Electronic Journal of Differential Equations, Vol. 2011 (2011), No. 115, pp. 1-11. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

COMPACTNESS RESULT FOR PERIODIC STRUCTURES AND ITS APPLICATION TO THE HOMOGENIZATION OF A DIFFUSION-CONVECTION EQUATION

ANVARBEK MEIRMANOV, RESHAT ZIMIN

Abstract

We prove the strong compactness of the sequence $\left\{c^{\varepsilon}(\mathbf{x}, t)\right\}$ in $L_{2}\left(\Omega_{T}\right), \Omega_{T}=\left\{(\mathbf{x}, t): \mathbf{x} \in \Omega \subset \mathbb{R}^{3}, t \in(0, T)\right\}$, bounded in $W_{2}^{1,0}\left(\Omega_{T}\right)$ with the sequence of time derivative $\left\{\partial / \partial t\left(\chi(\mathbf{x} / \varepsilon) c^{\varepsilon}\right)\right\}$ bounded in the space $L_{2}\left((0, T) ; W_{2}^{-1}(\Omega)\right)$. As an application we consider the homogenization of a diffusion-convection equation with a sequence of divergence-free velocities $\left\{\mathbf{v}^{\varepsilon}(\mathbf{x}, t)\right\}$ weakly convergent in $L_{2}\left(\Omega_{T}\right)$.

1. Introduction

There are several compactness criteria and among them Tartar's method of compensated compactness 17 and the method suggested by Aubin in 6] (see also 14]). These methods intensively used in the theory of nonlinear differential equations. As a rule, the first one has applications in stationary problems, while the second method is used in non-stationary nonlinear equations.

In the present publication we discuss the method, closed to the Aubin compactness lemma. In its simplest setting, this result provides the strong compactness in $L_{2}\left(\Omega_{T}\right)$ (throughout the article, we use the customary notation of function spaces and norms [14, 13]) to the sequence of functions $\left\{c^{\varepsilon}(\mathbf{x}, t)\right\}$ bounded in $L_{\infty}\left((0, T) ; L_{2}(\Omega)\right) \cap W_{2}^{1,0}\left(\Omega_{T}\right)$ with the sequence of the time derivatives $\left\{\partial c^{\varepsilon} / \partial t\right\}$ bounded in $L_{2}\left((0, T) ; W_{2}^{-1}(\Omega)\right)$. But in many applications (especially in homogenization), the second condition on a boundedness of the time derivatives in some dual space is not always satisfied. Sometimes, instead of the last condition, one has the boundedness of time derivatives in a dual space $L_{2}\left((0, T) ; W_{2}^{-1}\left(\Omega_{f}^{\varepsilon}\right)\right)$, defined on some periodic subdomain $\Omega_{f}^{\varepsilon} \subset \Omega$. Using new ideas of Nguetseng's two-scale convergence method [16] we prove that even under this weak condition the sequence $\left\{c^{\varepsilon}(\mathbf{x}, t)\right\}$ still remains strongly compact in $L_{2}\left(\Omega_{T}\right)$. The main point here is the fact, that if for some $t_{0} \in(0, T)$,

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon^{2} \int_{\Omega}\left|\nabla c^{\varepsilon}\left(\mathbf{x}, t_{0}\right)\right|^{2} d x=0
$$

[^0]then the bounded in $L_{2}(\Omega)$ sequence $\left\{c^{\varepsilon}\left(\mathbf{x}, t_{0}\right)\right\}$ contains a subsequence, which twoscale converges in $L_{2}(\Omega)$ to some function $\bar{c}\left(\mathbf{x}, t_{0}\right)$.

Recall that, in general, any bounded in $L_{2}(\Omega)$ sequence $\left\{u^{\varepsilon}\right\}$ contains a two-scale convergent subsequence $\left\{u^{\varepsilon_{k}}\right\}$, where the limiting function $U(\mathbf{x}, \mathbf{y})$ is 1-periodic in variable $\mathbf{y} \in Y=(0,1)^{n}$:

$$
\int_{\Omega} u^{\varepsilon_{k}}(\mathbf{x}) \varphi\left(\mathbf{x}, \frac{\mathbf{x}}{\varepsilon_{k}}\right) d x \rightarrow \iint_{\Omega Y} U(\mathbf{x}, \mathbf{y}) \varphi(\mathbf{x}, \mathbf{y}) d y d x
$$

for any smooth function $\varphi(\mathbf{x}, \mathbf{y})$, 1-periodic in the variable \mathbf{y}. In particular, for $\varphi(\mathbf{x}, \mathbf{y})=\varphi_{0}(\mathbf{y}) \cdot h(\mathbf{x})$, where $\varphi_{0} \in L_{2}(Y)$ and $h \in L_{\infty}(\Omega)$.

