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COMPARISON AND EXISTENCE THEOREMS FOR
BACKWARDS STOCHASTIC DE’S WITH DISCONTINUOUS

GENERATORS

NIKOLAOS HALIDIAS, PETER E. KLOEDEN

Abstract. An existence result is proved for backwards stochastic differential
equations (BSDEs) with a generator f(t, x, z) which is possibly discontinuous
in the x variable. For this comparison results are first established for BSDEs
with the generator satisfying a generalized Lipschitz condition in its x variable.

1. Introduction

Let Wt be a standard one-dimensional Wiener process defined on the complete
probability space (Ω,F , P), let {FW

t } be the natural filtration generated by the
Wiener process and let {Ft} be the augmentation under P of this natural filtration.
In addition, let P denote the σ-algebra of Ft progressively measurable subsets of
[0, T ] × Ω and let Hp(R) be the space of P-measurable X : [0, T ] × Ω → R with
‖X‖p := E

∫ T

0
|Xs|p ds < ∞.

Suppose that the mapping f : [0, T ]× R× R → R is B ⊗ B ⊗ B-measurable and
consider the scalar backward stochastic differential equation (BSDE) with

xt = ξ +
∫ T

t

f(s, xs, zs) ds−
∫ T

t

zs dWs. (1.1)

The classical existence theorem for BSDE states that if the generator is globally
Lipschitz in both variables then there exists a strong solution. Lepeltier and San
Martin [7] prove an existence result for the case where the generator is only con-
tinuous in both variables. To do that they use the classical comparison theorem
and monotonicity arguments. The comparison theorem proved in this note allows
the conditions on the generator to be further relaxed. In particular, an existence
theorem is established in the case where x → f(t, x, z) is left continuous. A simi-
lar result appears in the paper by Jia [3], however our assumptions here are more
general because we use a comparison theorem which holds for generators having
super-linear growth in the x variable.
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It is well known that BSDEs are related to PDEs, see for example [8]. Benth
et al [2] showed that the nonlinearity in the semilinear Black and Scholes equation
depends discontinuously on the American option value. Moreover, this discontinuity
then appears in the generator of the associated BSDE, see also Karoui et al [4].

2. Comparison theorems

Consider the following scalar BSDEs:

yt = ξ1 +
∫ T

t

f(s, ys, z
1
s) ds−

∫ T

t

z1
s dWs, (2.1)

xt = ξ2 +
∫ T

t

g(s, xs, z
2
s) ds−

∫ T

t

z2
s dWs, (2.2)

and suppose that each admits a unique solution, which is denoted by (yt, z
1
t ) and

(xt, z
2
t ), respectively. (Note that yt and xt have continuous modifications). The

generator g satisfies the assumption
(A1) There exists a constant K such that

|g(t, x1, z1)− g(t, x2, z2)|2 ≤ κ(|x1 − x2|2) + K|z1 − z2|2, a.s.,

for all t, x1, x2, z1, z2, where κ : R+ → R+ is a concave increasing function
with κ(0) = 0 and κ(u) > 0 for u > 0 such that∫

0+

du

κ(u)
= ∞.

The following comparison theorem will be used later to prove the existence of a
solution to (1.1) with the generator f being discontinuous in its second variable.

Theorem 2.1. Let (ys, z
1
s) and (xs, z

2
s) be the unique solutions of (2.1) and (2.2),

respectively. Suppose (A1) holds and, in addition, that

f(t, ys, z
1
s) ≤ g(t, ys, z

1
s) for all t ∈ [0, T ], a.s. .

Finally, suppose that ξ1, ξ2 ∈ L2(Ω,F , P) satisfy ξ1 ≤ ξ2. Then, yt ≤ xt, a.s., for
all t ∈ [0, T ].

Proof. Consider the auxiliary problem

ht = ξ2 +
∫ T

t

g(s,max{hs, ys}, zh
s )ds−

∫ T

t

zh
s dWs. (2.3)

The generator of this BSDE is the random function

ĝ(s, ω, x, z) := g(s,max{x, ys(ω)}, z).

Since the function x 7→ max{x, ys(ω)} satisfies the Lipschitz condition with constant
one and a growth condition |max{x, ys(ω)}| ≤ |x| + |ys(ω)|, it follows that ĝ is
Lipschitz in x and has linear growth. Hence by [8, Theorem 7.4.1] this auxiliary
BSDE (2.3) has a unique solution.

We want to compare this solution ht with yt. First, define

Ht :=
∫ T

t

[f(s, ys, z
1
s)− g(s,max{hs, ys}, z1

s)] ds +
∫ T

t

bsẐs ds−
∫ T

t

Ẑ dWs,

where

bs :=
g(s,max{hs, ys}, z1

s)− g(s,max{hs, ys}, z2
s)

z1
s − z2

s

, Ẑs := z1
s − z2

s .
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Note that bs is uniformly bounded by Assumption (A1). Then write

M(t) = exp
( ∫ t

0

bsdWs −
1
2

∫ t

0

|bs|2ds
)
, t ∈ [0, T ],

and define a new probability measure P̂ by

dP̂
dP

= M(T ).

