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COMPACTNESS RESULT FOR PERIODIC STRUCTURES AND
ITS APPLICATION TO THE HOMOGENIZATION OF A

DIFFUSION-CONVECTION EQUATION

ANVARBEK MEIRMANOV, RESHAT ZIMIN

Abstract. We prove the strong compactness of the sequence {cε(x, t)} in

L2(ΩT ), ΩT = {(x, t) : x ∈ Ω ⊂ R3, t ∈ (0, T )}, bounded in W 1,0
2 (ΩT )

with the sequence of time derivative {∂/∂t
`
χ(x/ε)cε

´
} bounded in the space

L2

`
(0, T ); W−1

2 (Ω)
´
. As an application we consider the homogenization of

a diffusion-convection equation with a sequence of divergence-free velocities
{vε(x, t)} weakly convergent in L2(ΩT ).

1. Introduction

There are several compactness criteria and among them Tartar’s method of com-
pensated compactness [17] and the method suggested by Aubin in [6] (see also [14]).
These methods intensively used in the theory of nonlinear differential equations.
As a rule, the first one has applications in stationary problems, while the second
method is used in non-stationary nonlinear equations.

In the present publication we discuss the method, closed to the Aubin com-
pactness lemma. In its simplest setting, this result provides the strong compact-
ness in L2(ΩT ) (throughout the article, we use the customary notation of func-
tion spaces and norms [14, 13]) to the sequence of functions {cε(x, t)} bounded in
L∞

(
(0, T );L2(Ω)

)
∩W 1,0

2 (ΩT ) with the sequence of the time derivatives {∂cε/∂t}
bounded in L2

(
(0, T );W−1

2 (Ω)
)
. But in many applications (especially in homoge-

nization), the second condition on a boundedness of the time derivatives in some
dual space is not always satisfied. Sometimes, instead of the last condition, one has
the boundedness of time derivatives in a dual space L2

(
(0, T );W−1

2 (Ωεf )
)
, defined

on some periodic subdomain Ωεf ⊂ Ω. Using new ideas of Nguetseng’s two-scale
convergence method [16] we prove that even under this weak condition the sequence
{cε(x, t)} still remains strongly compact in L2(ΩT ). The main point here is the fact,
that if for some t0 ∈ (0, T ),

lim
ε→0

ε2
∫

Ω

|∇cε(x, t0)|2 dx = 0,
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then the bounded in L2(Ω) sequence {cε(x, t0)} contains a subsequence, which two-
scale converges in L2(Ω) to some function c̄(x, t0).

Recall that, in general, any bounded in L2(Ω) sequence {uε} contains a two-scale
convergent subsequence {uεk}, where the limiting function U(x,y) is 1-periodic in
variable y ∈ Y = (0, 1)n:∫

Ω

uεk(x)ϕ(x,
x
εk

)dx→
∫∫

ΩY

U(x,y)ϕ(x,y)dydx

for any smooth function ϕ(x,y), 1-periodic in the variable y. In particular, for
ϕ(x,y) = ϕ0(y) · h(x), where ϕ0 ∈ L2(Y ) and h ∈ L∞(Ω).

A similar compactness result has been proved in [4] under different assumptions
on the sequence {cε(x, t)}. More precisely, the corresponding [4, Lemma 4.2] states,
that if for all ε > 0

0 6 cε(x, t) 6 M0,

∫
ΩT

|cε(x +4x, t)− cε(x, t)|2 dx dt 6 M0ω(|4x|),

with some ω(ξ), such that ω(ξ) → 0 as ξ → 0, and

‖ ∂
∂t

(χεcε)‖
L2

(
(0,T );W−1

2 (Ω)
) 6 M0,

where 0 < χ− 6 χε 6 χ+ < 1, χ± = const, then the family {cε} is a compact set
in L2(ΩT ).