A similar compactness result has been proved in 4] under different assumptions on the sequence $\left\{c^{\varepsilon}(\mathbf{x}, t)\right\}$. More precisely, the corresponding [4, Lemma 4.2] states, that if for all $\varepsilon>0$

$$
0 \leqslant c^{\varepsilon}(\mathbf{x}, t) \leqslant M_{0}, \int_{\Omega_{T}}\left|c^{\varepsilon}(\mathbf{x}+\triangle \mathbf{x}, t)-c^{\varepsilon}(\mathbf{x}, t)\right|^{2} d x d t \leqslant M_{0} \omega(|\triangle \mathbf{x}|)
$$

with some $\omega(\xi)$, such that $\omega(\xi) \rightarrow 0$ as $\xi \rightarrow 0$, and

$$
\left\|\frac{\partial}{\partial t}\left(\chi^{\varepsilon} c^{\varepsilon}\right)\right\|_{L_{2}\left((0, T) ; W_{2}^{-1}(\Omega)\right)} \leqslant M_{0}
$$

where $0<\chi^{-} \leqslant \chi^{\varepsilon} \leqslant \chi^{+}<1, \chi^{ \pm}=$const, then the family $\left\{c^{\varepsilon}\right\}$ is a compact set in $L_{2}\left(\Omega_{T}\right)$.

As an application of our result we consider the homogenization of diffusionconvection equation

$$
\begin{equation*}
\frac{\partial c^{\varepsilon}}{\partial t}+\mathbf{v}^{\varepsilon} \cdot \nabla c^{\varepsilon}=\Delta c^{\varepsilon}, \quad \mathbf{x} \in \Omega^{\varepsilon}, t \in(0, T) \tag{1.1}
\end{equation*}
$$

with boundary and initial conditions

$$
\begin{gather*}
\left(\nabla c^{\varepsilon}-\mathbf{v}^{\varepsilon} c^{\varepsilon}\right) \cdot \boldsymbol{\nu}=0, \quad \mathbf{x} \in \partial \Omega^{\varepsilon} \backslash S, t \in(0, T) \tag{1.2}\\
c^{\varepsilon}(\mathbf{x}, t)=0, \quad \mathbf{x} \in S \cap \partial \Omega^{\varepsilon}, t \in(0, T) \tag{1.3}\\
c^{\varepsilon}(\mathbf{x}, 0)=c_{0}(\mathbf{x}), \quad \mathbf{x} \in \Omega^{\varepsilon} \tag{1.4}
\end{gather*}
$$

In $\sqrt{1.2)}, \boldsymbol{\nu}$ is the unit outward normal vector to the boundary $\partial \Omega^{\varepsilon}$ and $S=\partial \Omega$.
We assume that velocities \mathbf{v}^{ε} are uniformly bounded in $L_{8}\left((0, T) ; L_{4}(\Omega)\right)$:

$$
\begin{equation*}
\int_{0}^{T}\left(\int_{\Omega}\left|\mathbf{v}^{\varepsilon}\right|^{4} d x\right)^{2} d t \leqslant M_{0}^{2} \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla \cdot \mathbf{v}^{\varepsilon}=0, \mathbf{x} \in \Omega_{T} \tag{1.6}
\end{equation*}
$$

As usual, the solution to the problem $\sqrt[1.1]{1.4}$ is understood in a weak sense as a solution of the integral identity

$$
\begin{equation*}
\int_{\Omega_{T}^{\varepsilon}}\left(c^{\varepsilon} \frac{\partial \phi}{\partial t}-\left(\nabla c^{\varepsilon}-\mathbf{v}^{\varepsilon} c^{\varepsilon}\right) \cdot \nabla \phi\right) d x d t=-\int_{\Omega^{\varepsilon}} c_{0}(\mathbf{x}) \phi(\mathbf{x}, 0) d x \tag{1.7}
\end{equation*}
$$

for any smooth functions ϕ, such that $\phi(\mathbf{x}, T)=0$.
Homogenization means the limiting procedure in 1.7 as $\varepsilon \rightarrow 0$ and the main problem here is how to pass to the limit in the nonlinear term

$$
c^{\varepsilon} \mathbf{v}^{\varepsilon} \cdot \nabla \phi
$$

It has been done for velocities with a special structure

$$
\mathbf{v}^{\varepsilon}=\mathbf{v}^{\varepsilon}(\mathbf{x}), \operatorname{or}^{\varepsilon}=\mathbf{v}\left(\mathbf{x}, t, \frac{\mathbf{x}}{\varepsilon}\right)
$$

