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MODIFIED QUASI-BOUNDARY VALUE METHOD FOR
CAUCHY PROBLEMS OF ELLIPTIC EQUATIONS WITH

VARIABLE COEFFICIENTS

HONGWU ZHANG

Abstract. In this article, we study a Cauchy problem for an elliptic equation
with variable coefficients. It is well-known that such a problem is severely
ill-posed; i.e., the solution does not depend continuously on the Cauchy data.
We propose a modified quasi-boundary value regularization method to solve
it. Convergence estimates are established under two a priori assumptions on
the exact solution. A numerical example is given to illustrate our proposed
method.

1. Introduction

In this article, we consider the following Cauchy problem for an elliptic equation
with variable coefficients in a strip, as in [10],

uxx + a(y)uyy + b(y)uy + c(y)u = 0, x ∈ R, y ∈ (0, 1)

u(x, 0) = ϕ(x), x ∈ R,

uy(x, 0) = 0, x ∈ R,

(1.1)

where a, b, c are given functions such that for some given positive constants λ ≤ Λ,

λ ≤ a(y) ≤ Λ, y ∈ [0, 1], (1.2)

a(y) ∈ C2[0, 1], b(y) ∈ C1[0, 1], c(y) ∈ C[0, 1], c(y) ≤ 0. (1.3)

Without loss of generality, in the following we suppose that λ ≥ 1.
This problem is well-known to be severely ill-posed; i.e., a small perturbation in

the given Cauchy data may result in a very large error on the solution [11, 13, 14, 16].
Therefore, it is very difficult to solve it using classic numerical methods. In order
to overcome this difficulty, the regularization methods are required [12, 13, 15, 6].

It should be mentioned that, for the Cauchy problem of the elliptic equations,
many regularization methods have been proposed: such as Tikhonov regularization
method [7, 23], the modified method [3, 20], the moment method [24], the center
difference method [4, 21], etc. For the Cauchy problem of elliptic equations with
variable coefficients (1.1), in 2007, Hào and his group [10] applied the mollification
method to solve it, and prove some stability estimates of Hölder type for the solution
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and its derivatives. In 2008, Qian [19] used a wavelet regularization method to treat
it. In the present article, following Hào [10] and Qian [19], we continue to consider
problem (1.1).

In 1983, Showalter presented a method called the quasi-boundary value (QBV)
to regularize the linear homogeneous ill-posed problem [22]. The main idea of this
method is making an appropriate modification to the final data. Recently many
authors have successfully used this method to solve the backward heat conduction
problem (BHCP) [1, 2, 9, 17, 18]. In [8], this method was used to solve a Cauchy
problem for elliptic equation in a cylindrical domain (where the authors called it a
non-local boundary value problem method). In this paper, we shall apply a modified
quasi-boundary value method to solve problem (1.1). Here our idea mainly comes
from Showalter’s method (see Section 3).

This paper is constructed as follows. In Section 2, we give some required results
for this paper. In Section 3, we present our regularization method. Section 4 is
devoted to the convergence estimates. Numerical results are shown in Section 5,
and some conclusions are given.

2. Some required results

For a function f ∈ L2(R), its Fourier transform is defined by

f̂(ξ) :=
1√
2π

∫ ∞

−∞
f(x)e−iξxdx, ξ ∈ R. (2.1)

Let the exact data ϕ ∈ L2(R) and the measured data ϕδ ∈ L2(R) satisfy

‖ϕδ − ϕ‖ ≤ δ, (2.2)

where ‖ · ‖ denotes the L2-norm, the constant δ > 0 denotes a noise level, and there
exists a constant E > 0, such that the following a-priori bounds exist,

‖u(·, 1)‖ ≤ E. (2.3)

or
‖u(·, 1)‖p ≤ E. (2.4)

Here ‖u(·, 1)‖p denotes the Sobolev space Hp-norm defined by

‖u(·, 1)‖p =
( ∫ ∞

−∞
(1 + ξ2)p|û(·, 1)|2dξ

)1/2

. (2.5)

Now, we firstly consider the following Cauchy problem in the frequency domain,

−ξ2v(ξ, y) + a(y)vyy(ξ, y) + b(y)vy(ξ, y) + c(y)v(ξ, y) = 0, ξ ∈ R, y ∈ (0, 1)

v(ξ, 0) = 1, ξ ∈ R,

vy(ξ, 0) = 0, ξ ∈ R.