As an application of our result we consider the homogenization of diffusion-
convection equation

∂cε

∂t
+ vε · ∇cε = 4cε, x ∈ Ωε, t ∈ (0, T ), (1.1)

with boundary and initial conditions(
∇cε − vεcε

)
· ν = 0, x ∈ ∂Ωε\S, t ∈ (0, T ), (1.2)

cε(x, t) = 0, x ∈ S ∩ ∂Ωε, t ∈ (0, T ), (1.3)

cε(x, 0) = c0(x), x ∈ Ωε. (1.4)

In (1.2), ν is the unit outward normal vector to the boundary ∂Ωε and S = ∂Ω.
We assume that velocities vε are uniformly bounded in L8

(
(0, T );L4(Ω)

)
:∫ T

0

( ∫
Ω

|vε|4dx
)2

dt 6 M2
0 , (1.5)

and
∇ · vε = 0,x ∈ ΩT . (1.6)

As usual, the solution to the problem (1.1)–(1.4) is understood in a weak sense
as a solution of the integral identity∫

Ωε
T

(
cε
∂φ

∂t
−

(
∇cε − vεcε

)
· ∇φ

)
dx dt = −

∫
Ωε

c0(x)φ(x, 0) dx (1.7)

for any smooth functions φ, such that φ(x, T ) = 0.
Homogenization means the limiting procedure in (1.7) as ε → 0 and the main

problem here is how to pass to the limit in the nonlinear term

cεvε · ∇φ.



EJDE-2011/115 COMPACTNESS RESULT FOR PERIODIC STRUCTURES 3

It has been done for velocities with a special structure

vε = vε(x), orvε = v(x, t,
x
ε
)

(see, for example, [5, 3, 7, 8, 9, 10]). However, in the general case we need the
strong compactness in L2(ΩT ) of the sequence {cε}. Our compactness result and
the energy estimate

max
0<t<T

∫
Ωε

|cε(x, t)|2dx+
∫

Ωε
T

|∇cε(x, t)|2 dx dt 6 M2
1

provide this compactness.
Note, that to apply any compactness result we must consider sequences in a fixed

domain. To do that we use the well-known extension result [1] and restrict ourself
with special domains Ωε:

Assumption 1.1. Let χ(y) be 1-periodic in the variable y function, such that
χ(y) = 1,y ∈ Yf ⊂ Y , χ(y) = 0,y ∈ Ys = Y \Y f .

(1) The set Yf is an open one and γ = ∂Yf ∩ ∂Ys is a Lipschitz continuous
surface.

(2) Let Y εf be a periodic repetition in Rn of the elementary cell εYf . Then Y εf
is a connected set with a Lipschitz continuous boundary ∂Y εf .

(3) Ω ⊂ Rn is a bounded domain with a Lipschitz continuous boundary S = ∂Ω
and Ωε = Ω ∩ Y εf .

Due to periodicity of Y εf the characteristic function of the domain Ωε in Ω has
a form:

χε(x) = χ(
x
ε
).

For such domains Ωε the extension theorem [1] allows us to construct a linear
operator Aε

Aε : W 1
2 (Ωε) →W 1

2 (Ω), c̃ε = Aε(cε), (1.8)
such that ∫

Ω

|c̃ε(x, t)|2dx 6 C0

∫
Ωε

|cε(x, t)|2dx, (1.9)∫
Ω

|∇c̃ε(x, t)|2dx 6 C0

∫
Ωε

|∇cε(x, t)|2dx. (1.10)

where the constant C0 = C0(Ω, Yf ) does not depend on ε and t ∈ (0, T ).

2. Main results

Our principal result is the following

Theorem 2.1. Let {c̃ε(x, t)} be a bounded sequence in L∞
(
(0, T );L2(Ω)

)
∩W 1,0

2 (ΩT )
and weakly convergent in L2

(
(0, T );L2(Ω)

)
∩W 1,0

2 (ΩT ) to a function c(x, t). Also
let the sequence {∂/∂t(χε(x)c̃ε(x, t))} be bounded in L2

(
(0, T );W−1

2 (Ω)
)
, where

χε(x) = χ(x/ε), χ(y) is 1-periodic in the variable y measurable bounded function,
such that

〈χ〉Y =
∫
Y

χ(y)dy = m 6= 0,

and Y is the unit cube in Rn. Then the sequence {c̃ε(x, t)} converges strongly in
L2(ΩT ) to its weak limit c(x, t).
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As an application of this result we consider a homogenization of the problem
(1.1)–(1.4).

We prove the following result.

