, {ϕε
i}∞i=1, {ϕi,ε}∞i=1 and {ϕi(ε)}∞i=1 for the corresponding

normalized eigenvectors of H, Hε, Hε and H(ε), respectively. We shall also assume
that {ϕi}∞i=1, {ϕε

i}∞i=1, {ϕi,ε}∞i=1 and {ϕi(ε)}∞i=1 are complete orthonormal systems
in their respective Hilbert spaces H, Hε, Hε and H(ε).

(A26) µ1, µε
1, µ1,ε, µ1(ε), 0 < ε ≤ ε0, all have multiplicity 1.

(A27) For 0 < ε ≤ ε0, we assume that PHε0 ,Hϕ
ε0
1 , PHε0 ,Hεϕε0

1 , PHε0 ,Hεϕ
ε0
1 and

PHε0 ,A(ε)ϕ
ε0
1 are eigenvectors of H, Hε, Hε and H(ε), respectively, associ-

ated to the eigenvalue 0 = µ1 = µε
1 = µ1,ε = µ1(ε). In fact we assume that

ϕ1, ϕε
1, ϕ1,ε and ϕ1(ε) are chosen so that

ϕ1 = ‖PHε0 ,Hϕ
ε0
1 ‖

−1
H PHε0 ,Hϕ

ε0
1 ,

ϕε
1 = ‖PHε0 ,Hεϕε0

1 ‖
−1
HεPHε0 ,Hεϕε0

1 ,

ϕ1,ε = ‖PHε0 ,Hεϕ
ε0
1 ‖

−1
Hε
PHε0 ,Hεϕ

ε0
1 ,

ϕ1(ε) = ‖PHε0 ,A(ε)ϕ
ε0
1 ‖

−1
A(ε)PHε0 ,A(ε)ϕ

ε0
1 .

(A28) For all 0 < t ≤ 1 and n = 1, 2, 3, . . . , we assume that

lim
ε↓0

‖PH,B(ε)e
−Htϕn − e−H(ε)tPH,B(ε)ϕn‖A(ε) = 0,

lim
ε↓0

‖e−HtPA(ε),B(ε)ϕn(ε)− PA(ε),B(ε)e
−H(ε)tϕn(ε)‖H = 0,

lim
ε↓0

‖PA(ε),B(ε)ϕn(ε)‖H = 1.

Theorem 2.20. We have limε↓0 µ2(ε) = µ2.

Proof. For 0 < ε ≤ ε0 let

β1(ε) = 〈PH,B(ε)ϕ2, ϕ1(ε)〉A(ε). (2.19)

Then
e−µ2(ε)t

≥ ‖PH,B(ε)ϕ2 − β1(ε)ϕ1(ε)‖−2
A(ε)

× 〈e−H(ε)t(PH,B(ε)ϕ2 − β1(ε)ϕ1(ε)), (PH,B(ε)ϕ2 − β1(ε)ϕ1(ε))〉A(ε)

= ‖PH,B(ε)ϕ2 − β1(ε)ϕ1(ε)‖−2
A(ε){〈e

−H(ε)tPH,B(ε)ϕ2, PH,B(ε)ϕ2〉A(ε)

− 2β1(ε)〈e−H(ε)tPH,B(ε)ϕ2, ϕ1(ε)〉A(ε) + β1(ε)2}

= ‖PH,B(ε)ϕ2 − β1(ε)ϕ1(ε)‖−2
A(ε){〈e

−H(ε)tPH,B(ε)ϕ2, PH,B(ε)ϕ2〉A(ε)

− β1(ε)2}.

(2.20)

Consider the following term in (2.20):

〈e−H(ε)tPH,B(ε)ϕ2, PH,B(ε)ϕ2〉A(ε)

= 〈e−H(ε)tPH,B(ε)ϕ2 − PH,B(ε)e
−Htϕ2, PH,B(ε)ϕ2〉A(ε)
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+ 〈PH,B(ε)e
−Htϕ2, PH,B(ε)ϕ2〉A(ε)

= 〈e−H(ε)tPH,B(ε)ϕ2 − PH,B(ε)e
−Htϕ2, PH,B(ε)ϕ2〉A,(ε)

+ e−µ2t〈PH,B(ε)ϕ2, PH,B(ε)ϕ2〉A(ε)

= 〈e−H(ε)tPH,B(ε)ϕ2 − PH,B(ε)e
−Htϕ2, PH,B(ε)ϕ2〉A(ε)

+ e−µ2t〈PH,B(ε)ϕ2, PH,B(ε)ϕ2〉H
= 〈e−H(ε)tPH,B(ε)ϕ2 − PH,B(ε)e

−Htϕ2, PH,B(ε)ϕ2〉A(ε)

+ e−µ2t〈(PH,B(ε)ϕ2 − ϕ2) + ϕ2, (PH,B(ε)ϕ2 − ϕ2) + ϕ2〉H
= 〈e−H(ε)tPH,B(ε)ϕ2 − PH,B(ε)e

−Htϕ2, PH,B(ε)ϕ2〉A(ε)

+ e−µ2t{〈PH,B(ε)ϕ2 − ϕ2, PH,B(ε)ϕ2 − ϕ2〉H
+ 2〈PH,B(ε)ϕ2 − ϕ2, ϕ2〉H + 1}

= 〈e−H(ε)tPH,B(ε)ϕ2 − PH,B(ε)e
−Htϕ2, PH,B(ε)ϕ2〉A(ε)

+ e−µ2t{〈PH,B(ε)ϕ2 − ϕ2, PH,B(ε)ϕ2 − ϕ2〉H
+ 2〈PH,B(ε)ϕ2 − ϕ2, ϕ2〉H}+ e−µ2t.

Hence, by (A7) and (A28), we have

lim
ε↓0
〈e−H(ε)tPH,B(ε)ϕ2, PH,B(ε)ϕ2〉A(ε) = e−µ2t. (2.21)

Next we consider the term β1(ε) defined in (2.19). We note that, by (A27),

PA(ε),B(ε)ϕ1(ε) = ‖PHε0 ,A(ε)ϕ
ε0
1 ‖

−1
A(ε)PA(ε),B(ε)PHε0 ,A(ε)ϕ

ε0
1

= ‖PHε0 ,A(ε)ϕ
ε0
1 ‖

−1
A(ε)PHε0 ,B(ε)ϕ

ε0
1

= ‖PHε0 ,A(ε)ϕ
ε0
1 ‖

−1
A(ε)PH,B(ε)PHε0 ,Hϕ

ε0
1

= ‖PHε0 ,A(ε)ϕ
ε0
1 ‖

−1
A(ε)‖PHε0 ,Hϕ

ε0
1 ‖HPH,B(ε)ϕ1.

(2.22)

Consider the term ‖PHε0 ,A(ε)ϕ
ε0
1 ‖A(ε) in (2.22). We have, by (A9),

PHε0 ,A(ε)ϕ
ε0
1 = PHε0 ,B(ε)ϕ

ε0
1 + PHε0 ,C(ε)ϕ

ε0
1 + PHε0 ,D(ε)ϕ

ε0
1

= PH,B(ε)PHε0 ,Hϕ
ε0
1 + PHε0 ,C(ε)ϕ

ε0
1 + PHε0 ,D(ε)ϕ

ε0
1

= ‖PHε0 ,Hϕ
ε0
1 ‖HPH,B(ε)ϕ1 + PHε0 ,C(ε)ϕ

ε0
1 + PHε0 ,D(ε)ϕ

ε0
1 .

Thus, by (A7), Lemma 2.1 and (A10),

‖PHε0 ,A(ε)ϕ
ε0
1 ‖2A(ε) = ‖PHε0 ,Hϕ

ε0
1 ‖2H‖PH,B(ε)ϕ1‖2B(ε)

+ ‖PHε0 ,C(ε)ϕ
ε0
1 ‖2C(ε) + ‖PHε0 ,D(ε)ϕ

ε0
1 ‖2D(ε)

= ‖PHε0 ,Hϕ
ε0
1 ‖2H‖(PH,B(ε)ϕ1 − ϕ1) + ϕ1‖2H

+ ‖PHε0 ,C(ε)ϕ
ε0
1 ‖2C(ε) + ‖PHε0 ,D(ε)ϕ

ε0
1 ‖2D(ε)

→ ‖PHε0 ,Hϕ
ε0
1 ‖2H as ε ↓ 0.

(2.23)

Thus, by (A9),

ϕ1(ε) = PA(ε),B(ε)ϕ1(ε) + PA(ε),C(ε)ϕ1(ε) + PA(ε),D(ε)ϕ1(ε)

= ‖PHε0 ,A(ε)ϕ
ε0
1 ‖

−1
A(ε)‖PHε0 ,Hϕ

ε0
1 ‖HPH,B(ε)ϕ1

+ PA(ε),C(ε)ϕ1(ε) + PA(ε),D(ε)ϕ1(ε).

(2.24)
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Since the second and third terms in the last line of (2.24) are in C(ε) and D(ε),
respectively, they are orthogonal to PA(ε),B(ε)ϕ1(ε) by (A9). Hence, by (2.24), (2.23)
and (A7),

β1(ε) = 〈PH,B(ε)ϕ2, ϕ1(ε)〉A(ε)

= 〈PH,B(ε)ϕ2, ‖PHε0 ,A(ε)ϕ
ε0
1 ‖

−1
A(ε)‖PHε0 ,Hϕ

ε0
1 ‖HPH,B(ε)ϕ1〉H

= 〈(PH,B(ε)ϕ2 − ϕ2) + ϕ2, ‖PHε0 ,A(ε)ϕ
ε0
1 ‖

−1
A(ε)‖PHε0 ,Hϕ

ε0
1 ‖H

× (PH,B(ε)ϕ1 − ϕ1) + ‖PHε0 ,A(ε)ϕ
ε0
1 ‖

−1
A(ε)‖PHε0 ,Hϕ

ε0
1 ‖Hϕ1〉H

→ 〈ϕ2, ϕ1〉H = 0 as ε ↓ 0.

(2.25)

Therefore we can deal with the term

‖PH,B(ε)ϕ2 − β1(ε)ϕ1(ε)‖−2
A(ε)

of (2.20) as follows:

‖PH,B(ε)ϕ2 − β1(ε)ϕ1(ε)‖−2
A(ε)

= ‖PH,B(ε)ϕ2 − β1(ε)PA(ε),B(ε)ϕ1(ε)− β1(ε)PA(ε),C(ε)ϕ1(ε)

− β1(ε)PA(ε),D(ε)ϕ1(ε)‖−2
A(ε)

= ‖PH,B(ε)ϕ2 − β1(ε)PA(ε),B(ε)ϕ1(ε)‖2B(ε)

+ β1(ε)2‖PA(ε), C(ε)ϕ1(ε)‖2C(ε) + β1(ε)2‖PA(ε),D(ε)ϕ1(ε)‖2D(ε)

= ‖(PH,B(ε)ϕ2 − ϕ2) + ϕ2 − β1(ε)PA(ε),B(ε)ϕ1(ε)‖2H
+ β1(ε)2‖PA(ε),C(ε)ϕ1(ε)‖2C(ε) + β1(ε)2‖PA(ε),D(ε)ϕ1(ε)‖2D(ε)

→ ‖ϕ2‖2H = 1 as ε ↓ 0,

(2.26)

by (A7) and (2.25). Therefore, by (2.20), (2.21), (2.25) and (2.26), we have, for all
δ > 0, there exists ε1 ∈ (0, ε0] such that

µ2(ε)t ≤ µ2t+ δ (2.27)

for all 0 < ε ≤ ε1. We next prove the reverse inequality of (2.27). For all 0 < ε ≤ ε0
let

γ1(ε) = 〈PA(ε),B(ε)ϕ2(ε), ϕ1〉H. (2.28)

Then

e−µ2t ≥ ‖PA(ε),B(ε)ϕ2(ε)− γ1(ε)ϕ1‖−2
H

× 〈e−Ht(PA(ε),B(ε)ϕ2(ε)− γ1(ε)ϕ1), PA(ε),B(ε)ϕ2(ε)− γ1(ε)ϕ1〉H
= ‖PA(ε),B(ε)ϕ2(ε)− γ1(ε)ϕ1‖−2

H

× {〈e−HtPA(ε),B(ε)ϕ2(ε), PA(ε),B(ε)ϕ2(ε)〉H
− 2γ1(ε)〈e−HtPA(ε),B(ε)ϕ2(ε), ϕ1〉H + γ1(ε)2}

= ‖PA(ε),B(ε)ϕ2(ε)− γ1(ε)ϕ1‖−2
H

× {〈e−HtPA(ε),B(ε)ϕ2(ε), PA(ε),B(ε)ϕ2(ε)〉H − γ1(ε)2}.

(2.29)
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Consider the term

〈e−HtPA(ε),B(ε)ϕ2(ε), PA(ε),B(ε)ϕ2(ε)〉H
= 〈e−HtPA(ε),B(ε)ϕ2(ε)− PA(ε),B(ε)e

−H(ε)tϕ2(ε), PA(ε),B(ε)ϕ2(ε)〉H
+ 〈PA(ε),B(ε)e

−H(ε)tϕ2(ε), PA(ε),B(ε)ϕ2(ε)〉H
= 〈e−HtPA(ε),B(ε)ϕ2(ε)− PA(ε),B(ε)e

−H(ε)tϕ2(ε), PA(ε),B(ε)ϕ2(ε)〉H
+ e−µ2(ε)t〈PA(ε),B(ε)ϕ2(ε), PA(ε),B(ε)ϕ2(ε)〉H.

(2.30)

Therefore, by (A28), (2.27) and (2.30), for all δ > 0 there exists ε1 ∈ (0, ε0] such
that

〈e−HtPA(ε),B(ε)ϕ2(ε), PA(ε),B(ε)ϕ2(ε)〉H ≥ e−µ2(ε)t−δ (2.31)

for all ε ∈ (0, ε1].
We next consider the term γ1(ε) defined in (2.28):

γ1(ε) = 〈PA(ε),B(ε)ϕ2(ε), ϕ1〉H = 〈PA(ε),B(ε)ϕ2(ε), PH,B(ε)ϕ1 + PH,B(ε)⊥Hϕ1〉H.
(2.32)

But, by (A27),

PH,B(ε)ϕ1 = ‖PHε0 ,Hϕ
ε0
1 ‖

−1
H PH,B(ε)PHε0 ,Hϕ

ε0
1

= ‖PHε0 ,Hϕ
ε0
1 ‖

−1
H PHε0 ,B(ε)ϕ

ε0
1

= ‖PHε0 ,Hϕ
ε0
1 ‖

−1
H PA(ε),B(ε)PHε0 ,A(ε)ϕ

ε0
1

= ‖PHε0 ,Hϕ
ε0
1 ‖

−1
H ‖PHε0 ,A(ε)ϕ

ε0
1 ‖A(ε)PA(ε),B(ε)ϕ1(ε).