(2.6)
The following Lemma is very important to our analysis, and its proof can be found
in [10].

Lemma 2.1. There exists a unique solution of (2.6) such that

(i) v(ξ, y) ∈ W 2,∞(0, 1) for all ξ ∈ R,
(ii) v(ξ, 1) 6= 0 for all ξ ∈ R,
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(iii) there exist positive constants c1, c2, such that for ξ ∈ R,

|v(ξ, y)| ≤ c1e
|ξ|A(y), ∀ y ∈ [0, 1], (2.7)

|v(ξ, 1)| ≥ c2e
|ξ|A(1), (2.8)

where,

A(y) =
∫ y

0

ds√
a(s)

, y ∈ [0, 1]. (2.9)

3. A modified quasi-boundary value regularization method

Taking the Fourier transform in problem (1.1) with respect to x, we have

a(y)ûyy(ξ, y) + b(y)ûy(ξ, y) + c(y)û(ξ, y)− ξ2û(ξ, y) = 0, ξ ∈ R, y ∈ (0, 1)

û(ξ, 0) = ϕ̂(ξ), ξ ∈ R,

ûy(ξ, 0) = 0, ξ ∈ R.

(3.1)
It can be shown that the solution of (1.1) in the frequency domain is

û(ξ, y) = v(ξ, y)û(ξ, 0) = v(ξ, y)ϕ̂(ξ). (3.2)

Then, the exact solution of (1.1) is

u(x, y) =
1√
2π

∫ ∞

−∞
v(ξ, y)ϕ̂(ξ)eiξxdξ. (3.3)

From Lemma 2.1 and v(ξ, 1) 6= 0, we have

ϕ̂(ξ) = û(ξ, 0) =
û(ξ, 1)
v(ξ, 1)

, (3.4)

and from (3.4), we can note that û(ξ, 1) 6= 0.
If ϕ̂(ξ), û(ξ, 1) > 0, we consider the following Cauchy problem in the frequency

domain

a(y)ûyy(ξ, y) + b(y)û(ξ, y) + c(y)û(ξ, y)− ξ2û(ξ, y) = 0, ξ ∈ R, y ∈ (0, 1)

û(ξ, 0) + αû(ξ, 1) = ϕ̂δ(ξ), ξ ∈ R,

ûy(ξ, 0) = 0, ξ ∈ R.

(3.5)

Denoting ûδ
α1(ξ, y) as the solution of (3.5), we obtain

ûδ
α1(ξ, y) =

v(ξ, y)
1 + αv(ξ, 1)

ϕ̂δ(ξ). (3.6)

If ϕ̂(ξ) > 0, û(ξ, 1) < 0, we consider the following Cauchy problem in the fre-
quency domain

a(y)ûyy(ξ, y) + b(y)û(ξ, y) + c(y)û(ξ, y)− ξ2û(ξ, y) = 0, ξ ∈ R, y ∈ (0, 1)

û(ξ, 0)− αû(ξ, 1) = ϕ̂δ(ξ), ξ ∈ R,

ûy(ξ, 0) = 0, ξ ∈ R.

(3.7)

Denoting by ûδ
α2(ξ, y) the solution of (3.7), we have

ûδ
α2(ξ, y) =

v(ξ, y)
1− αv(ξ, 1)

ϕ̂δ(ξ). (3.8)
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If ϕ̂(ξ) > 0, û(ξ, 1) can be positive or negative, we define the following modified
regularization solution to (1.1) in the frequency domain:

ûδ
α(ξ, y) =

v(ξ, y)
1 + α|v(ξ, 1)|

ϕ̂δ(ξ). (3.9)

By the above analysis, for ϕ̂(ξ) > 0, we define a modified regularization solution
of form (3.9) to problem (1.1) in the frequency domain.