Theorem 2.2. Under conditions (1.5)–(1.6) and Assumption 1.1 let cε(x, t) be the
solution to the problem (1.1)–(1.4), c0 ∈ L2(Ω),∫

Ω

|c0|2dx 6 M2
0 , (2.1)

and
ṽε ⇀ v weakly in L2(ΩT ), (2.2)

where ṽε(x, t) = χε(x)vε(x, t). Then the sequence {c̃ε}, where c̃ε = Aε(cε), con-
verges strongly in L2(ΩT ) and weakly in W 1,0

2 (ΩT ) to the solution c(x, t) of the
homogenized equation

m
∂c

∂t
= ∇ ·

(
B · ∇c+ (v0 − v)c

)
, x ∈ Ω, t ∈ (0, T ), (2.3)

with boundary and initial conditions

c(x, t) = 0,x ∈ S, t ∈ (0, T ), (2.4)

c(x, 0) = c0(x), x ∈ Ω. (2.5)

In (2.3) the symmetric strictly positively defined constant matrix B and the vector
v0 are given below by formulas (4.13) and (4.14).

3. Proof of Theorem 2.1

We split the proof into several independent steps. As a first step we prove the
following.

Lemma 3.1. Under conditions of Theorem 2.1 the sequence {χε(x)c̃ε(x, t)} con-
verges weakly in L2(Ω) to the function mc(x, t) for almost all t ∈ (0, T ).

Proof. By the properties of the two-scale convergence [16, 15] the sequence {c̃ε}
two-scale converges in L2(ΩT ) to the function c(x, t). That is, for any 1-periodic in
variable y smooth function ϕ(x,y, t)∫

ΩT

c̃ε(x, t)ϕ(x,
x
ε
, t) dx dt→

∫
ΩT

c(x, t)
( ∫

Y

ϕ(x,y, t)dy
)
dxdt.

In particular, this relation holds true for ϕ = ϕ0(x, t)ϕ1(y) with ϕ0 ∈ L∞(ΩT ) and
ϕ1 ∈ L2(Y ). If we choose

ϕ(x,
x
ε
, t) = χ(

x
ε
)η(t)ψ(x) = χε(x)η(t)ψ(x),

then ∫
ΩT

c̃ε(x, t)χε(x)η(t)ψ(x) dx dt→
∫

ΩT

mc(x, t)η(t)ψ(x) dx dt. (3.1)

Let

fεψ(t) =
∫

Ω

χε(x)c̃ε(x, t)ψ(x)dx, fψ(t) =
∫

Ω

mc(x, t)ψ(x)dx.

Then the above relation means that∫ T

0

η(t)fεψ(t)dt→
∫ T

0

η(t)fψ(t)dt, (3.2)
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for any functions η ∈ L∞(0, T ) and ψ ∈ L∞(Ω).
To prove the lemma we have to show that for almost all t ∈ (0, T ) functions

fεψ(t) pointwise converge to the function fψ(t). First of all, we restrict ourself with
functions ψ ∈ W̊ 1

2 (Ω).
By the assumptions in Theorem 2.1, the time derivatives ∂/∂t

(
χε(x)c̃ε

)
belong

to the space L2

(
(0, T ); W̊−1

2 (Ω)
)

and uniformly bounded there. This means that
there exists a sequence {Fε(x, t)}, such that∫

ΩT

|Fε|2 dx dt 6 M2
0 ,

and ∫
ΩT

dϕ(t)
dt

χε(x)c̃ε(x, t)ψ(x) dx dt =
∫

ΩT

ϕ(t)Fε(x, t) · ∇ψ(x) dx dt (3.3)

for any ϕ ∈1
2 (0, T ) and ψ ∈ W̊ 1

2 (Ω). If we put

gε(t) = −
∫

Ω

Fε(x, t) · ∇ψ(x)dx,

then ∫ T

0

|gε|2dt 6 M2
0 ‖∇ψ‖2

2,Ω = M2
ψ,

and identity (3.3) rewrites as∫ T

0

(
fεψ(t)

dϕ(t)
dt

+ ϕ(t)gε(t)
)
dt = 0. (3.4)

Therefore by [2], the function fεψ(t) possesses the generalized time derivative gε(t) ∈
L2(0, T ) and takes place a representation

fεψ(t) = fεψ(tε) +
∫ t

tε

gε(τ)dτ, |fεψ(tε)| 6 Mψ.