(2.33)

Hence, from (2.32) and (2.33),

γ1(ε) = 〈PA(ε),B(ε)ϕ2(ε), ‖PHε0 ,Hϕ
ε0
1 ‖

−1
H ‖PHε0 ,A(ε)ϕ

ε0
1 ‖A(ε)

× PA(ε),B(ε)ϕ1(ε) + PH,B(ε)⊥Hϕ1〉H
= 〈PA(ε),B(ε)ϕ2(ε), ‖PHε0 ,Hϕ

ε0
1 ‖

−1
H ‖PHε0 ,A(ε)ϕ

ε0
1 ‖A(ε)

× PA(ε),B(ε)ϕ1(ε)〉A(ε) + 〈PA(ε),B(ε)ϕ2(ε), PH,B(ε)⊥Hϕ1〉H
= 〈PA(ε),B(ε)ϕ2(ε), ‖PHε0 ,Hϕ

ε0
1 ‖

−1
H ‖PHε0 ,A(ε)ϕ

ε0
1 ‖A(ε)

× PA(ε),B(ε)ϕ1(ε)〉A(ε).

(2.34)

We show that the last line of (2.34) tends to 0 as ε ↓ 0: We have

0 = 〈ϕ2(ε), ϕ1(ε)〉A(ε)

= 〈PA(ε),B(ε)ϕ2(ε), PA(ε),B(ε)ϕ1(ε)〉B(ε)

+ 〈PA(ε),C(ε)ϕ2(ε), PA(ε),C(ε)ϕ1(ε)〉C(ε)
+ 〈PA(ε),D(ε)ϕ2(ε), PA(ε),D(ε)ϕ1(ε)〉D(ε).

(2.35)

Since, by (A28),
lim
ε↓0

‖PA(ε),B(ε)ϕn(ε)‖B(ε) = 1, (2.36)

we have
lim
ε↓0

‖PA(ε),C(ε)ϕn(ε)‖C(ε) = lim
ε↓0

‖PA(ε),D(ε)ϕn(ε)‖D(ε) = 0. (2.37)

From (2.35), (2.36) and (2.37) we obtain

lim
ε↓0
〈PA(ε),B(ε)ϕ2(ε), PA(ε),B(ε)ϕ1(ε)〉B(ε) = 0. (2.38)
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Hence, by (2.34), (2.38) and (2.23), we have

lim
ε↓0

γ1(ε) = 0. (2.39)

Thus, by (2.39) and (A28), we have

‖PA(ε),B(ε)ϕ2(ε)− γ1(ε)ϕ1‖2H
= ‖PA(ε),B(ε)ϕ2(ε)− γ1(ε)PH,B(ε)ϕ1 − γ1(ε)PH,B(ε)⊥Hϕ1‖2H
= ‖PA(ε),B(ε)ϕ2(ε)− γ1(ε)PH,B(ε)ϕ1‖2B(ε) + γ1(ε)2‖PH,B(ε)⊥Hϕ1‖2H
→ 1 as ε ↓ 0.

(2.40)

Combining (2.29), (2.31), (2.39) and (2.40), we see that for all δ > 0, there exists
ε1 ∈ (0, ε0] such that

µ2t ≤ µ2(ε)t+ δ (2.41)

for all ε ∈ (0, ε1]. The theorem now follows from (2.27) and (2.41). �

Definition 2.21. We now define the sequence {ki}∞i=1 of positive integers as follows:
Suppose we list the eigenvalues {µn}∞n=1 of H in a way reflecting their multiplicities.
Then the positive integers ki are defined by:

0 = µ1 < µ2 = µ3 = · · · = µk2 < µk2+1 = · · · = µk3

< µk3+1 = · · · = µk4 < µk4+1 = . . . .
(2.42)

We also define k1 = 1.

Lemma 2.22. Let p ≥ 1 be an integer and let i be an integer satisfying

kp + 1 < i ≤ kp+1.

Suppose, for j = 1, 2, . . . , i− 1, we have

lim
ε↓0

µj(ε) = µj . (2.43)

Then
lim
ε↓0

µi(ε) = µi = µkp+1 = µkp+1 .

Proof. Assume, for a contradiction, that

µi(ε) 6→ µi as ε ↓ 0. (2.44)

Then there exist η > 0 and a strictly decreasing sequence {εm}∞m=1 of positive
numbers such that εm ↓ 0 as m→∞, and that

µi(εm) ≥ µi + η (m = 1, 2, 3, . . . ).

For j = 1, 2, 3, . . . we regard PH,B(ε)ϕj as a vector in A(ε) and write

PH,B(ε)ϕj =
∞∑

`=1

aj,`(ε)ϕ`(ε). (2.45)

Then, for all 0 < t ≤ 1 and j = 1, 2, 3, . . . ,

e−H(ε)tPH,B(ε)ϕj − PH,B(ε)e
−Htϕj

=
( i−1∑

`=1

+
∞∑
`=i

)
aj,`(ε)(e−µ`(ε)t − e−µjt)ϕ`(ε).

(2.46)
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By (A28), (2.43), (2.46) and the orthogonality of {ϕi(ε)}∞i=1, we have

lim
ε↓0

∞∑
`=i

aj,`(ε)2(e−µ`(ε)t − e−µjt)2 = 0. (2.47)

Since, for ` = i, i+ 1, i+ 2, . . . and j = 1, 2, . . . , kp+1 and m = 1, 2, 3, . . . , we have
µ`(εm) ≥ µj + η. Equation (2.47) implies

lim
m→∞

∞∑
`=i

aj,`(εm)2 = 0.

Hence, for j = 1, 2, . . . , kp+1,

lim
m→∞

∥∥ ∞∑
`=i

aj,`(εm)ϕ`(εm)
∥∥
A(εm)

= 0. (2.48)

Since, by (A7), limε↓0 ‖PH,B(ε)ϕj‖A(ε) = 1, (2.48) implies that, for j = 1, 2, . . . ,
kp+1,

lim
m→∞

∥∥ i−1∑
`=1

aj,`(εm)ϕ`(εm)
∥∥
A(εm)

= 1. (2.49)

For j = 1, 2, . . . , kp+1 and m = 1, 2, 3, . . . let

uj,i(m) =
i−1∑
`=1

aj,`(εm)ϕ`(εm). (2.50)

Then, for σ, τ ∈ {1, 2, . . . , i} with σ 6= τ , we have

〈PH,B(ε)ϕσ, PH,B(ε)ϕτ 〉B(ε)

= 〈ϕσ, ϕτ 〉H − 〈(IH − PH,B(ε))ϕσ, (IH − PH,B(ε))ϕτ 〉B(ε)⊥H

→ 0 as ε ↓ 0 (by (A7)).
(2.51)

But for m = 1, 2, 3, . . .

〈PH,B(εm)ϕσ, PH,B(εm)ϕτ 〉B(εm)

= 〈uσ,i(m), uτ,i(m)〉A(εm)

+
〈 ∞∑

`=i

aσ,`(εm)ϕ`(εm),
∞∑
`=i

aτ,`(εm)ϕ`(εm)
〉
A(εm)

.

(2.52)

From (2.48), (2.51) and (2.52), we obtain

lim
m→∞

〈uσ,i(m), uτ,i(m)〉A(εm) = 0. (2.53)

From (2.49), (2.50) and (2.53), we have a set of i vectors {u1,i(m), . . . , ui,i(m)}
in an (i − 1)-dimensional inner product space spanned by {ϕ1(εm), . . . , ϕi−1(εm)}
which, as m → ∞, is almost orthonormal. This gives a contradiction. Thus we
must have limε↓0 µi(ε) = µi. �

Lemma 2.23. Let p ≥ 2 be an integer. Suppose that limε↓0 µi(ε) = µi for all
i = 1, 2, . . . , kp. Then there exists η > 0 such that for all sufficiently small ε > 0
we have

µkp+1(ε) ≥ µkp + η.



18 M. M. H. PANG EJDE-2011/100

Proof. For i = 1, 2, 3, . . . let

PA(ε),B(ε)ϕi(ε) =
∞∑

`=1

bi,`(ε)ϕ`, (2.54)

regarding PA(ε),B(ε)ϕi(ε) as a vector in H. Suppose the lemma is false. Then there
exists a strictly decreasing sequence of positive numbers {εm}∞m=1 such that εm ↓ 0
as m→∞ and that

µkp+1(εm) → µkp as m→∞. (2.55)

Then, for all 0 < t ≤ 1 and n = 1, 2, 3, . . . , we have

e−HtPA(ε),B(ε)ϕn(ε)− PA(ε),B(ε)e
−H(ε)tϕn(ε)

=
( kp−1∑

`=1

+
kp∑

`=kp−1+1

+
∞∑

`=kp+1

)
bn,`(ε)(e−µ`t − e−µn(ε)t)ϕ`

= A+B + C.

(2.56)

By (A28) and the orthogonality of {ϕ`}∞`=1 we have

lim
ε↓0

‖A‖H = lim
ε↓0

‖B‖H = lim
ε↓0

‖C‖H = 0. (2.57)

For n = kp−1 + 1, . . . , kp + 1, (2.55) and (2.57) imply

lim
m→∞

{ kp−1∑
`=1

bn,`(εm)2 +
∞∑

`=kp+1

bn,`(εm)2
}

= 0. (2.58)

Using (A28) and (2.58) we obtain

lim
m→∞

∥∥ kp∑
`=kp−1+1

bn,`(εm)ϕ`

∥∥
H = 1 (2.59)

for all n = kp−1 + 1, . . . , kp + 1.
For σ, τ ∈ {kp−1 + 1, . . . , kp + 1} with σ 6= τ , we have

0 = 〈ϕσ(ε), ϕτ (ε)〉A(ε)

= 〈PA(ε),B(ε)ϕσ(ε), PA(ε),B(ε)ϕτ (ε)〉B(ε)

+ 〈PA(ε),C(ε)⊕D(ε)ϕσ(ε), PA(ε),C(ε)⊕D(ε)ϕτ (ε)〉C(ε)⊕D(ε)

(2.60)

and since

1 = ‖ϕσ(ε)‖2A(ε) = ‖PA(ε),B(ε)ϕσ(ε)‖2B(ε) + ‖PA(ε),C(ε)⊕D(ε)ϕσ(ε)‖2C(ε)⊕D(ε) (2.61)

and
lim
ε↓0

‖PA(ε),B(ε)ϕσ(ε)‖2B(ε) = 1, (2.62)

we have
lim
ε↓0
〈PA(ε),B(ε)ϕσ(ε), PA(ε),B(ε)ϕτ (ε)〉B(ε) = 0. (2.63)

Hence, from (2.54), (2.58), (2.59) and (2.63), we have

lim
m→∞

〈 kp∑
`=kp−1+1

bσ,`(εm)ϕ`,

kp∑
`=kp−1+1

bτ,`(εm)ϕ`

〉
H

= 0. (2.64)
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For n = kp−1 + 1, . . . , kp + 1 and m = 1, 2, 3, . . . let

un(m) =
kp∑

`=kp−1+1

bn,`(εm)ϕ`. (2.65)

Then we have a set of kp + 1 − kp−1 vectors {ukp−1+1(m), . . . , ukp+1(m)} in a
(kp−kp−1)-dimensional inner product space spanned by the set {ϕkp−1+1, . . . , ϕkp}
which, by (2.59) and (2.64), is almost orthonormal. This gives a contradiction.
Hence (2.55) cannot be true and the lemma is proved. �

Lemma 2.24. Let p ≥ 2 be an integer. Suppose that limε↓0 µi(ε) = µi for i =
1, 2, . . . , kp. Then

lim
ε↓0

µkp+1(ε) = µkp+1.

Proof. For 0 < ε ≤ ε0 let

PH,B(ε)ϕkp+1 =
∞∑

`=1

β`(ε)ϕ`(ε) (2.66)

regarded as a vector in A(ε) and let

fkp+1(ε) = PH,B(ε)ϕkp+1 −
kp∑

`=1

β`(ε)ϕ`(ε) ∈ A(ε). (2.67)

Then

e−µkp+1(ε)t

≥ ‖fkp+1(ε)‖−2
A(ε)〈e

−H(ε)tfkp+1(ε), fkp+1(ε)〉A(ε)

= ‖fkp+1(ε)‖−2
A(ε)

〈
e−H(ε)tPH,B(ε)ϕkp+1 −

kp∑
`=1

β`(ε)e−µ`(ε)tϕ`(ε),

PH,B(ε)ϕkp+1 −
kp∑

`=1

β`(ε)ϕ`(ε)
〉
A(ε)

= ‖fkp+1(ε)‖−2
A(ε)

{
〈e−H(ε)tPH,B(ε)ϕkp+1, PH,B(ε)ϕkp+1〉A(ε)

− 2
〈 kp∑

`=1

β`(ε)e−µ`(ε)tϕ`(ε), PH,B(ε)ϕkp+1

〉
A(ε)

+
kp∑

`=1

e−µ`(ε)tβ`(ε)2
}

= ‖fkp+1(ε)‖−2
A(ε)

{
〈e−H(ε)tPH,B(ε)ϕkp+1 − PH,B(ε)e

−Htϕkp+1,

PH,B(ε)ϕkp+1〉A(ε) + 〈PH,B(ε)e
−Htϕkp+1, PH,B(ε)ϕkp+1〉A(ε)

−
kp∑

`=1

e−µ`(ε)tβ`(ε)2
}

(2.68)

= ‖fkp+1(ε)‖−2
A(ε)

{
〈e−H(ε)tPH,B(ε)ϕkp+1 − PH,B(ε)e

−Htϕkp+1,

PH,B(ε)ϕkp+1〉A(ε) + e−µkp+1t
∞∑

`=1

β`(ε)2
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−
kp∑

`=1

e−µ`(ε)tβ`(ε)2
}
.

Now

e−H(ε)tPH,B(ε)ϕkp+1 − PH,B(ε)e
−Htϕkp+1

=
∞∑

`=1

β`(ε)(e−µ`(ε)t − e−µkp+1t)ϕ`(ε).
(2.69)

So, by (A28), we have

lim
ε↓0

∞∑
`=1

β`(ε)2(e−µ`(ε)t − e−µkp+1t)2 = 0, (2.70)

in particular

lim
ε↓0

kp∑
`=1

β`(ε)2(e−µ`(ε)t − e−µkp+1t)2 = 0. (2.71)

But for ` = 1, . . . , kp we have, by assumption, limε↓0 µ`(ε) = µ`. Hence (2.71)
implies

lim
ε↓0

kp∑
`=1

β`(ε)2 = 0. (2.72)

So, by (A7), (2.67) and (2.72), we have

lim
ε↓0

∞∑
`=kp+1

β`(ε)2 = lim
ε↓0

‖fkp+1(ε)‖2A(ε) = 1. (2.73)

From (2.68), (2.69), (2.70), (2.72), (A7) and (2.66), we have for all δ > 0 there
exists ε1 ∈ (0, ε0] such that

e−µkp+1(ε)t ≥ e−µkp+1t − δ (2.74)

for all ε ∈ (0, ε1].
Next we prove the reverse inequality of (2.74). For i = 1, 2, 3, . . . and ε ∈ (0, ε0],

let

PA(ε),B(ε)ϕi(ε) =
∞∑

`=1

γi,`(ε)ϕ` ∈ B(ε) ⊆ H (2.75)

and let

gkp+1(ε) = PA(ε),B(ε)ϕkp+1(ε)−
kp∑

`=1

γkp+1,`(ε)ϕ`. (2.76)

Then

e−µkp+1t

≥ ‖gkp+1(ε)‖−2
H 〈e−Htgkp+1(ε), gkp+1(ε)〉H

= ‖gkp+1(ε)‖−2
H {〈e−HtPA(ε),B(ε)ϕkp+1(ε), PA(ε),B(ε)ϕkp+1(ε)〉H

− 2
〈
e−HtPA(ε),B(ε)ϕkp+1(ε),

kp∑
`=1

γkp+1,`(ε)ϕ`

〉
H
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+
〈
e−Ht

kp∑
`=1

γkp+1,`
(ε)ϕ`,

kp∑
`=1

γkp+1,`(ε)ϕ`

〉
H

}
= ‖gkp+1(ε)‖−2

H

{
〈e−HtPA(ε),B(ε)ϕkp+1(ε)− PA(ε),B(ε)e

−H(ε)tϕkp+1(ε),

PA(ε),B(ε)ϕkp+1(ε)〉H + 〈PA(ε),B(ε)e
−H(ε)tϕkp+1(ε),

PA(ε),B(ε)ϕkp+1(ε)〉H − 2
kp∑

`=1

e−µ`tγkp+1,`(ε)2

+
kp∑

`=1

e−µ`tγkp+1,`(ε)2
}

(2.77)

= ‖gkp+1(ε)‖−2
H

{
〈e−HtPA(ε),B(ε)ϕkp+1(ε)− PA(ε),B(ε)e

−H(ε)tϕkp+1(ε),

PA(ε),B(ε)ϕkp+1(ε)〉H + e−µkp+1(ε)t
∞∑

`=1

γkp+1,`(ε)2

−
kp∑

`=1

e−µ`tγkp+1,`(ε)2
}
.