Equivalently, the regularization solution of (1.1) is given by

uδ
α(x, y) =

1√
2π

∫ ∞

−∞

v(ξ, y)
1 + α|v(ξ, 1)|

ϕ̂δ(ξ)eiξxdξ. (3.10)

Adopting similar analysis, when ϕ̂(ξ) < 0, we can also define the modified regular-
ization solution of form (3.10).

In the following section, we will prove that the regularization solution uδ
α(x, y)

given by (3.10) is a stable approximation to the exact solution u(x, y) given by (3.3),
and the regularization solution uδ

α(x, y) depends continuously on the measured data
ϕδ for a fixed parameter α > 0.

4. Convergence Estimates

In this section, we give the convergence estimates for 0 < y < 1 and y = 1 under
two different a-priori assumptions for the exact solution u, respectively.

Theorem 4.1. Suppose that u is defined by (3.3) with the exact data ϕ and uδ
α is

defined by (3.10) with the measured data ϕδ. Let the measured data ϕδ satisfy (2.2),
and let the exact solution u at y = 1 satisfy (2.3). If the regularization parameter
α is chosen as

α =
δ

E
, (4.1)

then for fixed 0 < y < 1 we have the following convergence estimate

‖uδ
α(·, y)− u(·, y)‖ ≤ 2CyE

A(y)
A(1) δ1−A(y)

A(1) . (4.2)

Proof. From (3.2), (3.9), (2.2), (2.3), we have

‖uδ
α(·, y)− u(·, y)‖ = ‖uδ

α(ξ, y)− u(ξ, y)‖

= ‖v(ξ, y)ϕ̂(ξ)(1 + α|v(ξ, 1)|)− v(ξ, y)ϕ̂δ(ξ)
1 + α|v(ξ, 1)|

‖

= ‖v(ξ, y)(ϕ̂δ(ξ)− ϕ̂(ξ)) + α|v(ξ, 1)|v(ξ, y)ϕ̂(ξ)
1 + α|v(ξ, 1)|

‖

≤ δ sup
ξ∈R

|v(ξ, y)|
1 + α|v(ξ, 1)|

+ αE
|v(ξ, y)|

1 + α|v(ξ, 1)|
:= δ sup

ξ∈R
I1 + αE sup

ξ∈R
I1.

(4.3)

From Lemma 2.1, we can derive that

I1 =
|v(ξ, y)|

1 + α|v(ξ, 1)|
≤ c1e

|ξ|A(y)

1 + αc2e|ξ|A(1)
≤ c1

min{1, c2}
· e|ξ|A(y)

1 + αe|ξ|A(1)
. (4.4)

Let f(s) = esA(y)/(1 + αesA(1)), s ≥ 0, then

f ′(s) = f(s)
A(y)− α(A(1)−A(y))eA(1)s

1 + αe|s|A(1)
. (4.5)
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Setting f ′(s) = 0, we have

α(A(1)−A(y))eA(1)s = A(y). (4.6)

Note that A(1) ≥ 0, A(1) ≥ A(y) ≥ 0 for 0 ≤ y ≤ 1, it is easy to see that f(s) has
a unique maximal value point s∗ such that

αeA(1)s∗ =
A(y)

A(1)−A(y)
. (4.7)

Thus,

f(s) ≤ f(s∗) = cyα−
A(y)
A(1) , (4.8)

where

cy =
(A(y))

A(y)
A(1)

A(1)
(A(1)−A(y))

A(y)
A(1)−1.

Then

I1 ≤
c1

min{1, c2}
· e|ξ|A(y)

1 + αe|ξ|A(1)
≤ c1cy

min{1, c2}
α−

A(y)
A(1) := Cyα−

A(y)
A(1) , (4.9)

By (4.1), (4.3), (4.9), for fixed 0 < y < 1, we obtain

‖uδ
α(·, y)− u(·, y)‖ ≤ 2CyE

A(y)
A(1) δ1−A(y)

A(1) .