(see, for example, [5, 3, 7, 8, 5, 10]). However, in the general case we need the strong compactness in $L_{2}\left(\Omega_{T}\right)$ of the sequence $\left\{c^{\varepsilon}\right\}$. Our compactness result and the energy estimate

$$
\max _{0<t<T} \int_{\Omega^{\varepsilon}}\left|c^{\varepsilon}(\mathbf{x}, t)\right|^{2} d x+\int_{\Omega_{T}^{\varepsilon}}\left|\nabla c^{\varepsilon}(\mathbf{x}, t)\right|^{2} d x d t \leqslant M_{1}^{2}
$$

provide this compactness.
Note, that to apply any compactness result we must consider sequences in a fixed domain. To do that we use the well-known extension result [1] and restrict ourself with special domains Ω^{ε} :

Assumption 1.1. Let $\chi(\mathbf{y})$ be 1-periodic in the variable \mathbf{y} function, such that $\chi(\mathbf{y})=1, \mathbf{y} \in Y_{f} \subset Y, \chi(\mathbf{y})=0, \mathbf{y} \in Y_{s}=Y \backslash \bar{Y}_{f}$.
(1) The set Y_{f} is an open one and $\gamma=\partial Y_{f} \cap \partial Y_{s}$ is a Lipschitz continuous surface.
(2) Let Y_{f}^{ε} be a periodic repetition in \mathbb{R}^{n} of the elementary cell εY_{f}. Then Y_{f}^{ε} is a connected set with a Lipschitz continuous boundary $\partial Y_{f}^{\varepsilon}$.
(3) $\Omega \subset \mathbb{R}^{n}$ is a bounded domain with a Lipschitz continuous boundary $S=\partial \Omega$ and $\Omega^{\varepsilon}=\Omega \cap Y_{f}^{\varepsilon}$.
Due to periodicity of Y_{f}^{ε} the characteristic function of the domain Ω^{ε} in Ω has a form:

$$
\chi^{\varepsilon}(\mathbf{x})=\chi\left(\frac{\mathbf{x}}{\varepsilon}\right) .
$$

For such domains Ω^{ε} the extension theorem [1] allows us to construct a linear operator \mathbb{A}^{ε}

$$
\begin{equation*}
\mathbb{A}^{\varepsilon}: W_{2}^{1}\left(\Omega^{\varepsilon}\right) \rightarrow W_{2}^{1}(\Omega), \tilde{c}^{\varepsilon}=\mathbb{A}^{\varepsilon}\left(c^{\varepsilon}\right) \tag{1.8}
\end{equation*}
$$

such that

$$
\begin{align*}
\int_{\Omega}\left|\tilde{c}^{\varepsilon}(\mathbf{x}, t)\right|^{2} d x & \leqslant C_{0} \int_{\Omega^{\varepsilon}}\left|c^{\varepsilon}(\mathbf{x}, t)\right|^{2} d x \tag{1.9}\\
\int_{\Omega}\left|\nabla \tilde{c}^{\varepsilon}(\mathbf{x}, t)\right|^{2} d x & \leqslant C_{0} \int_{\Omega^{\varepsilon}}\left|\nabla c^{\varepsilon}(\mathbf{x}, t)\right|^{2} d x \tag{1.10}
\end{align*}
$$

where the constant $C_{0}=C_{0}\left(\Omega, Y_{f}\right)$ does not depend on ε and $t \in(0, T)$.