In particular,

|fεψ(t)| 6 Mψ, |fεψ(t1)− fεψ(t2)| 6 Mψ|t2 − t1|1/2. (3.5)

Thus, we may apply the Ascoli-Arzela theorem [12] and state that there exists
some subsequence {εm}, such that the sequence of continuous functions {fεm

ψ (t)}
uniformly converges to some continuous function fψ(t):

fεm

ψ (t) ⇒ fψ(t), as εm → 0,∀t ∈ (0, T ). (3.6)

Therefore, ∫ T

0

η(t)fεm

ψ (t)dt→
∫ T

0

η(t)fψ(t)dt, as εm → 0. (3.7)

But, on the other hand, according to (3.1)∫ T

0

η(t)fεm

ψ (t)dt→
∫ T

0

η(t)fψ(t)dt, asεm → 0. (3.8)

By the arbitrary choice of η(t) (3.6)-(3.8) result

fεm

ψ (t) → fψ(t) as εm → 0, for almost all t ∈ [0, T ].
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Due to the uniqueness of the limit, the last relation holds for the entire sequence
{fεψ(t)}:

fεψ(t) =
∫

Ω

χε(x)cε(x, t)ψ(x)dx→
∫

Ω

mc(x, t)ψ(x)dx = fψ(t)

as ε→ 0 for almost all t ∈ (0, T ). �

As a next step we prove the following result.

Lemma 3.2. Under conditions of Theorem 2.1 there exists a subsequence {εk},
such that

lim
εk→0

ε2k

∫
Ω

|∇c̃εk(x, t0)|2dx = 0 (3.9)

for almost all t0 ∈ (0, T ).

Proof. In fact, the boundedness of the sequence {∇c̃ε} in L2(ΩT ) implies

lim
ε→0

ε2
∫

ΩT

|∇c̃ε(x, t)|2 dx dt = 0. (3.10)

Let

uε(t) = ε2
∫

Ω

|∇c̃ε(x, t)|2dx.

Then the relation (3.10) means that the sequence {uε} converges to zero in L1(0, T ).
Due to the well-known theorem of functional analysis [12] there exists some subse-
quence {εk}, such that the sequence {uεk(t0)} pointwise converge to zero for almost
all t0 ∈ (0, T ):

uεk(t0) → 0 for almost all t0 ∈ (0, T ).
The above relation proves (3.9). �

The following statement is a crucial one and essentially uses the notion of two-
scale convergence.

Lemma 3.3. Under the conditions of Theorem 2.1, the sequence {c̃εk(x, t0)} two-
scale converges in L2(Ω) to the function c(x, t0) for almost all t0 ∈ (0, T ).

Proof. Let Q ⊂ (0, T ) be the set of full measure in (0, T ), where hold true conditions
of the Lemma 3.1 and condition (3.9).

By hypothesis, the sequence {c̃εk(x, t0)} for t0 ∈ Q is bounded in L2(Ω). There-
fore, there exists some subsequence which two-scale converges in L2(Ω) to some
1-periodic in variable y function C(x,y, t0) ∈ L2(Ω× Y ). Applying integration by
parts

εk

∫
Ω

∇cεk(x, t0) ·ϕ(
x
εk

)ψ(x)dx

= −εk
∫

Ω

cεk(x, t0)ϕ(
x
εk

) · ∇ψ(x)dx−
∫

Ω

cεk(x, t0)
(
∇y ·ϕ(

x
εk

)
)
ψ(x)dx

for arbitrary functions ϕ ∈W 1
2 (Y ) and ψ ∈ W̊ 1

2 (Ω), and relation (3.9) we arrive at
the equality ∫

Ω

ψ(x)
( ∫

Y

C(x,y, t0)∇y ·ϕ(y)dy
)
dx = 0 (3.11)

after passing to the limit as εk → 0.
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By the arbitrary choice of test functions ϕ and ψ, the last integral identity
implies

C(x,y, t0) = c(x, t0). (3.12)

Thus, the chosen subsequence of the sequence {cεk(x, t0)} two-scale converges in
L2(Ω) to the function c(x, t0). In particular, by the properties of two-scale con-
vergent sequences [16] the same subsequence of {χεk(x)cεk(x, t0)}, where χεk(x) =
χ(x/εk), weakly converges in L2(Ω) to the function mc(x, t0). On the other hand,
due to Lemma 3.1 this subsequence weakly converges in L2(Ω) to the function
mc(x, t0). The uniqueness of the weak limit results the equality

c(x, t0) = c(x, t0)

and the convergence of the entire sequence {cεk(x, t0)} to the same limit. �

Lemma 3.4. Under the conditions of Theorem 2.1, the sequence {c̃εk} converges
strongly in L2(ΩT ) to the function c(x, t).

Proof. Let
H1 = W 1

2 (Ω) ⊂ H0 = L2(Ω) ⊂ H−1 = W−1
2 (Ω).