�

From Theorem 4.1, we note that uδ
α defined by (3.10) is an effective approxima-

tion to the exact solution u for the fixed 0 < y < 1. But the estimate (4.2) gives no
information about the error estimate at y = 1 as the constraint (2.3) is too weak for
this purpose. To retain the continuity, as common, we suppose that u(x, y) satisfies
a stronger a-priori assumption (2.4) at y = 1.

Theorem 4.2. Let the exact solution u and the regularization solution uδ
α be defined

by (3.3), (3.10), respectively. Assume that the measured data ϕδ satisfies ‖ϕδ−ϕ‖ ≤
δ, and let the exact solution u satisfy (2.4). If the regularization parameter α is
chosen as

α =
√

δ/E, (4.10)

then we have the following convergence estimate at y = 1,

‖u(·, 1)− uδ
α(·, 1)‖ ≤

√
δE + CE max

{( δ

E

)1/3
,
(1
6

ln
E

δ

)−p}
. (4.11)

Proof. By (3.2), (3.9), (2.2), (2.4), we have

‖uδ
α(·, 1)− u(·, 1)‖ = ‖uδ

α(ξ, 1)− u(ξ, 1)‖

= ‖v(ξ, 1)ϕ̂(ξ)(1 + α|v(ξ, 1)|)− v(ξ, 1)ϕ̂δ(ξ)
1 + α|v(ξ, 1)|

‖

= ‖v(ξ, 1)(ϕ̂δ(ξ)− ϕ̂(ξ)) + α|v(ξ, 1)|v(ξ, 1)ϕ̂(ξ)
1 + α|v(ξ, 1)|

‖

≤ δ sup
ξ∈R

|v(ξ, 1)|
1 + α|v(ξ, 1)|

+ E sup
ξ∈R

α(1 + ξ2)−
p
2 |v(ξ, 1)|

1 + α|v(ξ, 1)|
:= δ sup

ξ∈R
I2 + E sup

ξ∈R
I3.

(4.12)
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It is easy to know that

I2 =
|v(ξ, 1)|

1 + α|v(ξ, 1)|
≤ 1

α
, (4.13)

then by (4.10), we know
δ sup

ξ∈R
I2 ≤

√
δE. (4.14)

In the following, we estimate I3. From Lemma 2.1, we obtain

I3 =
α(1 + ξ2)−

p
2 |v(ξ, 1)|

1 + α|v(ξ, 1)|
≤ c1

min{1, c2}
· α(1 + ξ2)−

p
2 e|ξ|A(1)

(1 + αe|ξ|A(1))
. (4.15)

Case 1: For the large values with |ξ| ≥ ln 1
3√α

, we have

c1

min{1, c2}
· α(1 + ξ2)−

p
2 e|ξ|A(1)

(1 + αe|ξ|A(1))
≤ c1

min{1, c2}
(
ln

1
3
√

α

)−p := C
(
ln

1
3
√

α

)−p
. (4.16)

Case 2: For |ξ| < ln 1
3√α

, since 1 ≤ λ ≤ a(y) ≤ Λ, A(1) =
∫ 1

0
1√
a(s)

ds ≤ 1, then

c1

min{1, c2}
· α(1 + ξ2)−

p
2 e|ξ|A(1)

(1 + αe|ξ|A(1))
≤ c1

min{1, c2}
αe|ξ|A(1) ≤ Cα

2
3 . (4.17)

By (4.16), (4.17), we obtain

I3 ≤ C max
{
α2/3,

(
ln

1
3
√

α

)−p}
. (4.18)

Then, from (4.10), (4.12), (4.14), (4.18), for y = 1, we have

‖u(·, 1)− uδ
α(·, 1)‖ ≤

√
δE + CE max

{( δ

E

)1/3
,
(1
6

ln
E

δ

)−p}
.

�

Remark 4.3. In the convergence estimate (4.11), we can see that the logarithmic
term with respect to δ is the dominating term. Asymptotically this yields a conver-
gence rate of order O(ln E

δ )−p. The first term is asymptotically negligible compared
to this term.