Now, by (A28),

‖e−HtPA(ε),B(ε)ϕkp+1(ε)− PA(ε),B(ε)e
−H(ε)tϕkp+1(ε)‖2H

=
∞∑

`=1

γkp+1,`(ε)2(e−µ`t − e−µkp+1(ε)t)2 → 0 as ε ↓ 0,
(2.78)

in particular we have

lim
ε↓0

kp∑
`=1

γkp+1,`(ε)2(e−µ`t − e−µkp+1(ε)t)2 = 0. (2.79)

But, by Lemma 2.23, there exists η > 0 such that for all sufficiently small ε > 0 we
have

µkp+1(ε) ≥ µkp + η. (2.80)
Thus, from (2.79) and (2.80), we have

lim
ε↓0

kp∑
`=1

γkp+1,`(ε)2 = 0. (2.81)

Hence, by (A28), (2.81) and (2.76), we obtain

lim
ε↓0

‖gkp+1(ε)‖H = 1. (2.82)

Therefore, by (2.75), (2.77), (2.81), (2.82) and (A28), given any δ > 0, there exists
ε1 ∈ (0, ε0] such that

e−µkp+1t ≥ e−µkp+1(ε)t − δ (2.83)
for all ε ∈ (0, ε1]. The lemma now follows from (2.74) and (2.83). �

Theorem 2.25. For all i = 1, 2, 3, . . . , we have limε↓0 µi(ε) = µi.

The above theorem follows from Theorem 2.20, and Lemmas 2.22 and 2.24.
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Theorem 2.26. For all j = 1, 2, 3, . . . and ε ∈ (0, ε0] let

PH,B(ε)ϕj =
∞∑

`=1

aj,`(ε)ϕ`(ε) ∈ B(ε) ⊆ A(ε). (2.84)

Let p ≥ 1 be an integer. For i = kp + 1, . . . , kp+1 and ε ∈ (0, ε0] let

ψ̂i(ε) = PA(ε),B(ε)

( kp+1∑
`=kp+1

ai,`(ε)ϕ`(ε)
)

(2.85)

and let
ψi(ε) = ‖ψ̂i(ε)‖−1

B(ε)ψ̂i(ε). (2.86)

Then for each i = kp + 1, . . . , kp+1 we have

lim
ε↓0

‖ϕi − ψi(ε)‖H = 0. (2.87)

Proof. For i = kp + 1, . . . , kp+1 and ε ∈ (0, ε0] we have

‖ϕi − ψi(ε)‖H
≤ ‖ϕi − PH,B(ε)ϕi‖H + ‖PH,B(ε)ϕi − ψ̂i(ε)‖B(ε) + ‖ψ̂i(ε)− ψi(ε)‖B(ε)

≤ ‖ϕi − PH,B(ε)ϕi‖H +
∥∥PH,B(ε)ϕi −

kp+1∑
`=kp+1

ai,`(ε)ϕ`(ε)
∥∥
A(ε)

+
∥∥ kp+1∑

`=kp+1

ai,`(ε)[ϕ`(ε)− PA(ε),B(ε)ϕ`(ε)]
∥∥
A(ε)

+ ‖ψ̂i(ε)− ψi(ε)‖B(ε).

(2.88)

Consider the term ∥∥PH,B(ε)ϕi −
kp+1∑

`=kp+1

ai,`(ε)ϕ`(ε)
∥∥
A(ε)

in (2.88). We have

e−H(ε)tPH,B(ε)ϕi − PH,B(ε)e
−Htϕi

=
( kp∑

`=1

+
kp+1∑

`=kp+1

+
∞∑

`=kp+1+1

)
ai,`(ε)[e−µ`(ε)t − e−µit]ϕ`(ε).

(2.89)

By (A28) and the orthogonality of {ϕ`(ε)}∞`=1, each of the three sums in (2.89)
approaches 0 as ε ↓ 0. Hence, together with Theorem 2.25, we have, for i =
kp + 1, . . . , kp+1, ( kp∑

`=1

+
∞∑

`=kp+1+1

)
ai,`(ε)2 → 0 as ε ↓ 0. (2.90)

Thus, for i = kp + 1, . . . , kp+1,

lim
ε↓0

∥∥PH,B(ε)ϕi −
kp+1∑

`=kp+1

ai,`(ε)ϕ`(ε)
∥∥2

A(ε)

= lim
ε↓0

( kp∑
`=1

+
∞∑

`=kp+1+1

)
ai,`(ε)2 = 0.

(2.91)
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By (A9) and (A28) we have

lim
ε↓0

‖ϕ`(ε)− PA(ε),B(ε)ϕ`(ε)‖A(ε) = 0

for all ` = 1, 2, 3, . . . . Thus

lim
ε↓0

∥∥ kp+1∑
`=kp+1

ai,`(ε)[ϕ`(ε)− PA(ε),B(ε)ϕ`(ε)]
∥∥
A(ε)

= 0. (2.92)

By (A7) and (2.91) we have, for i = kp + 1, . . . , kp+1,

lim
ε↓0

kp+1∑
`=kp+1

ai,`(ε)2 = 1. (2.93)

Thus, for i = kp + 1, . . . , kp+1, (2.85), (2.92) and (2.93) imply

lim
ε↓0

‖ψ̂i(ε)‖B(ε) = lim
ε↓0

‖ψ̂i(ε)‖A(ε)

= lim
ε↓0

∥∥(ψ̂i(ε)−
kp+1∑

`=kp+1

ai,`(ε)ϕ`(ε)
)

+
kp+1∑

`=kp+1

ai,`(ε)ϕ`(ε)
∥∥
A(ε)

= lim
ε↓0

∥∥ kp+1∑
`=kp+1

ai,`(ε)ϕ`(ε)
∥∥
A(ε)

= lim
ε↓0

{ kp+1∑
`=kp+1

ai,`(ε)2
}1/2

= 1.

(2.94)

Therefore,

lim
ε↓0

‖ψ̂i(ε)− ψi(ε)‖B(ε) = lim
ε↓0

|1− ‖ψ̂i(ε)‖−1
B(ε)|‖ψ̂i(ε)‖B(ε) = 0. (2.95)

The theorem now follows from (2.88), (A7), (2.91), (2.92) and (2.95). �

3. Application to Neumann Laplacians on domains in RN

The purpose of this section is to show that the assumptions (A1)–(A28) in Sec-
tion 2 are all satisfied when applying the abstract theory in Section 2 to the situation
studied in this section. For our application, it will be easy to check that (A1)–(A27)
are satisfied. So we shall show that (A28) holds for our application. Throughout
this section we let Ω ⊆ RN be a bounded Sobolev extension domain. Fix a suffi-
ciently small ε0 > 0. For each ε ∈ (0, εo] let Ωε, Ωε and Ω(ε) be bounded Sobolev
extension domains in RN satisfying

Ωε ⊇ {x ∈ Ω : dist(x, ∂Ω) > ε},
Ωε ⊆ {x ∈ RN : dist(x,Ω) < ε},

Ωε ⊆ Ω(ε) ⊆ Ωε.

(3.1)

We shall assume that {Ωε}0<ε≤ε0 is a decreasing family of domains in the sense
that

Ωε1 ⊇ Ωε2 if 0 < ε1 ≤ ε2. (3.2)
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Similarly we shall assume that {Ωε}0<ε≤ε0 is an increasing family of domains in the
sense that

Ωε1 ⊆ Ωε2 if 0 < ε1 ≤ ε2. (3.3)

We shall apply the abstract theory in Section 2 by putting:

Hε = L2(Ωε), Hε = L2(Ωε), H(ε) = L2(Ω(ε)) = A(ε),

B(ε) = L2(Ω ∩ Ω(ε)), C(ε) = L2(Ω(ε)\Ω), D(ε) = {0}.
(3.4)

Let −∆ε, −∆, −∆ε, −∆(ε) be the Neumann Laplacian defined on Ωε, Ω, Ωε and
Ω(ε), respectively. When applying the abstract theory in Section 2 we shall put

Hε = −∆ε, H = −∆, Hε = −∆ε, H(ε) = −∆(ε). (3.5)

We shall write Pε(t, x, y), P (t, x, y), P ε(t, x, y) and P (ε)(t, x, y) for the heat kernel
of e∆εt, e∆t, e∆

εt and e∆(ε)t, respectively. We shall assume that there exists a
positive continuous functions c : (0, 1] → (0,∞) such that

Pε(t, x, y) ≤ c(t) (x, y ∈ Ωε),

P (t, x, y) ≤ c(t) (x, y ∈ Ω),

P ε(t, x, y) ≤ c(t) (x, y ∈ Ωε)

P (ε)(t, x, y) ≤ c(t) (x, y ∈ Ω(ε))

(3.6)

for all 0 < ε ≤ ε0 and all 0 < t ≤ 1.
We shall need the parabolic Harnack inequality:

Proposition 3.1 ([6, Lemma 4.10]). Let Σ be a domain in Rd, let u be a solution
of the parabolic equation:

∂u

∂t
− ω−1

d∑
i,j=1

{ ∂

∂xi
(aij

∂u

∂xj
)} = 0

in Σ× (τ1, τ2), where ω and {aij} satisfy

0 < λ−1 ≤ ω(x) ≤ λ <∞ (x ∈ Σ),

0 < λ−1 ≤ {aij(x)} ≤ λ <∞ (x ∈ Σ),

for some λ ≥ 1. Let Σ′ be a subdomain of Σ and suppose that dist(Σ′, ∂Σ) > η and
t1 − τ1 ≥ η2. Then

|u(x, t)− u(y, s)| ≤ A[|x− y|+ |t− s|1/2]α

for all x, y ∈ Σ′ and t, s ∈ [t1, τ2), where α ∈ (0, 1] depends only on d and λ, and

A =
(4
η

)α
θ

where θ is the oscillation of u in Σ× (τ1, τ2).

Theorem 3.2. We have limε↓0 P (ε)(t, x, y) = P (t, x, y) for all t ∈ (0, 1] and x, y ∈
Ω.

Proof. Suppose, for a contradiction, that for some t0 ∈ (0, 1] and some x0, y0 ∈ Σ
we have

P (ε)(to, x0, y0) 6→ P (to, xo, yo) as ε ↓ 0. (3.7)
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Then there exist c1 ≥ 1 and a decreasing sequence {εn}∞n=1 of positive numbers
such that εn ↓ 0 as n→∞ and that

c−1
1 ≤ |P (εn)(t0, x0, y0)− P (t0, x0, y0)| (n = 1, 2, 3, . . . ). (3.8)

Applying Proposition 3.1 with

Σ = B
(
x0,

5
8

dist(x0, ∂Ω)
)
, Σ′ = B

(
x0,

1
8

dist(x0, ∂Ω)
)
,

u(t, x) = P (t, x, y0), λ = 1, τ1 =
1
4
t0, τ2 = 1, t1 =

1
2
t0,

η = min
{3

8
dist(x0, ∂Ω),

1
2
t
1/2
0

}
,

(3.9)

we obtain, for all s, t ∈ (t1, τ2) = (t0/2, 1) and all x ∈ B(x0,dist(x0, ∂Ω)/8),

|P (t, x, y0)− P (s, x0, y0)| ≤ A[|x− x0|+ |t− s|1/2]α (3.10)

where α ∈ (0, 1] depends only on N and

A =
(4
η

)α
θ (3.11)

where
θ = sup

1
4 t0≤t≤1

c(t). (3.12)

(Hence A depends only on N , dist(x0, ∂Ω) and t0.) We may assume that, for all
n = 1, 2, 3, . . . , we have

0 < εn < min{3
8

dist(x0, ∂Ω),
3
8

dist(y0, ∂Ω)}.

By a similar argument we deduce that

|P (εn)(t, x, y0)− P (εn)(s, x0, y0)| ≤ A[|x− x0|+ |t− s|1/2]α (3.13)

for all s, t ∈ (t1, τ2) = (t0/2, 1), all x ∈ B(x0,dist(x0, ∂Ω)/8) and all n = 1, 2, 3, . . . ,
and where α and A in (3.13) have the same values as those in (3.10). Let

R = min
{
(4Ac1)−

1
α ,

1
8

dist(x0, ∂Ω)
}
. (3.14)

Then, for all x ∈ B(x0, R), t ∈ (t0/2, 1) and n = 1, 2, 3, . . . , we have

|P (t, x, y0)− P (t, x0, y0)| ≤ (4c1)−1, (3.15)

|P (εn)(t, x, y0)− P (εn)(t, x0, y0)| ≤ (4c1)−1. (3.16)

For x ∈ B(x0, R) and n = 1, 2, 3, . . . we have

|P (εn)(t0, x0, y0)− P (t0, x0, y0)|
≤ |P (εn)(t0, x0, y0)− P (εn)(t0, x, y0)|+ |P (εn)(t0, x, y0)− P (t0, x, y0)|

+ |P (t0, x, y0)− P (t0, x0, y0)|.
(3.17)

So, by (3.8), (3.15), (3.16) and (3.17), we obtain

1
2
c−1
1 ≤ |P (εn)(t0, x, y0)− P (t0, x, y0)| (3.18)
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for all x ∈ B(x0, R) and n = 1, 2, 3, . . . . Integrating (3.18) over B(x0, R) we obtain

1
2
c−1
1 |B(x0, R)|

≤
∣∣∣ ∫

Ω

P (t0, x, y0)1B(x0,R)(x) dx−
∫

Ω(εn)

P (εn)(t0, x, y0)1B(x0,R)(x) dx
∣∣∣. (3.19)

Put

u(t, y) =
∫

Ω

P (t, x, y)1B(x0,R)(x) dx

and, for n = 1, 2, 3, . . . , put

un(t, y) =
∫

Ω(εn)

P (εn)(t, x, y)1B(x0,R)(x) dx.