2. Main Results

Our principal result is the following
Theorem 2.1. Let $\left\{\tilde{c}^{\varepsilon}(\mathbf{x}, t)\right\}$ be a bounded sequence in $L_{\infty}\left((0, T) ; L_{2}(\Omega)\right) \cap W_{2}^{1,0}\left(\Omega_{T}\right)$ and weakly convergent in $L_{2}\left((0, T) ; L_{2}(\Omega)\right) \cap W_{2}^{1,0}\left(\Omega_{T}\right)$ to a function $c(\mathbf{x}, t)$. Also let the sequence $\left\{\partial / \partial t\left(\chi^{\varepsilon}(\mathbf{x}) \tilde{c}^{\varepsilon}(\mathbf{x}, t)\right)\right\}$ be bounded in $L_{2}\left((0, T) ; W_{2}^{-1}(\Omega)\right)$, where $\chi^{\varepsilon}(\mathbf{x})=\chi(\mathbf{x} / \varepsilon), \chi(\mathbf{y})$ is 1-periodic in the variable \mathbf{y} measurable bounded function, such that

$$
\langle\chi\rangle_{Y}=\int_{Y} \chi(\mathbf{y}) d y=m \neq 0
$$

and Y is the unit cube in \mathbb{R}^{n}. Then the sequence $\left\{\tilde{c}^{\varepsilon}(\mathbf{x}, t)\right\}$ converges strongly in $L_{2}\left(\Omega_{T}\right)$ to its weak limit $c(\mathbf{x}, t)$.

As an application of this result we consider a homogenization of the problem (1.1)-1.4).

We prove the following result.
Theorem 2.2. Under conditions (1.5)-(1.6) and Assumption 1.1 let $c^{\varepsilon}(\mathbf{x}, t)$ be the solution to the problem (1.1)-1.4), $c_{0} \in \overline{L_{2}}(\Omega)$,

$$
\begin{equation*}
\int_{\Omega}\left|c_{0}\right|^{2} d x \leqslant M_{0}^{2} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{\mathbf{v}}^{\varepsilon} \rightharpoonup \mathbf{v} \quad \text { weakly in } L_{2}\left(\Omega_{T}\right) \tag{2.2}
\end{equation*}
$$

where $\tilde{\mathbf{v}}^{\varepsilon}(\mathbf{x}, t)=\chi^{\varepsilon}(\mathbf{x}) \mathbf{v}^{\varepsilon}(\mathbf{x}, t)$. Then the sequence $\left\{\tilde{c}^{\varepsilon}\right\}$, where $\tilde{c}^{\varepsilon}=\mathbb{A}^{\varepsilon}\left(c^{\varepsilon}\right)$, converges strongly in $L_{2}\left(\Omega_{T}\right)$ and weakly in $W_{2}^{1,0}\left(\Omega_{T}\right)$ to the solution $c(\mathbf{x}, t)$ of the homogenized equation

$$
\begin{equation*}
m \frac{\partial c}{\partial t}=\nabla \cdot\left(\mathbb{B} \cdot \nabla c+\left(\mathbf{v}_{0}-\mathbf{v}\right) c\right), \quad \mathbf{x} \in \Omega, t \in(0, T) \tag{2.3}
\end{equation*}
$$

with boundary and initial conditions

$$
\begin{gather*}
c(\mathbf{x}, t)=0, \mathbf{x} \in S, t \in(0, T) \tag{2.4}\\
c(\mathbf{x}, 0)=c_{0}(\mathbf{x}), \quad \mathbf{x} \in \Omega \tag{2.5}
\end{gather*}
$$

In (2.3) the symmetric strictly positively defined constant matrix \mathbb{B} and the vector \mathbf{v}_{0} are given below by formulas (4.13) and (4.14).

3. Proof of Theorem 2.1

We split the proof into several independent steps. As a first step we prove the following.

Lemma 3.1. Under conditions of Theorem 2.1 the sequence $\left\{\chi^{\varepsilon}(\mathbf{x}) \tilde{c}^{\varepsilon}(\mathbf{x}, t)\right\}$ converges weakly in $L_{2}(\Omega)$ to the function $m c(\mathbf{x}, t)$ for almost all $t \in(0, T)$.

Proof. By the properties of the two-scale convergence [16, 15] the sequence $\left\{\tilde{c}^{\varepsilon}\right\}$ two-scale converges in $L_{2}\left(\Omega_{T}\right)$ to the function $c(\mathbf{x}, t)$. That is, for any 1-periodic in variable \mathbf{y} smooth function $\varphi(\mathbf{x}, \mathbf{y}, t)$

$$
\int_{\Omega_{T}} \tilde{c}^{\varepsilon}(\mathbf{x}, t) \varphi\left(\mathbf{x}, \frac{\mathbf{x}}{\varepsilon}, t\right) d x d t \rightarrow \int_{\Omega_{T}} c(\mathbf{x}, t)\left(\int_{Y} \varphi(\mathbf{x}, \mathbf{y}, t) d y\right) d x d t
$$