By Girsanov’s theorem, Ŵt := Wt −
∫ t

0
bs ds is a P̂-Wiener process. Hence, under

P̂, the difference yt − ht satisfies the equation

yt−ht = ξ1−ξ2 +
∫ T

t

[
f(s, ys, z

1
s)− g(s,max{hs, ys}, z1

s)
]

ds−
∫ T

t

Ẑs dŴs. (2.4)

It will now be shown that yt ≤ ht, a.s., for all t ∈ [0, T ]. Suppose that this is not
true. Then, there exists some t∗ such that yt∗ > ht∗ on an event A with P̂(A) > 0.
Note, that A is Ft∗ measurable, so the indicator function IA of the event A is Ft∗
measurable. Then, by [8, Lemma 1.5.10],

IA

∫ τ

t∗
Ẑs dŴs =

∫ τ

t∗
IAẐs dŴs.

Define the stopping time,

τ := inf{t ∈ [t∗, T ] : yt ≤ ht}.
Since yτ = hτ by continuity of yt and ht, it follows from (2.4) that

yt∗ − ht∗ =
∫ τ

t∗
[f(s, ys, z

1
s)− g(s,max{hs, ys}, z1

s)] ds−
∫ τ

t∗
Ẑs dŴs.

Multiplying this equation by IA gives

IA(yt∗ − ht∗)

=
∫ τ

t∗
IA

[
f(s, ys, z

1
s)− g(s,max{hs, ys}, z1

s)
]

ds−
∫ τ

t∗
IAẐs dŴs,

(2.5)

Now yt ≥ ht on the stochastic interval [t∗, τ ], so max{ht, yt} = yt. Finally, taking
the expectation on both sides of (2.5) gives

E(IA(yt∗ − xt∗)) ≥ 0, E
( ∫ τ

t∗
IAẐs dŴs

)
= 0,

E
( ∫ τ

t∗
IA[f(s, ys, z

1
s)− g(s, ys, z

1
s)] ds

)
≤ 0.

It follows that E
(
IA(yt∗ −ht∗)

)
= 0 and hence that P̂(A) = 0, which is a contradic-

tion. Thus, ht ≥ yt for all t, a.s. This means that ht = xt, where xt is the unique
solution of the BSDE (2.2). �

Remark 2.2. Theorem 2.1 is also valid for a random generator f ; i.e., for a P ⊗
B ⊗ B-measurable f : [0, T ]× Ω× R× R → R with values f(t, ω, x, z).

A similar argument gives a comparison theorem that applies to backward sto-
chastic differential inequalities. Backward stochastic differential inequalities are
closely related to self-financing super-strategies in mathematical finance, see for
example [4, Definition 1.2].
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Consider the following two backward stochastic differential inequalities:

yt ≤ ξ1 +
∫ T

t

f(s, ys, z
1
s)ds−

∫ T

t

z1
sdWs, (2.6)

xt ≥ ξ2 +
∫ T

t

g(s, xs, z
2
s)ds−

∫ T

t

z2
sdWs. (2.7)

Theorem 2.3. Suppose that x 7→ f(t, x, z) is non-increasing and that x 7→ g(t, x, z)
is non-decreasing. In addition, suppose that ξ1 ≤ ξ2 with ξ1, ξ2 ∈ L2(Ω,F , P) and
that

f(t, x, z) ≤ g(t, x, z) for all t ∈ [0, T ], (x, z) ∈ R2.

Then yt ≤ xt, a.s., for all t ∈ [0, T ].

Proof. Define Ht by

Ht :=
∫ T

t

[f(s, ys, z
1
s)− g(s, xs, z

1
s)] ds +

∫ T

t

bsẐs ds−
∫ T

t

Ẑ dWs,

where

bs :=
g(s, xs, z

1
s)− g(s, xs, z

2
s)

z1
s − z2

s

, Ẑs := z1
s − z2

s .

As before, using Girsanov’s theorem, Ht can be rewritten as

Ht =
∫ T

t

[
f(s, ys, z

1
s)− g(s, xs, z

1
s)

]
ds−

∫ T

t

Ẑs dŴs (2.8)

with respect to the new probability measure P̂ and corresponding Wiener process
Ŵt. Using the assumptions that x → f(t, x, z) is non-increasing and that x →
g(t, x, z) is non-decreasing, it follows that

Ht ≤
∫ T

t

[
f(s,min{xs, ys}, z1

s)− g(s,min{xs, ys}, z1
s)

]
ds−

∫ T

t

Ẑs dŴs.