Then u(t, y) and un(t, y) satisfy the parabolic equations

∂u

∂t
= ∆u in (0, 1)× Ω,

∂un

∂t
= ∆un in (0, 1)× Ω(εn),

respectively. So we can apply the parabolic Harnack inequality (Proposition 3.1)
to u(t, y) and un(t, y) and, as in (3.10) and (3.13), obtain

|u(t, y)− u(s, y0)| ≤ Ã[|y − y0|+ |t− s|1/2|α̃ (3.20)

for all y ∈ B(y0,dist(y0, ∂Ω)/8) and t, s ∈ (t0/2, 1), and

|un(t, y)− un(s, y0)| ≤ Ã[|y − y0|+ |t− s|1/2]α̃ (3.21)

for all y ∈ B(y0,dist(y0, ∂Ω)/8) and t, s ∈ (t0/2, 1) where α̃ ∈ (0, 1] depends only
on N and

Ã =
(4
η̃

)α̃
θ̃ ≤

(4
η̃

)α̃
where

η̃ = min{3
8

dist(y0, ∂Ω),
1
2
t
1/2
0 }

and

θ̃ = sup
{1

4
t0 ≤ t ≤ 1, |y − y0| ≤

5
8

dist(y0, ∂Ω) : u(t, y)
}

≤ sup
{1

4
t0 ≤ t ≤ 1, |y − y0| ≤

5
8

dist(y0, ∂Ω) :
∫

Ω

P (t, x, y) dx
}
≤ 1.

(Hence Ã depends only on N , t0 and dist(y0, ∂Ω).) Let

R̃ = min
{[1

8
|B(x0, R)|c−1

1 Ã−1
] 1

α̃ ,
1
8

dist(y0, ∂Ω)
}
.

Then, by (3.20) and (3.21),

|u(t0, y)− u(t0, y0)| ≤
1
8
|B(x0, R)|c−1

1 , (3.22)

|un(t0, y)− un(t0, y0)| ≤
1
8
|B(x0, R)|c−1

1 (3.23)
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for all y ∈ B(y0, R̃). Thus, for all y ∈ B(y0, R̃), we have

|un(t0, y0)− u(t0, y0)|
≤ |un(t0, y0)− un(t0, y)|+ |un(t0, y)− u(t0, y)|+ |u(t0, y)− u(t0, y0)|

≤ 1
4
|B(x0, R)|c−1

1 + |un(t0, y)− u(t0, y)|.
(3.24)

So, by (3.19) and (3.24), we have

1
4
|B(x0, R)|c−1

1 ≤ |un(t0, y)− u(t0, y)| (3.25)

for all y ∈ B(y0, R̃). But

un(t0, y) =
∫

Ω(εn)

P (εn)(t0, x, y)1B(x0,R)(x) dx = (e−H(εn)t0 1B(x0,R))(y)

and

u(t0, y) =
∫

Ω

P (t0, x, y)1B(x0,R)(x) dx = (e−Ht0 1B(x0,R))(y).

Thus (3.25) implies∫
B(y0,R̃)

|(e−H(εn)t01B(x0,R))(y)− (e−Ht01B(x0,R))(y)|2 dy

≥ 1
16
c−2
1 |B(x0, R)|2|B(y0, R̃)|,

hence, for all n = 1, 2, 3, . . . ,

‖e−H(εn)t01B(x0,R) − e−Ht01B(x0,R)‖2L2(B(y0,R̃))

≥ 1
16
c−2
1 |B(x0, R)|2|B(y0, R̃)|.

(3.26)

Let f ∈ L2(Ωε0) be the function defined by

f(y) =

{
1 if |y − x0| < R

0 if y ∈ Ωε0 and |y − x0| ≥ R.

By Theorem 2.17 we have, for all n = 1, 2, 3, . . . ,

lim
ε↓0

‖e−Ĥ(ε)t0f − e−Ĥt0f‖L2(B(y0,R̃)) ≤ lim
ε↓0

‖e−Ĥ(ε)t0f − e−Ĥt0f‖L2(Ωε0 ) = 0,

thus

lim
ε↓0

∫
B(y0,R̃)

|(e−H̃(ε)t0f)(y)− (e−Ĥt0f)(y)|2 dy = 0

and hence

lim
ε↓0

∫
B(y0,R̃)

|(e−H(ε)t01B(x0,R))(y)− (e−Ht1B(x0,R))(y)|2 dy = 0.

But this implies

lim
n→∞

‖e−H(εn)t01B(x0,R) − e−Ht01B(x0,R)‖2L2(B(y0,R̃))
= 0

which contradicts (3.26). Therefore assumption (3.7) must be false and the theorem
is proved. �
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We now show that the first equality of the assumption (A28) is satisfied. We
note that for any f ∈ H = L2(Ω).

PH,B(ε)f = PL2(Ω),L2(Ω∩Ω(ε))f = 1Ω∩Ω(ε)f.

Thus for all ε ∈ (0, ε0], x ∈ Ω(ε) and n = 1, 2, 3, . . . ,

[PH,B(ε)e
−Htϕn − e−H(ε)tPH,B(ε)ϕn](x)

= 1Ω∩Ω(ε)(x)
∫

Ω

P (t, x, y)ϕn(y) dy −
∫

Ω(ε)

P (ε)(t, x, y)1Ω∩Ω(ε)(y)ϕn(y) dy

= 1Ω∩Ω(ε)(x)
(∫

Ω\Ω(ε)

+
∫

Ω∩Ω(ε)

)
P (t, x, y)ϕn(y) dy

−
(∫

Ω(ε)\Ω
+
∫

Ω∩Ω(ε)

)
P (ε)(t, x, y)1Ω∩Ω(ε)(y)ϕn(y) dy

= 1Ω∩Ω(ε)(x)
∫

Ω\Ω(ε)

P (t, x, y)ϕn(y) dy

+
∫

Ω∩Ω(ε)

1Ω∩Ω(ε)(x)P (t, x, y)ϕn(y)− P (ε)(t, x, y)1Ω∩Ω(ε)(y)ϕn(y) dy

(3.27)

since ∫
Ω(ε)\Ω

P (ε)(t, x, y)1Ω∩Ω(ε)(y)ϕn(y) dy = 0.

Let B be a ball such that B ⊆ Ωε (0 < ε ≤ ε0). For each k = 1, 2, 3, . . . let λk(ε)
and λk(B) be the k-th eigenvalue of the Dirichlet Laplacian defined on Ω(ε) and
B, respectively. Then, by min-max,

µk(ε) ≤ λk(ε) ≤ λk(B). (3.28)

By the assumption (3.6), we have
∞∑

k=1

e−µk(ε)tϕk(ε)(x)2 ≤ c(t)

for all 0 < t ≤ 1, 0 < ε ≤ ε0 and x ∈ Ω(ε). Hence

|ϕk(ε)(x)| ≤ [c(t)eµk(ε)t]1/2 ≤ c(t)1/2eλk(B)t/2 (3.29)

for all 0 < ε ≤ ε0, x ∈ Ω(ε), 0 < t ≤ 1 and k = 1, 2, 3, . . . . Similarly we have

|ϕk(x)| ≤ c(t)1/2eλk(B)t/2 (3.30)

for all 0 < t ≤ 1, x ∈ Ω and k = 1, 2, 3, . . . . Since

|Ω\Ω(ε)| ≤ |Ω\Ωε| → 0 as ε ↓ 0,

we have, for all 0 < t ≤ 1,

|1Ω∩Ω(ε)(x)
∫

Ω\Ω(ε)

P (t, x, y)ϕn(y) dy| ≤ c(t)|Ω\Ω(ε)|c(1)1/2eλn(B)/2 → 0 as ε ↓ 0 .

(3.31)
Next we consider the term∫

Ω∩Ω(ε)

[1Ω∩Ω(ε)(x)P (t, x, y)− P (ε)(t, x, y)]ϕn(y) dy
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in (3.27). Let 0 < ε1 < ε0. For 0 < ε ≤ ε1, x ∈ Ω ∩ Ω(ε) and n = 1, 2, 3, . . . , by
(3.30), we have∣∣∣ ∫

Ω∩Ω(ε)

[1Ω∩Ω(ε)(x)P (t, x, y)− P (ε)(t, x, y)]ϕn(y) dy
∣∣∣

≤
∫

Ω∩Ω(ε)

|P (t, x, y)− P (ε)(t, x, y)||ϕn(y)| dy

≤ c(1)1/2eλn(B)/2

∫
Ω∩Ω(ε)

|P (t, x, y)− P (ε)(t, x, y)| dy

≤ c(1)1/2eλn(B)/2
{∫

(Ω∩Ω(ε))\Ωε1

|P (t, x, y)− P (ε)(t, x, y)| dy

+
∫

Ωε1

|P (t, x, y)− P (ε)(t, x, y)| dy
}

≤ c(1)1/2eλn(B)/2{|Ωε1\Ωε1 |2c(t) +
∫

Ωε1

|P (t, x, y)− P (ε)(t, x, y)| dy
}
.

(3.32)

For x ∈ Ω(ε)\Ω, 0 < t ≤ 1 and n = 1, 2, 3, . . . , we have∣∣∣ ∫
Ω∩Ω(ε)

[1Ω∩Ω(ε)(x)P (t, x, y)− P (ε)(t, x, y)]ϕn(y) dy
∣∣∣

=
∫

Ω∩Ω(ε)

P (ε)(t, x, y)ϕn(y) dy

≤ |Ω ∩ Ω(ε)|c(t)c(1)1/2eλn(B)/2.

(3.33)

For every 0 < t ≤ 1, 0 < ε ≤ ε0 and n = 1, 2, 3, . . . ,∫
Ω(ε)

|(PH,B(ε)e
−Htϕn − e−H(ε)tPH,B(ε)ϕn)(x)|2 dx

=
∫

Ω(ε)\Ω
|(PH,B(ε)e

−Htϕn − e−H(ε)tPH,B(ε)ϕn)(x)|2 dx

+
∫

Ω(ε)∩Ω

|(PH,B(ε)e
−Htϕn − e−H(ε)tPH,B(ε)ϕn)(x)|2 dx.

(3.34)

For the first term on the right side of (3.34) we have, by (3.27), (3.30) and (3.33),∫
Ω(ε)\Ω

|(PH,B(ε)e
−Htϕn − e−H(ε)tPH,B(ε)ϕn)(x)|2 dx

≤ |Ωε\Ω|{|Ω ∩ Ω(ε)|c(t)c(1)1/2eλn(B)/2}2 → 0 as ε ↓ 0.
(3.35)

Next we consider the second term on the right side of (3.34). For t ∈ (0, 1],
n = 1, 2, 3, . . . and ε ∈ (0, ε0] let Ft,n,ε : Ω → R be defined by

Ft,n,ε(x) =

{
0 if x ∈ Ω\Ω(ε)
|(PH,B(ε)e

−Htϕn − e−H(ε)tPH,B(ε)ϕn)(x)|2 if x ∈ Ω ∩ Ω(ε).
(3.36)

If 0 < ε ≤ ε1 ≤ ε0 and x ∈ Ω ∩ Ω(ε), then

Ft,n,ε(x) ≤ {|Ω\Ω(ε)|c(t)c(1)1/2eλn(B)/2 + c(1)1/2eλn(B)/2[|Ω\Ωε1 |2c(t)

+
∫

Ωε1

|P (t, x, y)− P (ε)(t, x, y)| dy]}2.
(3.37)
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For fixed t ∈ (0, 1], n = 1, 2, 3, . . . and x ∈ Ω, given any δ > 0 we can first choose
ε1 ∈ (0, ε0] such that

c(1)1/2eλn(B)/2|Ω\Ωε1 |2c(t) ≤ δ/2,

then, by Theorem 3.2, we can choose ε2 ∈ (0, ε1] such that

c(1)1/2eλn(B)/2

∫
Ωε1

|P (t, x, y)− P (ε)(t, x, y)| dy ≤ δ/2

for all ε ∈ (0, ε2]. Thus for all t ∈ (0, 1], n = 1, 2, 3, . . . and x ∈ Ω, we have

lim
ε↓0

Ft,n,ε(x) = 0. (3.38)

From (3.37) we see that

Ft,n,ε(x) ≤ [c(1)1/2eλn(B)/25c(t)|Ω|]2 (3.39)

for all t ∈ (0, 1], n = 1, 2, 3, . . . , ε ∈ (0, ε0] and x ∈ Ω. Therefore, by (3.38), (3.39)
and the dominated convergence theorem, we have

lim
ε↓0

∫
Ω∩Ω(ε)

|(PH,B(ε)e
−Htϕn − e−H(ε)tPH,B(ε)ϕn)(x)|2 dx

= lim
ε↓0

∫
Ω

Ft,n,ε(x) dx = 0
(3.40)

for all t ∈ (0, 1] and n = 1, 2, 3, . . . . So

‖PH,B(ε)e
−Htϕn − e−H(ε)tPH,B(ε)ϕn‖2A(ε)

=
∫

Ω(ε)

|(PH,B(ε)e
−Htϕn − e−H(ε)tPH,B(ε)ϕn)(x)|2 dx

=
∫

Ω(ε)\Ω
|(PH,B(ε)e

−Htϕn − e−H(ε)tPH,B(ε)ϕn)(x)|2 dx

+
∫

Ω(ε)∩Ω

|(PH,B(ε)e
−Htϕn − e−H(ε)tPH,B(ε)ϕn)(x)|2 dx

≤ |Ω(ε)\Ω|{|Ω ∩ Ω(ε)|c(t)c(1)1/2eλn(B)/2}2

+
∫

Ω(ε)∩Ω

|(PH,B(ε)e
−Htϕn − e−H(ε)tPH,B(ε)ϕn)(x)|2 dx

→ 0 as ε ↓ 0

(3.41)

where we have used (3.27), (3.33) and (3.40). Hence the first equality in (A28)
holds in this application.

We next consider the second equality in (A28). For x ∈ Ω, t ∈ (0, 1] and
n = 1, 2, 3, . . . we have

(e−HtPA(ε),B(ε)ϕn(ε)− PA(ε),B(ε)e
−H(ε)tϕn(ε))(x)

=
∫

Ω∩Ω(ε)

P (t, x, y)ϕn(ε)(y) dy − 1Ω∩Ω(ε)(x)ft,n,ε(x)
(3.42)

where

ft,n,ε(x) =

{
0 if x ∈ Ω\Ω(ε)∫
Ω(ε)

P (ε)(t, x, y)ϕn(ε)(y) dy if x ∈ Ω ∩ Ω(ε).
(3.43)
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So for x ∈ Ω\Ω(ε), t ∈ (0, 1], n = 1, 2, 3, . . . and ε ∈ (0, ε0], by (3.30), we have

|(e−HtPA(ε),B(ε)ϕn(ε)− PA(ε),B(ε)e
−H(ε)tϕn(ε))(x)|

=
∣∣∣ ∫

Ω∩Ω(ε)

P (t, x, y)ϕn(ε)(y) dy
∣∣∣

≤ |Ω ∩ Ω(ε)|c(t)c(1)1/2eλn(B)/2.

(3.44)

For t ∈ (0, 1], n = 1, 2, 3, . . . and ε ∈ (0, ε0] we define Gt,n,ε : Ω → R by

Gt,n,ε(x) =

{
0 if x ∈ Ω\Ω(ε)
|(e−HtPA(ε),B(ε)ϕn(ε)− PA(ε),B(ε)e

−H(ε)tϕn(ε))(x)| if x ∈ Ω ∩ Ω(ε).
(3.45)

If 0 < ε ≤ ε1 ≤ ε0 and x ∈ Ω ∩ Ω(ε), then

Gt,n,ε(x) =
∣∣∣ ∫

Ω∩Ω(ε)

[P (t, x, y)− P (ε)(t, x, y)]ϕn(ε)(y) dy

−
∫

Ω(ε)\Ω
P (ε)(t, x, y)ϕn(ε)(y) dy

∣∣∣
≤
∣∣∣ ∫

(Ω∩Ω(ε))\Ωε1

[P (t, x, y)− P (ε)(t, x, y)]ϕn(ε)(y) dy
∣∣∣

+
∣∣∣ ∫

Ωε1

[P (t, x, y)− P (ε)(t, x, y)]ϕn(ε)(y) dy
∣∣∣

+
∣∣∣ ∫

Ω(ε)\Ω
P (ε)(t, x, y)ϕn(ε)(y) dy

∣∣∣
≤ c(1)1/2eλn(B)/2{|Ωε1\Ωε1 |3c(t)

+
∫

Ωε1

|P (t, x, y)− P (ε)(t, x, y)| dy}.