In particular, this relation holds true for $\varphi=\varphi_{0}(\mathbf{x}, t) \varphi_{1}(\mathbf{y})$ with $\varphi_{0} \in L_{\infty}\left(\Omega_{T}\right)$ and $\varphi_{1} \in L_{2}(Y)$. If we choose

$$
\varphi\left(\mathbf{x}, \frac{\mathbf{x}}{\varepsilon}, t\right)=\chi\left(\frac{\mathbf{x}}{\varepsilon}\right) \eta(t) \psi(\mathbf{x})=\chi^{\varepsilon}(\mathbf{x}) \eta(t) \psi(\mathbf{x})
$$

then

$$
\begin{equation*}
\int_{\Omega_{T}} \tilde{c}^{\varepsilon}(\mathbf{x}, t) \chi^{\varepsilon}(\mathbf{x}) \eta(t) \psi(\mathbf{x}) d x d t \rightarrow \int_{\Omega_{T}} m c(\mathbf{x}, t) \eta(t) \psi(\mathbf{x}) d x d t \tag{3.1}
\end{equation*}
$$

Let

$$
f_{\psi}^{\varepsilon}(t)=\int_{\Omega} \chi^{\varepsilon}(\mathbf{x}) \tilde{c}^{\varepsilon}(\mathbf{x}, t) \psi(\mathbf{x}) d x, \quad f_{\psi}(t)=\int_{\Omega} m c(\mathbf{x}, t) \psi(\mathbf{x}) d x
$$

Then the above relation means that

$$
\begin{equation*}
\int_{0}^{T} \eta(t) f_{\psi}^{\varepsilon}(t) d t \rightarrow \int_{0}^{T} \eta(t) f_{\psi}(t) d t \tag{3.2}
\end{equation*}
$$

for any functions $\eta \in L_{\infty}(0, T)$ and $\psi \in L_{\infty}(\Omega)$.
To prove the lemma we have to show that for almost all $t \in(0, T)$ functions $f_{\psi}^{\varepsilon}(t)$ pointwise converge to the function $f_{\psi}(t)$. First of all, we restrict ourself with functions $\psi \in \dot{W}_{2}^{1}(\Omega)$.

By the assumptions in Theorem 2.1. the time derivatives $\partial / \partial t\left(\chi^{\varepsilon}(\mathbf{x}) \tilde{c}^{\varepsilon}\right)$ belong to the space $L_{2}\left((0, T) ; \dot{W}_{2}^{-1}(\Omega)\right)$ and uniformly bounded there. This means that there exists a sequence $\left\{\mathbf{F}^{\varepsilon}(\mathbf{x}, t)\right\}$, such that

$$
\int_{\Omega_{T}}\left|\mathbf{F}^{\varepsilon}\right|^{2} d x d t \leqslant M_{0}^{2}
$$

and

$$
\begin{equation*}
\int_{\Omega_{T}} \frac{d \varphi(t)}{d t} \chi^{\varepsilon}(\mathbf{x}) \tilde{c}^{\varepsilon}(\mathbf{x}, t) \psi(\mathbf{x}) d x d t=\int_{\Omega_{T}} \varphi(t) \mathbf{F}^{\varepsilon}(\mathbf{x}, t) \cdot \nabla \psi(\mathbf{x}) d x d t \tag{3.3}
\end{equation*}
$$

for any $\varphi \in_{2}^{1}(0, T)$ and $\psi \in \dot{W}_{2}^{1}(\Omega)$. If we put

$$
g^{\varepsilon}(t)=-\int_{\Omega} \mathbf{F}^{\varepsilon}(\mathbf{x}, t) \cdot \nabla \psi(\mathbf{x}) d \mathbf{x}
$$

then

$$
\int_{0}^{T}\left|g^{\varepsilon}\right|^{2} d t \leqslant M_{0}^{2}\|\nabla \psi\|_{2, \Omega}^{2}=M_{\psi}^{2}
$$

and identity (3.3) rewrites as

$$
\begin{equation*}
\int_{0}^{T}\left(f_{\psi}^{\varepsilon}(t) \frac{d \varphi(t)}{d t}+\varphi(t) g^{\varepsilon}(t)\right) d t=0 \tag{3.4}
\end{equation*}
$$