It is well known that H1 is compactly imbedded in H0, and H0 is compactly imbed-
ded in H−1 ([14], [2]). The first imbedding provides for any η > 0 an existence of
some constant Cη such that

‖c̃εk − c‖H0(t) 6 η‖c̃εk − c‖H1(t) + Cη‖c̃εk − c‖H−1(t)

for all k and for all t ∈ [0, T ] (see [14]). Therefore,∫ T

0

‖c̃εk − c‖2
H0(t)dt 6 η

∫ T

0

‖c̃εk − c‖2
H1(t)dt+ Cη

∫ T

0

‖c̃εk − c‖2
H−1(t)dt

6 2ηM2
0 + Cη

∫ T

0

‖c̃εk − c‖2
H−1(t)dt.

Due to the compact imbedding H0 → H−1, the weak convergence in H0 of the
sequence {c̃εk(x, t0)} to the function c(x, t0) for all t0 ∈ Q, and the dominated
convergence theorem [12] one has∫ T

0

‖c̃εk − c‖2
H−1(t)dt→ 0 as k →∞.

This last fact and the arbitrary choice of the constant η prove the statement of the
lemma. �

4. Proof of Theorem 2.2

To simplify the proof we additionally suppose that

Assumption 4.1. (1) Ys ⊂ Y, γ ∩ ∂Y = ∅;
(2) the domain Ω is a unit cube;
(3) 1/ε is an integer.

As before, we divide the proof by several steps. As a first step we state the
well-known existence and uniqueness result for solutions of the problem (1.1)–(1.3)
(see [13]).
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Lemma 4.2. Under conditions of Theorem 2.2 for all ε > 0 the problem (1.1)–(1.4)
has a unique solution

cε ∈ L∞
(
(0, T );L2(Ωε)

)
∩W 1,0

2 (ΩεT )

and
max

0<t<T

∫
Ωε

|cε(x, t)|2dx+
∫

Ωε
T

|∇cε|2 dx dt 6 M2
1 . (4.1)

To get the basic estimate (4.1) we first rewrite (1.1) in the form
∂cε

∂t
= ∇ · (∇cε − vεcε),

multiply by cε and integrate by parts over domain Ωε:
1
2
d

dt

∫
Ωε

|cε(x, t)|2dx+
∫

Ωε

|∇cε|2dx =
∫

Ωε

cεvε · ∇cεdx.

Let c̃ε(., t) = Aε
(
cε(., t)

)
be an extension of the function cε onto domain Ω. Then

1
2
d

dt

∫
Ω

χε|c̃ε(x, t)|2dx+
∫

Ω

χε|∇c̃ε|2dx =
∫

Ω

χεc̃εvε · ∇c̃εdx ≡ J1. (4.2)

To estimate J1 we use the Hölder inequality:

|J1| 6
( ∫

Ω

χε|vε|4dx
)1/4 ·

( ∫
Ω

χε|c̃ε|4dx
)1/4 ·

( ∫
Ω

χε|∇c̃ε|2dx
)1/2

6
( ∫

Ω

χε|vε|4dx
)1/4 ·

( ∫
Ω

|c̃ε|4dx
)1/4 ·

( ∫
Ω

|∇c̃ε|2dx
)1/2

.

Due to Assumption 4.1
c̃ε ∈ W̊ 1

2 (Ω),
and we may apply the well-known interpolation inequality (see [13])( ∫

Ω

|c̃ε|4dx
)1/4

6 β
( ∫

Ω

|c̃ε|2dx
)1/8 ·

( ∫
Ω

|∇c̃ε|2dx
)3/8

.

Therefore (see (1.9) and (1.10))

|J1| 6 β
( ∫

Ω

χε|vε|4dx
)1/4 ·

( ∫
Ω

|c̃ε|2dx
)1/8 ·

( ∫
Ω

|∇c̃ε|2dx
)7/8

6 C0β
( ∫

Ω

χε|vε|4dx
)1/4 ·

( ∫
Ω

χε|c̃ε|2dx
)1/8 ·

( ∫
Ω

χε|∇c̃ε|2dx
)7/8

.

Applying Young’s and Gronwall inequalities and using assumption (1.5) and prop-
erties of the extension operator Aε we arrive at

max
0<t<T

∫
Ω

|c̃ε(x, t)|2dx+
∫

ΩT

|∇c̃ε|2 dx dt 6 M2
1 , (4.3)

which is obviously equivalent to (4.1).
The integral identity for the function c̃ε with test functions φ = ϕ(t)ψ(x), ϕ ∈

W̊ 1
2 (0, T ), ψ ∈ W̊ 1

2 (Ω) takes a form∫
ΩT

dϕ

dt
(t)χεc̃εψ(x) dx dt =

∫
ΩT

ϕ(t)χε
(
∇c̃ε − vεc̃ε

)
· ∇ψ(x) dx dt.