(3.46)

Thus, for fixed t ∈ (0, 1], n = 1, 2, 3, . . . and x ∈ Ω, given any δ > 0 we can first
choose ε1 ∈ (0, ε0] such that

c(1)1/2eλn(B)/2|Ωε1\Ωε1 |3c(t) ≤ δ/2,

then, by Theorem 3.2, we can find ε2 ∈ (0, ε1] such that

c(1)1/2eλn(B)/2

∫
Ωε1

|P (t, x, y)− P (ε)(t, x, y)| dy ≤ δ/2

for all ε ∈ (0, ε2]. Therefore, for all t ∈ (0, 1], n = 1, 2, 3, . . . and x ∈ Ω, we have

lim
ε↓0

Gt,n,ε(x) = 0. (3.47)

Also, from (3.46), we have, for all t ∈ (0, 1], n = 1, 2, 3, . . . , ε ∈ (0, ε0] and x ∈ Ω,

Gt,n,ε(x) ≤ c(1)1/2eλn(B)/25c(t)|Ωε0 |. (3.48)

Hence we have

lim
ε↓0

∫
Ω∩Ω(ε)

|(e−HtPA(ε),B(ε)ϕn(ε)− PA(ε),B(ε)e
−H(ε)tϕn(ε))(x)|2 dx

= lim
ε↓0

∫
Ω

Gt,n,ε(x)2 dx = 0
(3.49)
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for all t ∈ (0, 1] and n = 1, 2, 3, . . . , using (3.45), (3.47), (3.48) and the dominated
convergence theorem. So, for all t ∈ (0, 1] and n = 1, 2, 3, . . . , we have

‖e−HtPA(ε),B(ε)ϕn(ε)− PA(ε),B(ε)e
−H(ε)tϕn(ε)‖2H

=
∫

Ω

|(e−HtPA(ε),B(ε)ϕn(ε)− PA(ε),B(ε)e
−H(ε)tϕn(ε))(x)|2 dx

=
(∫

Ω\Ω(ε)

+
∫

Ω∩Ω(ε)

)
|(e−HtPA(ε),B(ε)ϕn(ε)− PA(ε),B(ε)e

−H(ε)tϕn(ε))(x)|2 dx

≤ |Ω\Ω(ε)|(|Ω ∩ Ω(ε)|c(t)c(1)1/2eλn(B)/2)2

+
∫

Ω∩Ω(ε)

|(e−HtPA(ε),B(ε)ϕn(ε)− PA(ε),B(ε)e
−H(ε)tϕn(ε))(x)|2 dx

→ 0 as ε ↓ 0

where we have used (3.44) and (3.49). Hence the second equality of (A28) holds in
this application.

Finally we consider the third equality in (A28). For ε ∈ (0, ε0] and n = 1, 2, 3, . . .
we have

ϕn(ε) = 1Ω(ε)\Ωϕn(ε) + 1Ω(ε)∩Ωϕn(ε).

By (3.30) we have∫
Ω(ε)\Ω

|ϕn(ε)(x)|2 dx ≤ |Ωε\Ω|c(1)eλn(B) → 0 as ε ↓ 0.

Since ‖ϕn(ε)‖2A(ε) = 1, we must have

‖PA(ε),B(ε)ϕn(ε)‖2H =
∫

Ω∩Ω(ε)

|ϕn(ε)(x)|2 dx→ 1 as ε ↓ 0,

hence the third equality of (A28) holds in this application.

Theorem 3.3. We use the notation in Section 2. In particular, we shall use the
notation in Definition 2.21 and Theorem 2.26. Let K be a compact subset of Ω.
Then we have

lim
ε↓0

{
sup
x∈K

|ϕi(x)− ψi(ε)(x)|
}

= 0 (3.50)

for all i = 1, 2, 3, . . . .

Proof. We need to consider only i ≥ 2. Let p ≥ 1 be an integer and let

kp + 1 ≤ i ≤ kp+1.

We assume, for a contradiction, that (3.50) is false. Then there exist δ > 0 and a
decreasing sequence {εm}∞m=1 in (0, ε0/2], with limm→∞ εm = 0, and a sequence of
points {xm}∞m=1 in K such that

|ϕi(xm)− ψi(εm)(xm)| ≥ δ (m = 1, 2, 3, . . . ). (3.51)

We can choose ε̂ ∈ (0,min{1, ε0}) such that

D = {x ∈ Ω : dist(x, ∂Ω) > ε̂} ⊇ K

and that, by Theorem 2.25,
|µ`(ε)− µi| ≤ 1 (3.52)
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for all ` = kp+1, . . . , kp+1 and ε ∈ (0, ε̂]. Applying the parabolic Harnack inequality,
Proposition 3.1, with Σ = Ω or Σ = Ω(ε) (0 < ε ≤ 1

2 ε̂), Σ′ = D, ω = 1, aij = δij ,
τ1 = 1, τ2 = 2, t1 = 5/4, η = 1

2 ε̂ and

u(x, t) = e−µitϕi(x) (1 < t < 2, x ∈ Ω) (3.53)

or

u(x, t) =
∥∥ kp+1∑

`=kp+1

ai,`(ε)ϕ`(ε)
∥∥−1

L2(Ω(ε))
ai,q(ε)e−µq(ε)tϕq(ε)(x) (3.54)

for x ∈ Ω(ε), 1 < t < 2, q = kp + 1, . . . , kp+1 and 0 < ε ≤ 1
2 ε̂, where

PH,B(ε)ϕi = 1Ω∩Ω(ε)ϕi =
∞∑

`=1

ai,`(ε)ϕ`(ε),

we see that there exists α ∈ (0, 1], depending only on N , such that

|ϕi(x)− ϕi(y)| ≤ A|x− y|α (x, y ∈ D) (3.55)

and, for ε ∈ (0, ε̂/2),

|ψi(ε)(x)− ψi(ε)(y)| ≤ A|x− y|α (x, y ∈ D), (3.56)

where (using (3.52)),

A = 2(8/ε̂)α(kp+1 − kp)c(1)1/2e(µi+1)/4 max{eλq(B)/2 : kp + 1 ≤ q ≤ kp+1}.

Note that the oscillation of u(x, t) = e−µitϕi(x) can be estimated using (3.30) as
follows:

e−µit|ϕi(x)| ≤ e−µic(1)1/2eλi(B)/2.

Similarly the oscillation of

u(x, t) =
∥∥ kp+1∑

`=kp+1

ai,`(ε)ϕ`(ε)
∥∥−1

L2(Ω(ε))
ai,q(ε)e−µq(ε)tϕq(ε)(x)

can be estimated by (3.29) as follows:

∥∥ kp+1∑
`=kp+1

ai,`(ε)ϕ`(ε)
∥∥−1

L2(Ω(ε))
ai,q(ε)e−µq(ε)tϕq(ε) ≤ e−µq(ε)c(1)1/2eλq(B)/2.

Let r = dist(K, ∂D) and

R = min{r,
(δ
6
)1/α

A−
1
α }.

Then for m = 1, 2, 3, . . . and all y ∈ D with |xm − y| ≤ R, by (3.55) and (3.56), we
have

|ϕi(xm)− ϕi(y)| ≤ δ/6, (3.57)

|ψi(εm)(xm)− ψi(εm)(y)| ≤ δ/6, (3.58)

and hence, by (3.51), (3.57) and (3.58),

|ϕi(y)− ψi(εm)(y)| ≥ |ϕi(xm)− ψi(εm)(xm)| − |ϕi(xm)− ϕi(y)|
− |ψi(εm)(y)− ψi(εm)(xm)|

≥ 2δ/3.
(3.59)
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Thus, for m = 1, 2, 3, . . . , we have∫
B(xm,R)

|ψi(εm)(y)− ϕi(y)|2 dy ≥ c2R
Nδ2

where c2 > 0 depends only on N . But this contradicts (2.89) of Theorem 2.26.
Therefore (3.50) must hold and the theorem is proved. �

4. Application to Koch snowflake

In this section we let Ω ⊆ R2 be the Koch snowflake. Let {Ωin(n)}∞n=1 be the
usual sequence of polygons approximating Ω from inside, with Ωin(1) being an equi-
lateral triangle. Let {Ωout(n)}∞n=1 be the usual sequence of polygons approximating
Ω from outside, with Ωout(1) being a regular hexagon.

We first recall the definition of (ε, δ)-domains (see [5]):

Definition 4.1. Let D be a domain in Rd and let ε > 0 and 0 < δ ≤ ∞. We
say that D is an (ε, δ)-domain if for any two distinct points p1, p2 ∈ D with
|p1 − p2| ≤ δ, there exists a rectifiable path Γ ⊆ D joining p1 to p2 satisfying the
following conditions:

(i) length (Γ) ≤ ε−1|p1 − p2|,
(ii) for all p ∈ Γ we have

dist(p, ∂D) ≥ ε|p1 − p2|−1|p− p1||p− p2|. (4.1)

We note that ifD is an (ε, δ)-domain, then any dilation ofD is also on (ε, δ)-domain.

We shall need the following result.

Proposition 4.2 ([7, Proposition 3.2]). There exist ε̂, δ̂ > 0, independent of n,
such that Ω× R and Ωin(n)× R, n = 1, 2, 3, . . . , are all (ε̂, δ̂)-domains in R3.

Our main result in this section is as follows.
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Figure 1. The polygon S in the proof of Theorem 4.3
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Theorem 4.3. There exist ε̌, δ̌ ∈ (0,∞), independent of n, such that Ωout(n)× R
is an (ε̌, δ̌)-domain in R3 for all n = 1, 2, 3, . . . .

Proof. Fix n ∈ N and let (x1, y1, z1), (x2, y2, z2) ∈ Ωout(n)×R. By Proposition 4.2
we see that it suffices to consider only the following two cases:
Case 1 Both (x1, y1) and (x2, y2) are in Ωout(n)\Ωin(n+ 1),
Case 2 (x1, y1) ∈ Ωout(n)\Ωin(n+ 1) but (x2, y2) ∈ Ωin(n+ 1).

Let S be the polygon in Figure 1. Then, since S × R is a Lipschitz domain,
there exist ε̃, δ̃ > 0 such that S ×R is an (ε̃, δ̃)-domain in R3. Therefore, since any
dilation, translation, or rotation of S ×R is also an (ε̃, δ̃)-domain, we shall assume
that (x1, y1) and (x2, y2) are not both inside a domain R ⊆ Ωout(n) that is obtained
by a finite sequence of dilations, translations, and rotations of S and that some of
the edges of R are also edges of Ωout(n). This assumption implies that

|(x1, y1)− (x2, y2)| ≥ 3Lin(n+ 1) (4.2)

where Lin(n+1) denotes the length of each side of the polygon Ωin(n+1). For every
edge of Ωout(n) there corresponds two edges of Ωin(n+ 1) as shown in Figure 2.
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Figure 2. Edges: −− of Ωout(n) and — of Ωin(n+ 1)

Referring to Figure 2, suppose (x1, y1) ∈ Ωout(n)\Ωin(n+1) and suppose (x1, y1)
is within a distance of 1

2 cos(π
6 )Lin(n+1) =

√
3

4 Lin(n+1) from an acute vertex v of
Ωin(n + 1). Then we let a(x1, y1) be the point on the angle bisector of Ωin(n + 1)
at v that is of the same distance from v as (x1, y1) is from v. The arc of the circle,
centered at v and with radius |v − (x1, y1)|, starting at a(x1, y1) and ending at
(x1, y1) will be denoted by Γ(x1, y1), see Figure 2.

Referring to Figure 3, suppose (x1, y1) ∈ Ωout(n)\Ωin(n+1) and suppose (x1, y1)
is not within a distance of 1

2 cos(π/6)Lin(n + 1) =
√

3
4 Lin(n + 1) from any acute

vertex of Ωin(n+1). Then we let a(x1, y1) be the center of the triangle with vertices
u, v and w. The straight line segment joining a(x1, y1) to (x1, y1) will be denoted
by Γ(x1, y1), see Figure 3. Note that in either case we have

length(Γ(x1, y1)) ≤ 3Lin(n+ 1). (4.3)

We shall assume that n is sufficiently large so that

Lin(n+ 1) ≤ δ̂/9. (4.4)

Then if
|(x1, y1, z1)− (x2, y2, z2)| ≤ δ̂/3, (4.5)
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Figure 3. Edges: −− of Ωout(n) and — of Ωin(n+ 1)

then, by (4.3),

|(a(x1, y1), z1)− (a(x2, y2), z2)|
≤ |(a(x1, y1), z1)− (x1, y1, z1)|+ |(x1, y1, z1)− (x2, y2, z2)|

+ |(x2, y2, z2)− (a(x2, y2), z2)|

≤ length(Γ(x1, y1)) + δ̂/3 + length(Γ(x2, y2)) ≤ δ̂.

(4.6)

We first present the proof for Case 1. We shall divide the proof for this case into a
number of subcases:

Case 1(i). Here we assume that both (x1, y1) and (x2, y2) are in Ωout(n)\Ωin(n+1),
that (x1, y1) and (x2, y2) are not both inside a region R ⊆ Ωout(n) which is obtained
from the polygon S in Figure 1 by a finite sequence of dilations and isometries and
that some of the edges of R are also edges of Ωout(n), that both (x1, y1) and
(x2, y2) are within a distance of 1

2 cos(π/6)Lin(n + 1) =
√

3
4 Lin(n + 1) from some

acute vertices v1 and v2, respectively, of Ωin(n+ 1), and that (4.4) and (4.5) hold.
Since a(x1, y1), a(x2, y2) ∈ Ωin(n+ 1) and (4.5) holds, Proposition 4.2 and (4.6)

imply that there exists a rectifiable path Γ ⊆ Ωin(n+ 1)× R joining (a(x1, y1), z1)
to (a(x2, y2), z2) and satisfying:

(A) length(Γ) ≤ ε̂−1|(a(x1, y1), z1)− (a(x2, y2), z2)|
(B) for all p ∈ Γ we have

dist(p, ∂Ωin(n+ 1)× R) ≥ ε̂ |(a(x1, y1), z1)− (a(x2, y2), z2)|−1

× |p− (a(x1, y1), z1)||p− (a(x2, y2), z2)|.
(4.7)

Now, by (4.2), for i = 1, 2, we have

length(Γ(xi, yi)) ≤
√

3
4
Lin(n+ 1)

π

3
≤
√

3π
36

|(x1, y1, z1)− (x2, y2, z2)|. (4.8)

Also we have, by (A) and (4.8),

length(Γ) ≤ ε̂−1|(a(x1, y1), z1)− (a(x2, y2), z2)|
≤ ε̂−1

{
|(a(x1, y1), z1)− (x1, y1, z1)|+ |(x1, y1, z1)− (x2, y2, z2)|

+ |(x2, y2, z2)− (a(x2, y2), z2)|
}

≤ ε̂−1
(√3π

18
+ 1
)
|(x1, y1, z1)− (x2, y2, z2)|.