5. Numerical implementations

In this section, we use a numerical example to verify the stability of our proposed
regularization method. For simplicity, we consider the following Cauchy problem
for the Laplace equation,

uxx + uyy = 0, x ∈ R, y ∈ (0, 1)

u(x, 0) = ϕ(x), x ∈ R,

uy(x, 0) = 0, x ∈ R.

(5.1)

It is easy to verify that
u(x, y) = ey2−x2

cos(2xy), (5.2)
is the exact solution of problem (5.1), with initial data

ϕ(x) = e−x2
. (5.3)

In this case, the solution of (2.6) becomes

v(ξ, y) = cosh(|ξ|y). (5.4)



EJDE-2011/106 MODIFIED QUASI-BOUNDARY VALUE METHOD 7

We define all functions to be zero for x ∈ (−∞,−3π) ∪ (3π,∞), so we choose
the interval [−3π, 3π] to complete our numerical experiment by using the discrete
Fourier transform and inverse Fourier transform (FFT and IFFT).

The measured data ϕδ is given by ϕδ(xi) = ϕ(xi) + ε rand(i), where ε is the
error level,

ϕ(x) = (ϕ(x1), . . . , ϕ(xN )), (5.5)

xj = −3π +
6π(j − 1)

N − 1
, j = 1, 2, . . . , N, (5.6)

δ = ‖ϕδ − ϕ‖l2 =
( 1

N

N∑
j=1

|ϕδ(xj)− ϕ(xj)|
)1/2

. (5.7)

the function rand(·) denotes arrays of random numbers whose elements are uni-
formly distributed in the interval [0, 1]. The relative root mean square error between
the exact and approximate solution is given by

ε(u) =

√
1
N

∑N
j=1 (uj − (uδ

α)j)
2√

1
N

∑N
j=1(uj)2

. (5.8)

Then we obtain the regularization solution uδ
α computed by (3.10).

Numerical results are shown in Figures 1-2. The numerical result for u(·, y) and
uδ

α(·, y) at x = 0.2, x = 0.5, and x = 0.8 with ε = 1 × 10−4, 10−3 are shown in
Figure 1. In Figure 1, we choose the a-priori bound E = 1 and the regularization
parameter α is chosen by (4.1). The numerical results for u(·, 1) and uδ

α(·, 1) with
ε = 1 × 10−4, ε = 10−3 are shown in Fig.2, where the regularization parameter α
is chosen by (4.10) and the a-priori bound E = 1. The relative root mean square
errors at y = 0.6, y = 1 for the computed solution versus the error levels ε are
shown in Tables 1− 2.

From Figures 1-2, we find the stability of our proposed method. From Tables
1–2, we note that the smaller the ε is, the better the computed solution is, which
means that our proposed regularization method is sensitive to the noise level ε. In
addition, we can note that numerical results become worse when y approaches to
1.

Table 1. The relative root mean square errors at y = 0.6 for
various noisy levels

ε 0.00001 0.0001 0.001 0.01
α 0.0032 0.01 0.0316 0.1
ε(u) 0.0118 0.0345 0.0914 0.2098

Table 2. The relative root mean square errors at y = 1 for various
noisy levels

ε 0.00001 0.0001 0.001 0.01
α 0.0032 0.01 0.0316 0.1
ε(u) 0.0269 0.0727 0.1721 0.3424
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Figure 1. Graph of u(·, y) and uδ
α(·, y)

Conclusions. In this article, a modified quasi-boundary value regularization method
is used to solve a Cauchy problem for the elliptic equation with variable coefficients.
The convergence estimates for 0 < y < 1 and y = 1 have been obtained under two
different a-priori bound assumptions for the exact solution. Some numerical results
show that our proposed regularization method is feasible.
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Figure 2. Graph of u(·, 1) and uδ
α(·, 1)
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[8] D. N. Hào, N. V. Duc, and D. Sahli. A non-local boundary value problem method for the
Cauchy problem for elliptic equations. Inverse Problems, 25:055002, 2009.
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