Suppose now that there exists a t∗ such that Ht∗ > 0 on an event A with
P̂(A) > 0. Then, multiplying the above inequality by IA and taking the expectation
leads to a contradiction, since E(

∫ T

t∗
IAẐs Ŵs) = 0. Hence, Ht ≤ 0 for all t ∈ [0, T ]

and it follows that
yt − xt ≤ ξ1 − ξ2 + Ht ≤ 0

for all t ∈ [0, T ], a.s. �

3. An existence theorem

The first comparison theorem, Theorem 2.1, will now be applied to scalar BSDEs
for which the generator f is not necessarily continuous in x. In particular, f is now
assumed to satisfy the following assumptions:

(A2) The generator f : [0, T ]×R×R → R is B⊗B⊗B-measurable and satisfies
(i) The mapping f has the form f(t, x, z) = f1(t, x, z) + f2(t, x, z), where

f1(t, x, z) is continuous in all variables and satisfies (A1), while f2 is
continuous in t and z, is an increasing function of x, and satisfies a
linear growth condition for both variables; i.e.,

|f2(t, x, z)| ≤ C(|x|+ |z|+ 1),

and is possibly discontinuous in x, but is right or left continuous.
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(ii) There exist a K such that

|f2(t, x, z1)− f2(t, x, z2)| ≤ K|z1 − z2|

for all t, x, x1, x2, z, z1, z2.
(A3) There exists functions g1(t, x, z) and g2(t, x, z) satisfying (A1) such that

g1(t, x, z) ≤ f(t, x, z) ≤ g2(t, x, z) for all t, x, z.

(A4) E(|ξ|2) < ∞.

Theorem 3.1. Suppose that Assumptions (A2), (A3), (A4) hold. Then (1.1) has
at least one solution.

Proof. The solution will be obtained as the limit of an increasing or a decreasing
sequence, which is constructed as follows.

Firstly, note that the BSDEs

Lt = ξ +
∫ T

t

g1(s, Ls, z
L
s ) ds−

∫ T

t

zL
s dWs,

Ut = ξ +
∫ T

t

g2(s, Us, z
U
s ) ds−

∫ T

t

zU
s dWs

admit unique solutions. Then consider a sequence (yn
t , zn

t ) of stochastic processes
obtained as the solutions of the BSDEs

yn
t = ξ +

∫ T

t

[f1(t, yn, zn) + f2(t, yn−1, zn)] ds−
∫ T

t

zn dWs,

with y0
t = Lt. These solutions exist by [8, Theorem 7.4.1]. In particular, note that

the Assumption (A4) on the final value ξ ensures that yn
t ∈ H2(R).

We will now prove that y1
t ≥ Lt. For this we have to compare a BSDE with

generator g1(t, x, z) and a BSDE with random generator

f̂(t, ω, x, z) := f1(t, x, z) + f2(t, Lt(ω), z).

It is clear that f̂ satisfies the conditions of the comparison theorem, Theorem
2.1, and that g1(t, Lt, z

L
t ) ≤ f̂(t, Lt, z

L
t ). Hence Lt ≤ y1

t . It follows by the same
argument that yn

t ≥ yn−1
t , a.s., for each n ∈ N.

It also follows similarly that y1
t ≤ Ut and hence that yn

t ≤ Ut for each n ∈ N.
Now it is easy to show that yn

t → y∗t in H2(R), where yn
t ≤ y∗t ≤ yt, using the

Lebesgue Dominated Convergence Theorem and the fact that yn is an increasing
and bounded sequence. To show that zn → z in H2(R) we apply the Itô formula
to |yn − ym|2 and obtain

E|yn − ym|2 + E
∫ T

t

|zn − zm|2 ds

= 2E
∫ T

t

(yn − ym)
(
f1(s, yn, zn)− f1(s, ym, zm)

)
ds

+ 2E
∫ T

t

(yn − ym)
(
f2(s, yn, zn)− f2(s, ym, zm)

)
ds.
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Using the inequality 2|yz| ≤ y2

ε + εz2, the first term on right-hand side can be
estimated by

2E
∫ T

t

(yn − ym)
(
f1(s, yn, zn)− f1(s, ym, zm)

)
ds

≤ εE
∫ T

t

|yn − ym|2ds +
1
ε

E
∫ T

t

|f1(s, yn, zn)− f1(s, ym, zm)|2 ds

≤ εE
∫ T

t

|yn − ym|2 ds +
1
ε

E
∫ T

t

κ(|yn − ym|2) ds +
1
ε

E
∫ T

t

|zn − zm|2 ds.

The same arguments can be used to estimate the second term on right-hand side
of (3.1). Finally, choosing a suitable ε, it follows that {zn} is a Cauchy sequence
in H2(R). Hence, (yn, zn) → (y∗, z∗), which is a solution of (1.1). �

Remark 3.2. The above results can be applied for BSDEs with a generator of the
form

f(t, x, z) = f1(t, x, z) + H(x− 1)x + z;
where H(x) is the Heaviside function and f1(t, x, z) satisfies assumption (A1). Here
one can take

g1(t, x, z) = f1(t, x, z) + z, g2(t, x, z) = f1(t, x, z) + H(x)x + z.
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