(4.9)
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In the reverse direction we have, by (4.8),

|(x1, y1, z1)− (x2, y2, z2)|
≤ |(x1, y1, z1)− (a(x1, y1), z1)|+ |(a(x1, y1), z1)− (a(x2, y2), z2)|

+ |(a(x2, y2), z2)− (x2, y2, z2)|

≤
√

3π
18

|(x1, y1, z1)− (x2, y2, z2)|+ |(a(x1, y1), z1)− (a(x2, y2), z2)|

(4.10)

and hence

|(x1, y1, z1)− (x2, y2, z2)| ≤
(
1−

√
3π

18
)−1|(a(x1, y1), z1)− (a(x2, y2), z2)|. (4.11)

Let p ∈ Γ and suppose that

|p− (a(xi, yi), zi)| ≥
1
2

dist(a(xi, yi), ∂Ωin(n+ 1)) (4.12)

for i = 1, 2. Then, referring to Figure 2,

|p− (a(xi, yi), zi)| ≥
1
2

sin
(π
6
)
|a(xi, yi)− vi|

=
3
4π
|a(xi, yi)− vi|

π

3

≥ 3
4π
|(a(xi, yi), zi)− (xi, yi, zi)|

(4.13)

for i = 1, 2,. Hence

|p− (xi, yi, zi)| ≤ |p− (a(xi, yi), zi)|+ |(a(xi, yi), zi)− (xi, yi, zi)|

≤
(
1 +

4π
3
)
|p− (a(xi, yi), zi)|

(4.14)

for i = 1, 2. Combining (4.7), (4.9) and (4.14) we get

dist(p, ∂Ωout(n)× R)

≥ dist(p, ∂Ωin(n+ 1)× R)

≥ ε̂ |(a(x1, y1), z1)− (a(x2, y2), z2)|−1|p− (a(x1, y1), z1)|
× |p− (a(x2, y2), z2)|

≥ ε̂
(√3π

18
+ 1
)−1(1 +

4π
3
)−2|(x1, y1, z1)− (x2, y2, z2)|−1

× |p− (x1, y1, z1)||p− (x2, y2, z2)|.

(4.15)

Next let p ∈ Γ and suppose that

|p− (a(x1, y1), z1)| <
1
2

dist(a(x1, y1), ∂Ωin(n+ 1)). (4.16)

Referring to Figure 2, we have, by (4.16),

|p− (x1, y1, z1)| ≤ |p− (a(x1, y1), z1)|+ |(a(x1, y1), z1)− (x1, y1, z1)|

≤
(1
4

+
π

3
)
|a(x1, y1)− v1|.

(4.17)
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So, by (4.16) and (4.17),

dist(p, ∂Ωout(n)× R) ≥ dist(p, ∂Ωin(n+ 1)× R)

≥ 1
2

dist(a(x1, y1), ∂Ωin(n+ 1))

=
1
4
|a(x1, y1)− v1|

≥ 1
4
(1
4

+
π

3
)−1|p− (x1, y1, z1)|.

(4.18)

Also, by (4.16), (4.9), (4.8), (4.2),

|p− (x2, y2, z2)|
≤ |p− (a(x1, y1), z1)|+ |(a(x1, y1), z1)− (a(x2, y2), z2)|

+ |(a(x2, y2), z2)− (x2, y2, z2)|

≤ 1
4
|a(x1, y1)− v1|+

(√3π
18

+ 1
)
|(x1, y1, z1)− (x2, y2, z2)|

+
√

3π
36

|(x1, y1, z1)− (x2, y2, z2)|

≤
√

3
16
Lin(n+ 1) +

(√3π
12

+ 1
)
|(x1, y1, z1)− (x2, y2, z2)|

≤
√

3
48
|(x1, y1)− (x2, y2)|+

(√3π
12

+ 1
)
|(x1, y1, z1)− (x2, y2, z2)|

≤
(√3

48
+
√

3π
12

+ 1
)
|(x1, y1, z1)− (x2, y2, z2)|.

(4.19)

Combining (4.18) and (4.19) we obtain

dist(p, ∂Ωout(n)× R)

≥ 1
4
(1
4

+
π

3
)−1(√3

48
+
√

3π
12

+ 1
)−1|(x1, y1, z1)− (x2, y2, z2)|−1

× |p− (x1, y1, z1)||p− (x2, y2, z2)|.

(4.20)

Now let p = (x, y, z1) ∈ Γ(x1, y1)× {z1} and let

k1 = inf{b−1 sin b : 0 < b <
π

3
} > 0. (4.21)
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Figure 4. Edges: −− of Ωout(n) and — of Ωin(n+ 1)



EJDE-2011/100 STABILITY AND APPROXIMATIONS OF EIGENVALUES 39

Referring to Figure 4 we have
dist(p, ∂Ωout(n)× R) = dist((x, y), ∂Ωout(n))

= |(x1, y1)− v1| sin(a+ b)

= |(x1, y1)− v1|b(b−1 sin(a+ b))

≥ |(x1, y1)− v1|b(b−1 sin b)

≥ |(x1, y1)− v1|bk1

≥ k1|(x1, y1)− (x, y)|
= k1|(x1, y1, z1)− (x, y, z1)|.

(4.22)

Also we have, for p = (x, y, z1) ∈ Γ(x1, y1)× {z1},
|p− (x2, y2, z2)| ≤ |p− (x1, y1, z1)|+ |(x1, y1, z1)− (x2, y2, z2)|

≤ π
√

3
12

Lin(n+ 1) + |(x1, y1, z1)− (x2, y2, z2)|

≤
(π√3

36
+ 1
)
|(x1, y1, z1)− (x2, y2, z2)|

(4.23)

where we have used (4.2). Thus, combining (4.22) and (4.23), we have, for all
p = (x, y, z1) ∈ Γ(x1, y1)× {z1},

dist(p, ∂Ωout(n)× R) ≥
(π√3

36
+ 1
)−1

k1|(x1, y1, z1)− (x2, y2, z1)|−1

× |p− (x1, y1, z1)||p− (x2, y2, z2)|.
(4.24)

Similarly, we have, for all p = (x, y, z2) ∈ Γ(x2, y2)× {z2},

dist(p, ∂Ωout(n)× R) ≥
(π√3

36
+ 1
)−1

k1|(x1, y1, z1)− (x2, y2, z2)|

× |p− (x1, y1, z1)||p− (x2, y2, z2)|.
(4.25)

From (4.5), (4.6), (4.8), (4.9), (4.15), (4.20), (4.24) and (4.25), we see that if
(x1, y1, z1) and (x2, y2, z2) satisfy the assumptions of Case 1(i) and if

|(x1, y1, z1)− (x2, y2, z2)| ≤ δ̂/3, (4.26)

then there exists a path

Γ̃ = (Γ(x1, y1)× {z1}) + Γ + (Γ(x2, y2)× {z2}) (4.27)

joining (x1, y1, z1) to (x2, y2, z2) satisfying

length(Γ̃) ≤
[√3π

18
+ ε̂
(√3π

18
+ 1
)]
|(x1, y1, z1)− (x2, y2, z2)| (4.28)

and for all p ∈ Γ̃ we have
dist(p, ∂Ωout(n)× R)

≥ ε1|(x1, y1, z1)− (x2, y2, z2)|−1|p− (x1, y1, z1)||p− (x2, y2, z2)|
(4.29)

where

ε1 = min
{
ε̂
(√3π

18
+ 1
)−1(

1 +
4π
3

)−2

,

1
4

(1
4

+
π

3

)−1(√3
48

+
√

3π
12

+ 1
)−1

, k1

(√3π
36

+ 1
)−1}

.

(4.30)



40 M. M. H. PANG EJDE-2011/100

Case 1(ii). Here we assume that both (x1, y1) and (x2, y2) are in Ωout(n)\Ωin(n+
1), that (x1, y1) and (x2, y2) are not both inside a region R ⊆ Ωout(n) which is
obtained from the polygon S in Figure 1 by a finite sequence of dilations and
isometries and that some of the edges of R are also edges of Ωout(n), that both
(x1, y1) and (x2, y2) are not within a distance of 1

2 cos(π/6)Lin(n+1) =
√

3
4 Lin(n+1)

from any acute vertex of Ωin(n+ 1), and that (4.4) and (4.5) hold.

�
�

�
�

�
�

�
�

�
�

��S
S

S
S

S
S

S
S

S
S

SS
�

�
�

�

•v •

•u •w • σ

•
α

•τ • η

θ

•
γ

•
a(x1, y1)

•
(x1, y1)

β2

β1

Figure 5. Edges: −− of Ωout(n) and — of Ωin(n+ 1)

In Figure 5, let θ be the angle between the line segment (x1, y1), a(x1, y1) joining
(x1, y1) to a(x1, y1) and the line perpendicular to the line segment v, σ joining v to
σ. Let α be the point on v, σ such that the length of v, α is 1

2 cos(π/6)Lin(n + 1).
Let γ be the midpoint of v, σ and let η be a point on γ,w such that

length(γ, η) =
3
4

length(γ,w). (4.31)

Let β1 and β2 be the angles between the line perpendicular to v, σ and the line
segments a(x1, y1), α and a(x1, y1), η, respectively. Let τ be the point of intersection
of the line segments v, w and a(x1, y1), η. If

β1 ≤ θ ≤ β2, (4.32)

then, for all (x, y) ∈ a(x1, y1), (x1, y1), we have

dist((x, y), ∂Ωout(n)) ≥ (cos θ)|(x, y)− (x1, y1)| ≥ (cosβ1)|(x, y)− (x1, y1)|. (4.33)

If
β2 < θ <

π

2
; (4.34)

i.e., if (x1, y1) ∈ ∆(τ, η, w), where ∆(τ, η, w) denotes the triangle with vertices τ , η
and w, then, for all (x, y) ∈ a(x1, y1), (x1, y1), we have

dist((x, y), ∂Ωout(n)) ≥ dist(∆(a(x1, y1), η, w), ∂Ωout(n))

= |η − γ|
= 3|η − w|
= k2|a(x1, y1)− η|
≥ k2|(x, y)− (x1, y1)|

(4.35)
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for some k2 > 0 independent of n, (x1, y1) and (x2, y2).
Combining (4.33) and (4.35) we have, for all p = (x, y, z1) ∈ Γ(x1, y1)× {z1},

dist(p, ∂Ωout(n)× R) ≥ min{cosβ1, k2}|p− (x1, y1, z1)|. (4.36)

Also, by (4.2), for all p = (x, y, z1) ∈ Γ(x1, y1)× {z1}, we have

|p− (x2, y2, z2)| ≤ |p− (x1, y1, z1)|+ |(x1, y1, z1)− (x2, y2, z2)|
≤ Lin(n+ 1) + |(x1, y1, z1)− (x2, y2, z2)|

≤ 4
3
|(x1, y1, z1)− (x2, y2, z2)|.

(4.37)

Thus combining (4.36) and (4.37) we have, for all p = (x, y, z1) ∈ Γ(x1, y1)× {z1},

dist(p, ∂Ωout(n)× R) ≥ 3
4

min{cosβ1, k2}|(x1, y1, z1)− (x2, y2, z2)|−1

× |p− (x1, y1, z1)||p− (x2, y2, z2)|.
(4.38)

Similarly, for all p = (x, y, z2) ∈ Γ(x2, y2)× {z2}, we have

dist(p, ∂Ωout(n)× R) ≥ 3
4

min{cosβ1, k2}|(x1, y1, z1)− (x2, y2, z2)|−1

× |p− (x1, y1, z1)||p− (x2, y2, z2)|.
(4.39)

Referring to Figure 5 we have, by (4.2),

length(Γ(x1, y1)× {z1}) = length(Γ(x1, y1))

≤ Lin(n+ 1)

≤ 1
3
|(x1, y1, z1)− (x2, y2, z2)|.

(4.40)

Similarly we have

length(Γ(x2, y2)× {z2}) ≤
1
3
|(x1, y1, z1)− (x2, y2, z2)|. (4.41)

So, from (4.39) and (4.40), we have

length(Γ) ≤ ε̂−1|(a(x1, y1), z1)− (a(x2, y2), z2)|
≤ ε̂−1{|(a(x1, y1), z1)− (x1, y1, z1)|+ |(x1, y1, z1)− (x2, y2, z2)|

+ |(x2, y2, z2)− (a(x2, y2), z2)|

≤ 5
3
ε̂−1|(x1, y1, z1)− (x2, y2, z2)|.

(4.42)

Now let p ∈ Γ and suppose that

|p− (a(xi, yi), zi)| ≥
1
2

dist(a(xi, yi), ∂Ωin(n+ 1)) (4.43)

for i = 1, 2. Then, referring to Figure 3, we have

|p− (a(xi, yi), zi)| ≥
1

4
√

3
Lin(n+ 1) ≥ 1

4
√

3
|(a(xi, yi), zi)− (xi, yi, zi)| (4.44)

for i = 1, 2. Hence

|p− (xi, yi, zi)| ≤ |p− (a(xi, yi), zi)|+ |(a(xi, yi), zi)− (xi, yi, zi)|

≤ (1 + 4
√

3)|p− (a(xi, yi), zi)|
(4.45)
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for i = 1, 2. Thus, by (4.42),

dist(p, ∂Ωout(n)× R) ≥ dist(p, ∂Ωin(n+ 1)× R)

≥ ε̂|(a(x1, y1), z1)− (a(x2, y2), z2)|−1

× |p− (a(x1, y1), z1)||p− (a(x2, y2), z2)|

≥ 3
5
(1 + 4

√
3)−2ε̂|(x1, y1, z1)− (x2, y2, z2)|−1

× |p− (x1, y1, z1)||p− (x2, y2, z2)|.

(4.46)

Next let p ∈ Γ and suppose that

|p− (a(x1, y1), z1)| <
1
2

dist(a(x1, y1), ∂Ωin(n+ 1)).

Then, referring to Figure 3,

dist(p, ∂Ωout(n)× R) ≥ dist(p, ∂Ωin(n+ 1)× R)

≥ 1
2

dist((a(x1, y1), z1), ∂Ωin(n+ 1)× R)

=
1

4
√

3
Lin(n+ 1)

(4.47)

and

|p− (x1, y1, z1)| ≤ |p− (a(x1, y1), z1)|+ |(a(x1, y1), z1)− (x1, y1, z1)|

≤ 1
2

dist(a(x1, y1), ∂Ωin(n+ 1)) + Lin(n+ 1)

=
( 1
4
√

3
+ 1
)
Lin(n+ 1),

(4.48)

hence, from (4.47) and (4.48),

dist(p, ∂Ωout(n)× R) ≥ 1
4
√

3

( 1
4
√

3
+ 1
)−1|p− (x1, y1, z1)|. (4.49)

Also, by (4.48) and (4.2), we have

|p− (x2, y2, z2)| ≤ |p− (x1, y1, z1)|+ |(x1, y1, z1)− (x2, y2, z2)|

≤
[( 1

4
√

3
+ 1
)
3−1 + 1

]
|(x1, y1, z1)− (x2, y2, z2)|.