Therefore by [2], the function $f_{\psi}^{\varepsilon}(t)$ possesses the generalized time derivative $g^{\varepsilon}(t) \in$ $L_{2}(0, T)$ and takes place a representation

$$
f_{\psi}^{\varepsilon}(t)=f_{\psi}^{\varepsilon}\left(t_{\varepsilon}\right)+\int_{t_{\varepsilon}}^{t} g^{\varepsilon}(\tau) d \tau,\left|f_{\psi}^{\varepsilon}\left(t_{\varepsilon}\right)\right| \leqslant M_{\psi}
$$

In particular,

$$
\begin{equation*}
\left|f_{\psi}^{\varepsilon}(t)\right| \leqslant M_{\psi},\left|f_{\psi}^{\varepsilon}\left(t_{1}\right)-f_{\psi}^{\varepsilon}\left(t_{2}\right)\right| \leqslant M_{\psi}\left|t_{2}-t_{1}\right|^{1 / 2} . \tag{3.5}
\end{equation*}
$$

Thus, we may apply the Ascoli-Arzela theorem 12 and state that there exists some subsequence $\left\{\varepsilon_{m}\right\}$, such that the sequence of continuous functions $\left\{f_{\psi}^{\varepsilon_{m}}(t)\right\}$ uniformly converges to some continuous function $\bar{f}_{\psi}(t)$:

$$
\begin{equation*}
f_{\psi}^{\varepsilon_{m}}(t) \Rightarrow \bar{f}_{\psi}(t), \quad \text { as } \varepsilon_{m} \rightarrow 0, \forall t \in(0, T) \tag{3.6}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\int_{0}^{T} \eta(t) f_{\psi}^{\varepsilon_{m}}(t) d t \rightarrow \int_{0}^{T} \eta(t) \bar{f}_{\psi}(t) d t, \quad \text { as } \varepsilon_{m} \rightarrow 0 \tag{3.7}
\end{equation*}
$$

But, on the other hand, according to 3.1

$$
\begin{equation*}
\int_{0}^{T} \eta(t) f_{\psi}^{\varepsilon_{m}}(t) d t \rightarrow \int_{0}^{T} \eta(t) f_{\psi}(t) d t, \text { as } \varepsilon_{m} \rightarrow 0 \tag{3.8}
\end{equation*}
$$

By the arbitrary choice of $\eta(t)(3.6)-(3.8)$ result

$$
f_{\psi}^{\varepsilon_{m}}(t) \rightarrow f_{\psi}(t) \quad \text { as } \varepsilon_{m} \rightarrow 0, \text { for almost all } t \in[0, T]
$$

Due to the uniqueness of the limit, the last relation holds for the entire sequence $\left\{f_{\psi}^{\varepsilon}(t)\right\}$:

$$
f_{\psi}^{\varepsilon}(t)=\int_{\Omega} \chi^{\varepsilon}(\mathbf{x}) c^{\varepsilon}(\mathbf{x}, t) \psi(\mathbf{x}) d x \rightarrow \int_{\Omega} m c(\mathbf{x}, t) \psi(\mathbf{x}) d x=f_{\psi}(t)
$$

as $\varepsilon \rightarrow 0$ for almost all $t \in(0, T)$.
As a next step we prove the following result.
Lemma 3.2. Under conditions of Theorem 2.1 there exists a subsequence $\left\{\varepsilon_{k}\right\}$, such that

$$
\begin{equation*}
\lim _{\varepsilon_{k} \rightarrow 0} \varepsilon_{k}^{2} \int_{\Omega}\left|\nabla \tilde{c}^{\varepsilon_{k}}\left(\mathbf{x}, t_{0}\right)\right|^{2} d x=0 \tag{3.9}
\end{equation*}
$$

for almost all $t_{0} \in(0, T)$.
Proof. In fact, the boundedness of the sequence $\left\{\nabla \tilde{c}^{\varepsilon}\right\}$ in $L_{2}\left(\Omega_{T}\right)$ implies

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \varepsilon^{2} \int_{\Omega_{T}}\left|\nabla \tilde{c}^{\varepsilon}(\mathbf{x}, t)\right|^{2} d x d t=0 \tag{3.10}
\end{equation*}
$$

Let

$$
u^{\varepsilon}(t)=\varepsilon^{2} \int_{\Omega}\left|\nabla \tilde{c}^{\varepsilon}(\mathbf{x}, t)\right|^{2} d x
$$