Thus,
∂

∂t

(
χε(x)c̃ε

)
∈ L2

(
(0, T );W−1

2 (Ω)
)
,
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and we may apply Theorem 2.1 and Nguetseng’s Theorem [16] to state, that up to
some subsequence the sequence {c̃ε} weakly in W̊ 1,0

2 (ΩT ) and strongly in L2(ΩT )
converges to the function c(x, t), and the sequence {∇c̃ε} two-scale converges in
L2(ΩT ) to 1-periodic in variable y function ∇c(x, t) +∇yC(x,y, t).

We may also assume that the sequence {vε} two-scale converges to 1-periodic in
variable y function V(x,y, t).

The next lemmas are standard. We derive the macro-and microscopic equations
and find the solution of microscopic equation.

Lemma 4.3. Under conditions of Theorem 2.2, the two-scale limits c(x, t) and
C(x,y, t) satisfy the macroscopic integral identity∫

ΩT

(
mc

∂φ

∂t
−

(
m∇c+ 〈∇yC〉Yf

− vc
)
· ∇φ

)
dx dt = −

∫
Ω

mc0(x)φ(x, 0)dx (4.4)

for arbitrary smooth functions φ(x, t), such that φ(x, T ) = 0, which is equivalent to
the macroscopic equation

m
∂c

∂t
= ∇ ·

(
m∇c+ 〈∇yC〉Yf

− cv
)
, x ∈ Ω, t ∈ (0, T ), (4.5)

with boundary and initial conditions

c(x, t) = 0,x ∈ S, t ∈ (0, T ), (4.6)

c(x, 0) = c0(x), x ∈ Ω. (4.7)

To prove this lemma we just fulfill the two-scale limit as ε → 0 in the integral
identity (1.7) for the functions c̃ε in the form∫

ΩT

χε
(
c̃ε
∂φ

∂t
−

(
∇c̃ε − ṽεc̃ε

)
· ∇φ

)
dx dt = −

∫
Ω

χεc0(x)φ(x, 0)dx (4.8)

with the test functions φ = φ(x, t).

Lemma 4.4. Under conditions of Theorem 2.2 the two-scale limits c(x, t) and
C(x,y, t) satisfy the microscopic integral identity∫

Y

χ(y)
(
∇c+∇yC − cV

)
· ∇φ1 dy = 0 (4.9)

for arbitrary 1-periodic in variable y smooth functions φ1(y).

The integral identity (4.9) follows from (4.8) after fulfilling the two-scale limit
as ε→ 0 with test functions φ = εφ0(x, t)φ1(x/ε).

Lemma 4.5. Let C(i)(y), i = 1, 2, 3, be the solution to the integral identity∫
Y

χ(y)
(
ei +∇yC

(i)
)
· ∇φ1 dy = 0, (4.10)

and C(0)(y,x, t) be the solution to the integral identity∫
Y

χ(y)
(
V +∇yC

(0)
)
· ∇φ1 dy = 0, (4.11)

with arbitrary 1-periodic in variable y smooth functions φ1(y). Then the function

C(x,y, t) =
( 3∑
i=1

C(i)(y)⊗ ei
)
· ∇c(x, t) + C(0)(y,x, t)c(x, t) (4.12)
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solves the integral identity (4.9).
In (4.10)–(4.12) ei is the standard Cartesian basis vector and the matrix a ⊗ b

is defined by the formula
(a⊗ b) · c = a(b · c)

for any vectors a,b, c.

The proof of the lemma is straightforward. It is omitted.
Substitution (4.12) into (4.5) gives us desired homogenized equation (2.3) with

boundary and initial conditions (2.4)–(2.5).
The matrix B and the vector v0(x, t) are defined as

B = mI +
( 3∑
i=1

〈∇yC
(i)〉Yf

⊗ ei
)
, (4.13)

v0(x, t) = 〈∇yC
(0)〉Yf

, (4.14)

where by definition 〈f〉Yf
=

∫
Yf
f(y)dy.

Lemma 4.6. The matrix B is symmetric and strictly positively defined.

The proof is well-known, see [7, 11].
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