(4.50)

Combining (4.49) and (4.50) we obtain

dist(p, ∂Ωout(n)× R)

≥ 1
4
√

3

( 1
4
√

3
+ 1
)−1[( 1

4
√

3
+ 1
)
3−1 + 1

]−1

|(x1, y1, z1)− (x2, y2, z2)|−1

× |p− (x1, y1, z1)||p− (x2, y2, z2)|.

(4.51)

By symmetry, if p ∈ Γ and if

|p− (a(x2, y2), z2)| <
1
2

dist(a(x2, y2), ∂Ωin(n+ 1)),
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then we have
dist(p, ∂Ωout(n)× R)

≥ 1
4
√

3

(
1

4
√

3
+ 1
)−1 [( 1

4
√

3
+ 1
)

3−1 + 1
]−1

|(x1, y1, z1)− (x2, y2, z2)|−1

× |p− (x1, y1, z1)||p− (x2, y2, z2)|.
(4.52)

Thus from (4.5), (4.6), (4.38), (4.39), (4.40), (4.41), (4.42), (4.46), (4.51) and (4.52),
we see that if (x1, y1, z1) and (x2, y2, z2) satisfy the assumptions of Case 1(ii) and
if

|(x1, y1, z1)− (x2, y2, z2)| ≤ δ̂/3,
then there exists a path

Γ̃ = (Γ(x1, y1)× {z1}) + Γ + (Γ(x2, y2)× {z2}) (4.53)

joining (x1, y1, z1) to (x2, y2, z2) satisfying

length(Γ̃) ≤
(2
3

+
5
3
ε̂−1
)
|(x1, y1, z1)− (x2, y2, z2)| (4.54)

and for all p ∈ Γ̃ we have

dist(p, ∂Ωout(n)× R)

≥ ε2|(x1, y1, z1)− (x2, y2, z2)|−1|p− (x1, y1, z1)||p− (x2, y2, z2)|
(4.55)

where

ε2 = min
{3

4
cosβ1,

3
4
k2,

3
5
(1 + 4

√
3)−2ε̂,

1
4
√

3

( 1
4
√

3
+ 1
)−1[( 1

4
√

3
+ 1
)
3−1 + 1

]−1}
.

(4.56)

Case 1(iii). Here we assume that both (x1, y1) and (x2, y2) are in Ωout(n)\Ωin(n+
1), that (x1, y1) and (x2, y2) are not both inside a region R ⊆ Ωout(n) which is
obtained from the polygon S in Figure 1 by a finite sequence of dilations and
isometries and that some of the edges of R are also edges of Ωout(n), that (x1, y1) is
not within a distance of 1

2 cos(π/6)Lin(n+ 1) from any acute vertex of Ωin(n+ 1),
that (x2, y2) is within a distance of 1

2 cos(π/6)Lin(n+1) from an acute vertex v2 of
Ωin(n+ 1), and that (4.4) and (4.5) hold.

In this case, by (4.2), we have

length(Γ(x2, y2)× {z1}) ≤
π

3
|(x2, y2, z2)− v2|

≤ π
√

3
12

Lin(n+ 1)

≤ π
√

3
36

|(x1, y1, z1)− (x2, y2, z2)|

(4.57)

and, referring to Figure 5,

length(Γ(x1, y1)× {z1}) = |a(x1, y1)− (x1, y1)|
≤ Lin(n+ 1)

≤ 1
3
|(x1, y1, z1)− (x2, y2, z2)|.

(4.58)
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Hence

length(Γ) ≤ ε̂−1|(a(x1, y1), z1)− (a(x2, y2), z2)|
≤ ε̂−1{|(a(x1, y1), z1)− (x1, y1, z1)|+ |(x1, y1, z1)− (x2, y2, z2)|

+ |(x2, y2, z2)− (a(x2, y2), z2)|}

≤ ε̂−1
(4
3

+
π
√

3
36

)
|(x1, y1, z1)− (x2, y2, z2)|.

(4.59)

From (4.57) and (4.58) we have

|(x1, y1, z1)− (x2, y2, z2)|
≤ |(x1, y1, z1)− (a(x1, y1), z1)|+ |(a(x1, y1), z1)− (a(x2, y2), z2)|

+ |(a(x2, y2), z2)− (x2, y2, z2)|

≤ 1
3
|(x1, y1, z1)− (x2, y2, z2)|+ |(a(x1, y1), z1)− (a(x2, y2), z2)|

+
π
√

3
36

|(x1, y1, z1)− (x2, y2, z2)|,

hence

|(x1, y1, z1)− (x2, y2, z2)| ≤
(2

3
− π

√
3

36

)−1

|(a(x1, y1), z1)− (a(x2, y2), z2)|. (4.60)

Let p ∈ Γ and suppose that

|p− (a(xi, yi), zi)| ≥
1
2

dist(a(xi, yi), ∂Ωin(n+ 1))

for i = 1, 2. Then

|p− (a(x1, y1), z1)| ≥
1

4
√

3
Lin(n+ 1) ≥ 1

4
√

3
|(a(x1, y1), z1)− (x1, y1, z1)|

and so

|p− (x1, y1, z1)| ≤ |p− (a(x1, y1), z1)|+ |(a(x1, y1), z1)− (x1, y1, z1)|

≤ (1 + 4
√

3)|p− (a(x1, y1), z1)|.
(4.61)

Also

|p− (a(x2, y2), z2)| ≥
1
2

sin(π/6)|a(x2, y2)− v2|

=
3
4π
|a(x2, y2)− v2|

π

3

≥ 3
4π
|(a(x2, y2), z2)− (x2, y2, z2)|,

and hence

|p− (x2, y2, z2)| ≤ |p− (a(x2, y2), z2)|+ |(a(x2, y2), z2)− (x2, y2, z2)|

≤
(
1 +

4π
3
)
|p− (a(x2, y2), z2)|.

(4.62)
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Thus, by (4.59), (4.61) and (4.62),

dist(p, ∂Ωout(n)× R)

≥ dist(p, ∂Ωin(n+ 1)× R)

≥ ε̂|(a(x1, y1), z1)− (a(x2, y2), z2)|−1|p− (a(x1, y1), z1)|
× |p− (a(x2, y2), z2)|

≥ ε̂
(4
3

+
π
√

3
36

)−1(1 + 4
√

3)−1
(
1 +

4π
3

)−1

× |(x1, y1, z1)− (x2, y2, z2)|−1|p− (x1, y1, z1)||p− (x2, y2, z2)|.

(4.63)

Next let p ∈ Γ and suppose that

|p− (a(x1, y1), z1)| <
1
2

dist(a(x1, y1), ∂Ωin(n+ 1)).

Then (4.47), (4.48), (4.49) and (4.50) still hold. Hence we have

dist(p, ∂Ωout(n)× R)

≥ 1
4
√

3

( 1
4
√

3
+ 1
)−1[( 1

4
√

3
+ 1
)
3−1 + 1

]−1

× |(x1, y1, z1)− (x2, y2, z2)|−1|p− (x1, y1, z1)||p− (x2, y2, z2)|.

(4.64)

Now let p ∈ Γ and suppose that

|p− (a(x2, y2), z2)| <
1
2

dist(a(x2, y2), ∂Ωin(n+ 1)).

Then
|p− (x2, y2, z2)| ≤ |p− (a(x2, y2), z2)|+ |(a(x2, y2), z2)− (x2, y2, z2)|

≤
(1
4

+
π

3
)
|a(x2, y2)− v2|.

(4.65)

So
dist(p, ∂Ωout(n)× R) ≥ dist(p, ∂Ωin(n+ 1)× R)

≥ 1
2

dist(a(x2, y2), ∂Ωin(n+ 1))

=
1
4
|a(x2, y2)− v2|

≥ 1
4

(1
4

+
π

3

)−1

|p− (x2, y2, z2)|.

(4.66)

Also we have, by (4.59), (4.58) and (4.2),

|p− (x1, y1, z1)| ≤ |p− (a(x2, y2), z2)|+ |(a(x2, y2), z2)− (a(x1, y1), z1)|
+ |(a(x1, y1), z1)− (x1, y1, z1)|

≤ 1
4
|a(x2, y2)− v2|+

(4
3

+
π
√

3
36

)
|(x1, y1, z1)− (x2, y2, z2)|

+
1
3
|(x1, y1, z1)− (x2, y2, z2)| (4.67)

≤
√

3
16
Lin(n+ 1) +

(5
3

+
π
√

3
36

)
|(x1, y1, z1)− (x2, y2, z2)|

≤
(√3

48
+

5
3

+
π
√

3
36

)
|(x1, y1, z1)− (x2, y2, z2)|.
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Combining (4.66) and (4.67), we have

dist(p, ∂Ωout(n)× R)

≥ 1
4

(1
4

+
π

3

)−1(√3
48

+
5
3

+
π
√

3
36

)−1|(x1, y1, z1)− (x2, y2, z2)|−1

× |p− (x1, y1, z1)||p− (x2, y2, z2)|.

(4.68)

Now let p ∈ Γ(x2, y2) × {z2}. Let k1 > 0 be the constant defined in (4.21). Then
calculations similar to those in (4.22) give

dist(p, ∂Ωout(n)× R) ≥ k1|p− (x2, y2, z2)|. (4.69)

Also, by (4.2),

|p− (x1, y1, z1)| ≤ |p− (x2, y2, z2)|+ |(x2, y2, z2)− (x1, y1, z1)|

≤ π
√

3
12

Lin(n+ 1) + |(x1, y1, z1)− (x2, y2, z2)|

≤
(π√3

36
+ 1
)
|(x1, y1, z1)− (x2, y2, z2)|.

(4.70)

Combining (4.69) and (4.70) we obtain

dist(p, ∂Ωout(n)× R) ≥ k1

(π√3
36

+ 1
)−1

|(x1, y1, z1)− (x2, y2, z2)|−1

× |p− (x1, y1, z1)||p− (x2, y2, z2)|.
(4.71)

Let p ∈ Γ(x1, y1)× {z1}. Then (4.36) and (4.37), and their proofs, still hold. Thus
we have

dist(p, ∂Ωout(n)× R) ≥ 3
4

min{cosβ1, k2}|(x1, y1, z1)− (x2, y2, z2)|−1

× |p− (x1, y1, z1)||p− (x2, y2, z2)|,
(4.72)

where β1 and k2 are constants described in Case 1(ii).
Thus from (4.5), (4.6), (4.57), (4.58), (4.59), (4.63), (4.64), (4.68), (4.71) and

(4.78), we see that if (x1, y1, z1) and (x2, y2, z2) satisfy the assumptions of Case 1(iii)
and if

|(x1, y1, z1)− (x2, y2, z2)| ≤ δ̂/3,

then there exists a path

Γ̃ = (Γ(x1, y1)× {z1}) + Γ + (Γ(x2, y2)× {z2}) (4.73)

joining (x1, y1, z1) to (x2, y2, z2) satisfying

length(Γ̃) ≤
[1
3

+
π
√

3
36

+ ε̂−1
(4
3

+
π
√

3
36

)]
|(x1, y1, z1)− (x2, y2, z2)| (4.74)

and for all p ∈ Γ̃ we have

dist(p, ∂Ωout(n)× R)

≥ ε3|(x1, y1, z1)− (x2, y2, z2)|−1|p− (x1, y1, z1)||p− (x2, y2, z2)|
(4.75)
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where

ε3 = min
{
ε̂
(4

3
+
π
√

3
36

)−1

(1 + 4
√

3)−1
(
1 +

4π
3

)−1

,

1
4
√

3

( 1
4
√

3
+ 1
)−1[( 1

4
√

3
+ 1
)
3−1 + 1

]−1

,

1
4

(1
4

+
π

3

)−1(√3
48

+
5
3

+
π
√

3
36

)−1

, k1

(
π
√

3
36

+ 1

)−1

,

3
4

cosβ1,
3
4
k2

}
.

(4.76)

Case 2(i). Here we assume that (x1, y1) ∈ Ωout(n)\Ωin(n + 1) and (x2, y2) ∈
Ωin(n + 1), that (x1, y1) and (x2, y2) are not both inside a region R ⊆ Ωout(n)
which is obtained from the polygon S in Figure 1 by a finite sequence of dilations
and isometries and that some of the edges of R are also edges of Ωout(n), that
(x1, y1) is within a distance of 1

2 cos(π/6)Lin(n + 1) from an acute vertex v1 of
Ωin(n+ 1), and that (4.4) and (4.5) hold.

By Proposition 4.2 there exists a path Γ ⊆ Ωin(n+ 1)×R joining (a(x1, y1), z1)
to (x2, y2, z2) satisfying

(C) length(Γ) ≤ ε̂−1|(a(x1, y1), z1)− (x2, y2, z2)|,
(D) for all p ∈ Γ we have

dist(p, ∂Ωin(n+ 1)× R)

≥ ε̂|(a(x1, y1), z1)− (x2, y2, z2)|−1|p− (a(x1, y1), z1)||p− (x2, y2, z2)|.
(4.77)

By (4.2), we have

|(a(x1, y1), z1)− (x2, y2, z2)|
≤ |(a(x1, y1), z1)− (x1, y1, z1)|+ |(x1, y1, z1)− (x2, y2, z2)|

≤ π
√

3
12

Lin(n+ 1) + |(x1, y1, z1)− (x2, y2, z2)|

≤
(π√3

36
+ 1
)
|(x1, y1, z1)− (x2, y2, z2)|

(4.78)

and

|(x1, y1, z1)− (x2, y2, z2)|
≤ |(x1, y1, z1)− (a(x1, y1), z1)|+ |(a(x1, y1), z1)− (x2, y2, z2)|

≤ π
√

3
36

|(x1, y1, z1)− (x2, y2, z2)|+ |(a(x1, y1), z1)− (x2, y2, z2)|

and hence

|(x1, y1, z1)− (x2, y2, z2)| ≤
(
1− π

√
3

36

)−1

|(a(x1, y1), z1)− (x2, y2, z2)|. (4.79)

Thus

length(Γ) ≤ ε̂−1|(a(x1, y1), z1)− (x2, y2, z2)|

≤ ε̂−1
(π√3

36
+ 1
)
|(x1, y1, z1)− (x2, y2, z2)|

(4.80)
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and
length(Γ(x1, y1)× {z1}) = length(Γ(x1, y1))

≤ π
√

3
12

Lin(n+ 1)

≤ π
√

3
36

|(x1, y1, z1)− (x2, y2, z2)|.

(4.81)

Let p = (x, y, z1) ∈ Γ(x1, y1)× {z1}. Let k1 > 0 be the constant defined by (4.21).
Then (4.22) and (4.23) still hold, and hence we have

dist(p, ∂Ωout(n)× R) ≥ k1

(π√3
36

+ 1
)−1

|(x1, y1, z1)− (x2, y2, z2)|−1

× |p− (x1, y1, z1)||p− (x2, y2, z2)|.
(4.82)

Let p ∈ Γ and suppose that

|p− (a(x1, y1), z1)| ≥
1
2

dist(a(x1, y1), ∂Ωin(n+ 1)).

Then

|p− (a(x1, y1), z1)| ≥
1
2

sin(π/6)|a(x1, y1)− v1|

=
3
4π

(π
3
|a(x1, y1)− v1|

)
≥ 3

4π
|(a(x1, y1), z1)− (x1, y1, z1)|,

hence
|p− (x1, y1, z1)| ≤ |p− (a(x1, y1), z1)|+ |(a(x1, y1), z1)− (x1, y1, z1)|

≤
(
1 +

4π
3
)
|p− (a(x1, y1), z1)|.