Then the relation (3.10) means that the sequence $\left\{u^{\varepsilon}\right\}$ converges to zero in $L_{1}(0, T)$. Due to the well-known theorem of functional analysis 12 there exists some subsequence $\left\{\varepsilon_{k}\right\}$, such that the sequence $\left\{u^{\varepsilon_{k}}\left(t_{0}\right)\right\}$ pointwise converge to zero for almost all $t_{0} \in(0, T)$:

$$
u^{\varepsilon_{k}}\left(t_{0}\right) \rightarrow 0 \quad \text { for almost all } t_{0} \in(0, T)
$$

The above relation proves (3.9).
The following statement is a crucial one and essentially uses the notion of twoscale convergence.

Lemma 3.3. Under the conditions of Theorem 2.1, the sequence $\left\{\tilde{c}^{\varepsilon_{k}}\left(\mathbf{x}, t_{0}\right)\right\}$ twoscale converges in $L_{2}(\Omega)$ to the function $c\left(\mathbf{x}, t_{0}\right)$ for almost all $t_{0} \in(0, T)$.

Proof. Let $Q \subset(0, T)$ be the set of full measure in $(0, T)$, where hold true conditions of the Lemma 3.1 and condition (3.9).

By hypothesis, the sequence $\left\{\tilde{c}^{\varepsilon_{k}}\left(\mathbf{x}, t_{0}\right)\right\}$ for $t_{0} \in Q$ is bounded in $L_{2}(\Omega)$. Therefore, there exists some subsequence which two-scale converges in $L_{2}(\Omega)$ to some 1-periodic in variable \mathbf{y} function $\bar{C}\left(\mathbf{x}, \mathbf{y}, t_{0}\right) \in L_{2}(\Omega \times Y)$. Applying integration by parts

$$
\begin{aligned}
& \varepsilon_{k} \int_{\Omega} \nabla c^{\varepsilon_{k}}\left(\mathbf{x}, t_{0}\right) \cdot \boldsymbol{\varphi}\left(\frac{\mathbf{x}}{\varepsilon_{k}}\right) \psi(\mathbf{x}) d x \\
& =-\varepsilon_{k} \int_{\Omega} c^{\varepsilon_{k}}\left(\mathbf{x}, t_{0}\right) \boldsymbol{\varphi}\left(\frac{\mathbf{x}}{\varepsilon_{k}}\right) \cdot \nabla \psi(\mathbf{x}) d x-\int_{\Omega} c^{\varepsilon_{k}}\left(\mathbf{x}, t_{0}\right)\left(\nabla_{y} \cdot \boldsymbol{\varphi}\left(\frac{\mathbf{x}}{\varepsilon_{k}}\right)\right) \psi(\mathbf{x}) d x
\end{aligned}
$$

for arbitrary functions $\varphi \in W_{2}^{1}(Y)$ and $\psi \in \overleftarrow{W}_{2}^{1}(\Omega)$, and relation (3.9) we arrive at the equality

$$
\begin{equation*}
\int_{\Omega} \psi(\mathbf{x})\left(\int_{Y} \bar{C}\left(\mathbf{x}, \mathbf{y}, t_{0}\right) \nabla_{y} \cdot \boldsymbol{\varphi}(\mathbf{y}) d y\right) d x=0 \tag{3.11}
\end{equation*}
$$

after passing to the limit as $\varepsilon_{k} \rightarrow 0$.

By the arbitrary choice of test functions φ and ψ, the last integral identity implies

$$
\begin{equation*}
\bar{C}\left(\mathbf{x}, \mathbf{y}, t_{0}\right)=\bar{c}\left(\mathbf{x}, t_{0}\right) \tag{3.12}
\end{equation*}
$$

Thus, the chosen subsequence of the sequence $\left\{c^{\varepsilon_{k}}\left(\mathbf{x}, t_{0}\right)\right\}$ two-scale converges in $L_{2}(\Omega)$ to the function $\bar{c}\left(\mathbf{x}, t_{0}\right)$. In particular, by the properties of two-scale convergent sequences [16] the same subsequence of $\left\{\chi^{\varepsilon_{k}}(\mathbf{x}) c^{\varepsilon_{k}}\left(\mathbf{x}, t_{0}\right)\right\}$, where $\chi^{\varepsilon_{k}}(\mathbf{x})=$ $\chi\left(\mathbf{x} / \varepsilon_{k}\right)$, weakly converges in $L_{2}(\Omega)$ to the function $m \bar{c}\left(\mathbf{x}, t_{0}\right)$. On the other hand, due to Lemma 3.1 this subsequence weakly converges in $L_{2}(\Omega)$ to the function $m c\left(\mathbf{x}, t_{0}\right)$. The uniqueness of the weak limit results the equality