(4.83)

Combining (4.80) and (4.83) we have

dist(p, ∂Ωout(n)× R)

≥ dist(p, ∂Ωin(n+ 1)× R)

≥ ε̂|(a(x1, y1), z1)− (x2, y2, z2)|−1|p− (a(x1, y1), z1)||p− (x2, y2, z2)|

≥ ε̂
(π√3

36
+ 1
)−1(

1 +
4π
3

)−1

|(x1, y1, z1)− (x2, y2, z2)|−1

× |p− (x1, y1, z1)||p− (x2, y2, z2)|.

(4.84)

Next let p ∈ Γ and suppose that

|p− (a(x1, y1), z1)| <
1
2

dist(a(x1, y1), ∂Ωin(n+ 1)).

Then
|p− (x1, y1, z1)| ≤ |p− (a(x1, y1), z1)|+ |(a(x1, y1), z1)− (x1, y1, z1)|

≤ 1
4
|a(x1, y1)− v1|+

π

3
|a(x1, y1)− v1|

=
(1
4

+
π

3
)
|a(x1, y1)− v1|,

(4.85)
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and so

dist(p, ∂Ωout(n)× R) ≥ dist(p, ∂Ωin(n+ 1)× R)

≥ 1
2

dist(a(x1, y1), ∂Ωin(n+ 1))

=
1
4
|a(x1, y1)− v1|

≥ 1
4
(1
4

+
π

3
)−1|p− (x1, y1, z1)|.

(4.86)

Also we have, by (4.80) and (4.2),

|p− (x2, y2, z2)|
≤ |p− (a(x1, y1), z1)|+ |(a(x1, y1), z1)− (x2, y2, z2)|

≤ 1
4
|a(x1, y1)− v1|+

(π√3
36

+ 1
)
|(x1, y1, z1)− (x2, y2, z2)|

≤
√

3
16
Lin(n+ 1) +

(π√3
36

+ 1
)
|(x1, y1, z1)− (x2, y2, z2)|

≤
(√3

48
+
π
√

3
36

+ 1
)
|(x1, y1, z1)− (x2, y2, z2)|.

(4.87)

Combining (4.86) and (4.87) we obtain

dist(p, ∂Ωout(n)× R)

≥ 1
4

(1
4

+
π

3

)−1(√3
48

+
π
√

3
36

+ 1
)−1

|(x1, y1, z1)− (x2, y2, z2)|−1

× |p− (x1, y1, z1)||p− (x2, y2, z2)|.

(4.88)

Thus from (4.5), (4.6), (4.80), (4.81), (4.82), (4.84), and (4.88), we see that if
(x1, y1, z1) and (x2, y2, z2) satisfy the assumptions of Case 2(i) and if

|(x1, y1, z1)− (x2, y2, z2)| ≤ δ̂/3,

then there exists a path

Γ̃ = (Γ(x1, y1)× {z1}) + Γ (4.89)

joining (x1, y1, z1) to (x2, y2, z2) satisfying

length(Γ̃) ≤
(π√3

36
+ ε̂−1

(π√3
36

+ 1
))
|(x1, y1, z1)− (x2, y2, z2)| (4.90)

and for all p ∈ Γ̃ we have

dist(p, ∂Ωout(n)× R)

≥ ε4|(x1, y1, z1)− (x2, y2, z2)|−1|p− (x1, y1, z1)||p− (x2, y2, z2)|
(4.91)

where

ε4 = min
{
k1

(π√3
36

+ 1
)−1

, ε̂
(π√3

36
+ 1
)−1(

1 +
4π
3

)−1

,

1
4

(1
4

+
π

3

)−1(√3
48

+
π
√

3
36

+ 1
)−1}

.

(4.92)



50 M. M. H. PANG EJDE-2011/100

Case 2(ii). Here we assume that (x1, y1) ∈ Ωout(n)\Ωin(n + 1) and (x2, y2) ∈
Ωin(n + 1), that (x1, y1) and (x2, y2) are not both inside a region R ⊆ Ωout(n)
which is obtained from the polygon S in Figure 1 by a finite sequence of dilations
and isometries and that some of the edges of R are also edges of Ωout(n), that
(x1, y1) is not within a distance of 1

2 cos(π/6)Lin(n + 1) from any acute vertex of
Ωin(n+ 1), and that (4.4) and (4.5) holds.

Referring to Figure 5, we see that in this case (4.31)-(4.38) and (4.40) still hold,
and so, for all p ∈ Γ(x1, y1)× {z1}, we have

dist(p, ∂Ωout(n)× R) ≥ 3
4

min{cosβ1, k2}|(x1, y1, z1)− (x2, y2, z2)|−1

× |p− (x1, y1, z1)||p− (x2, y2, z2)|,
(4.93)

and

length(Γ(x1, y1)× {z1}) ≤
1
3
|(x1, y1, z1)− (x2, y2, z2)|. (4.94)

Hence
length(Γ)

≤ ε̂−1|(a(x1, y1), z1)− (x2, y2, z2)|
≤ ε̂−1{|(a(x1, y1), z1)− (x1, y1, z1)|+ |(x1, y1, z1)− (x2, y2, z2)|}

≤ 4
3
ε̂−1|(x1, y1, z1)− (x2, y2, z2)|.

(4.95)

Let p ∈ Γ and suppose that

|p− (a(x1, y1), z1)| ≥
1
2

dist(a(x1, y1), ∂Ωin(n+ 1)).

Then

|p− (a(x1, y1), z1)| ≥
1

4
√

3
Lin(n+ 1) ≥ 1

4
√

3
|(a(x1, y1), z1)− (x1, y1, z1)|. (4.96)

Thus
|p− (x1, y1, z1)| ≤ |p− (a(x1, y1), z1)|+ |(a(x1, y1), z1)− (x1, y1, z1)|

≤ (1 + 4
√

3)|p− (a(x1, y1), z1)|.
(4.97)

Also, from (4.2) and Figure 5,

|(a(x1, y1), z1)− (x2, y2, z2)|
≤ |(a(x1, y1), z1)− (x1, y1, z1)|+ |(x1, y1, z1)− (x2, y2, z2)|
≤ Lin(n+ 1) + |(x1, y1, z1)− (x2, y2, z2)|

≤ 4
3
|(x1, y1, z1)− (x2, y2, z2)|.

(4.98)

Hence we have, from (4.97) and (4.98),

dist(p, ∂Ωout(n)× R) ≥ dist(p, ∂Ωin(n+ 1)× R)

≥ ε̂|(a(x1, y1), z1)− (x2, y2, z2)|−1|p− (a(x1, y1), z1)|
× |p− (x2, y2, z2)|

≥ ε̂
3
4
(1 + 4

√
3)−1|(x1, y1, z1)− (x2, y2, z2)|−1

× |p− (x1, y1, z1)||p− (x2, y2, z2)|.

(4.99)
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Now let p ∈ Γ and suppose that

|p− (a(x1, y1), z1)| <
1
2

dist(a(x1, y1), ∂Ωin(n+ 1)).

Then
dist(p, ∂Ωout(n)× R) ≥ dist(p, ∂Ωin(n+ 1)× R)

≥ 1
2

dist((a(x1, y1), z1), ∂Ωin(n+ 1)× R)

=
1

4
√

3
Lin(n+ 1)

(4.100)

and, referring to Figure 5,

|p− (x1, y1, z1)| ≤ |p− (a(x1, y1), z1)|+ |(a(x1, y1), z1)− (x1, y1, z1)|

≤
( 1
4
√

3
+ 1
)
Lin(n+ 1).

(4.101)

Hence, combining (4.100) and (4.101), we get

dist(p, ∂Ωout(n)× R) ≥ 1
4
√

3

( 1
4
√

3
+ 1
)−1

|p− (x1, y1, z1)|. (4.102)

Also, by (4.2) and (4.101),

|p− (x2, y2, z2)| ≤ |p− (x1, y1, z1)|+ |(x1, y1, z1)− (x2, y2, z2)|

≤
( 1
4
√

3
+ 1
)
Lin(n+ 1) + |(x1, y1, z1)− (x2, y2, z2)|

≤
( 1
12
√

3
+

4
3
)
|(x1, y1, z1)− (x2, y2, z2)|.

(4.103)

Combining (4.102) and (4.103) we obtain

dist(p, ∂Ωout(n)× R)

≥ 1
4
√

3

( 1
4
√

3
+ 1
)−1
( 1

12
√

3
+

4
3

)−1

|(x1, y1, z1)− (x2, y2, z2)|−1

× |p− (x1, y1, z1)||p− (x2, y2, z2)|.

(4.104)

Thus from (4.5), (4.6), (4.93), (4.94), (4.95), (4.99), and (4.104), we see that if
(x1, y1, z1) and (x2, y2, z2) satisfy the assumptions of Case 2(ii) and if

|(x1, y1, z1)− (x2, y2, z2)| ≤ δ̂/3,

then there exists a path

Γ̃ = (Γ(x1, y1)× {z1}) + Γ (4.105)

joining (x1, y1, z1) to (x2, y2, z2) satisfying

length(Γ̃) ≤
(1
3

+
4
3
ε̂−1
)
|(x1, y1, z1)− (x2, y2, z2)| (4.106)

and for all p ∈ Γ̃ we have

dist(p, ∂Ωout(n)× R)

≥ ε5|(x1, y1, z1)− (x2, y2, z2)|−1|p− (x1, y1, z1)||p− (x2, y2, z2)|
(4.107)
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where

ε5 = min
{3

4
cosβ1,

3
4
k2,

3
4
(
1 + 4

√
3
)−1

ε̂,

1
4
√

3

( 1
4
√

3
+ 1
)−1( 1

12
√

3
+

4
3

)−1}
.

(4.108)

To summarize: Cases 1(i),(ii),(iii), 2(i),(ii), exhaust all possibilities of at least
one of (x1, y1, z1) or (x2, yx, z2) is in (Ωout(n) × R)\(Ωin(n + 1) × R) with (x1, y1)
and (x2, y2) not both contained in a region R ⊆ Ωout(n) which is obtained from the
polygon S in Figure 1 by a finite sequence of dilations and isometries and that at
least one of the edges of R is also an edge of Ωout(n). Let

δ6 = δ̂/3 (4.109)

and

ε6 = min
{[√3π

18
+ ε̂
(√3π

18
+ 1
)]−1

,
(2

3
+

5
3
ε̂−1
)−1

,[1
3

+
π
√

3
36

+ ε̂−1
(4
3

+
π
√

3
36

)]−1

,
[π√3

36
+ ε̂−1

(π√3
36

+ 1
)]−1

,(1
3

+
4
3
ε̂−1
)−1

, ε1, ε2, ε3, ε4, ε5

}
.

(4.110)

Then we have proved that in each of these cases, if

|(x1, y1, z1)− (x2, y2, z2)| ≤ δ6, (4.111)

then there exists a path Γ̃ ⊆ Ωout(n)×R joining (x1, y1, z1) to (x2, y2, z2) satisfying

length(Γ̃) ≤ ε−1
6 |(x1, y1, z1)− (x2, y2, z2)| (4.112)

and for all p ∈ Γ̃ we have

dist(p, ∂Ωout(n)× R)

≥ ε6|(x1, y1, z1)− (x2, y2, z2)|−1|p− (x1, y1, z1)||p− (x2, y2, z2)|.
(4.113)

This together with Proposition 4.2 and the fact S×R is a Lipschitz domain, and thus
an (ε7, δ7)-domain in R3 for some ε7, δ7 > 0, complete the proof of Theorem 4.3. �

We finish this section by giving the proof of Theorem 1.3. We shall need the
following results:

Proposition 4.4 (see [5, Theorem 1]). Let D ∈ Rd be an (ε, δ)-domain. Suppose
k ∈ {1, 2, 3, . . . } and 1 ≤ p ≤ ∞. Then there exists a bounded extension operator
Λk,p : W k,p(D) →W k,p(Rd) such that

(Λk,pf)|D = f (f ∈W k,p(D)).

Moreover, the norm ‖Λk,p‖ depends only on ε, δ, k, p and the dimension d.

Proposition 4.5 (see [4, p.47]). Suppose D ⊆ Rd is a domain such that for some
p ∈ [1, d) there exists a bounded extension operator Λ1,p : W 1,p(D) → W 1,p(Rd)
satisfying

(Λ1,pf)|D = f (f ∈W 1,p(D)).
Let q be defined by 1

q = 1
p −

1
d . Then there exists c = c(d) ≥ 1 such that

‖f‖q ≤ c‖Λ1,p‖{‖∇f‖p
p + ‖f‖p

p}
1
p (f ∈W 1,p(D)).
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Proposition 4.6 (see [4, Theorem 2.4.2, Corollaries 2.4.3,and 2.2.8]). Let D ⊆ Rd,
d ≥ 3, be a domain. Suppose there exists c1 ≥ 1 such that

‖f‖ 2d
d−2

≤ c1{‖∇f‖22 + ‖f‖22}1/2 (f ∈W 1,2(D)).

Then there exists c2 ≥ 1, depending only on c1 and d, such that

PD(t, x, y) ≤ c2t
−d/2 (0 < t ≤ 1, x, y ∈ D),

where PD(t, x, y) denotes the heat kernel associated to the semigroup generated by
the Neumann Laplacian on D.

Proof of Theorem 1.3. We follow the arguments in [7]. We also remark that the
constants Ki, i = 1, 2, 3, in the argument below will depend only on the values of
ε̌ and δ̌ in Theorem 4.3, but not on n.

By Theorem 4.3 and Proposition 4.4 (with D = Ωout(n) × R, k = 1 and
p = 2 in Proposition 4.4), there exists a bounded linear extension operator Λ1,2 :
W 1,2(Ωout(n)× R) →W 1,2(R3) such that

(Λ1,2f) |Ωout(n)×R= f (f ∈W 1,2(Ωout(n)× R)),

where the norm ‖Λ1,2‖ depends only on ε̌ and δ̌. So by Proposition 4.5 (with
D = Ωout(n)× R, d = 3, p = 2 and q = 6), we have

‖f‖6 ≤ K1{‖∇f‖22 + ‖f‖22}1/2 (f ∈W 1,2(Ωout(n)× R))

where K1 ≥ 1 depends only on ε̌ and δ̌. Hence, by Proposition 4.6, we have

PΩout(n)×R(t, (x1, y1, z1), (x2, y2, z2)) ≤ K2t
−3/2 (4.114)

for all 0 < t ≤ 1 and all (x1, y1, z1), (x2, y2, z2) ∈ Ωout(n) × R, where K2 ≥ 1
depends only on ε̌ and δ̌. Since

PΩout(n)×R(t, (x1, y1, z), (x2, y2, z))

= PΩout(n)(t, (x1, y1), (x2, y2))PR(t, z, z)

= (4πt)−1/2PΩout(n)(t, (x1, y1), (x2, y2))

(4.115)

for all 0 < t ≤ 1, (x1, y1), (x2, y2) ∈ Ωout(n) and z ∈ R, we have, from (4.114) and
(4.115),

PΩout(n)(t, (x1, y1), (x2, y2)) ≤ K3t
−1 (4.116)

for all 0 < t ≤ 1 and (x1, y1), (x2, y2) ∈ Ωout(n), where K3 ≥ 1 depends only
on ε̌ and δ̌. The proof of Theorem 1.3 is complete by combining (4.116) and [7,
Theorem 1.3]. �
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