$$
\bar{c}\left(\mathbf{x}, t_{0}\right)=c\left(\mathbf{x}, t_{0}\right)
$$

and the convergence of the entire sequence $\left\{c^{\varepsilon_{k}}\left(\mathbf{x}, t_{0}\right)\right\}$ to the same limit.
Lemma 3.4. Under the conditions of Theorem 2.1, the sequence $\left\{\tilde{c}^{\varepsilon_{k}}\right\}$ converges strongly in $L_{2}\left(\Omega_{T}\right)$ to the function $c(\mathbf{x}, t)$.

Proof. Let

$$
\mathbb{H}^{1}=W_{2}^{1}(\Omega) \subset \mathbb{H}^{0}=L_{2}(\Omega) \subset \mathbb{H}^{-1}=W_{2}^{-1}(\Omega)
$$

It is well known that \mathbb{H}^{1} is compactly imbedded in \mathbb{H}^{0}, and \mathbb{H}^{0} is compactly imbedded in $\mathbb{H}^{-1}([14, ~[2])$. The first imbedding provides for any $\eta>0$ an existence of some constant C_{η} such that

$$
\left\|\tilde{c}^{\varepsilon_{k}}-c\right\|_{\mathbb{H}^{0}}(t) \leqslant \eta\left\|\tilde{c}^{\varepsilon_{k}}-c\right\|_{\mathbb{H}^{1}}(t)+C_{\eta}\left\|\tilde{c}^{\varepsilon_{k}}-c\right\|_{\mathbb{H}^{-1}}(t)
$$

for all k and for all $t \in[0, T]$ (see [14]). Therefore,

$$
\begin{aligned}
\int_{0}^{T}\left\|\tilde{c}^{\varepsilon_{k}}-c\right\|_{\mathbb{H}^{0}}^{2}(t) d t & \leqslant \eta \int_{0}^{T}\left\|\tilde{c}^{\varepsilon_{k}}-c\right\|_{\mathbb{H}^{1}}^{2}(t) d t+C_{\eta} \int_{0}^{T}\left\|\tilde{c}^{\varepsilon_{k}}-c\right\|_{\mathbb{H}^{-1}}^{2}(t) d t \\
& \leqslant 2 \eta M_{0}^{2}+C_{\eta} \int_{0}^{T}\left\|\tilde{c}^{\varepsilon_{k}}-c\right\|_{\mathbb{H}^{-1}}^{2}(t) d t
\end{aligned}
$$

Due to the compact imbedding $\mathbb{H}^{0} \rightarrow \mathbb{H}^{-1}$, the weak convergence in \mathbb{H}^{0} of the sequence $\left\{\tilde{c}^{\varepsilon_{k}}\left(\mathbf{x}, t_{0}\right)\right\}$ to the function $c\left(\mathbf{x}, t_{0}\right)$ for all $t_{0} \in Q$, and the dominated convergence theorem [12] one has

$$
\int_{0}^{T}\left\|\tilde{c}^{\varepsilon_{k}}-c\right\|_{\mathbb{H}^{-1}}^{2}(t) d t \rightarrow 0 \quad \text { as } k \rightarrow \infty
$$

This last fact and the arbitrary choice of the constant η prove the statement of the lemma.

4. Proof of Theorem 2.2

To simplify the proof we additionally suppose that
Assumption 4.1. (1) $Y_{s} \subset Y, \gamma \cap \partial Y=\emptyset$;
(2) the domain Ω is a unit cube;
(3) $1 / \varepsilon$ is an integer.

As before, we divide the proof by several steps. As a first step we state the well-known existence and uniqueness result for solutions of the problem 1.1 (see [13]).

Lemma 4.2. Under conditions of Theorem 2.2 for all $\varepsilon>0$ the problem (1.1)-1.4) has a unique solution

$$
c^{\varepsilon} \in L_{\infty}\left((0, T) ; L_{2}\left(\Omega^{\varepsilon}\right)\right) \cap W_{2}^{1,0}\left(\Omega_{T}^{\varepsilon}\right)
$$

and

$$
\begin{equation*}
\max _{0<t<T} \int_{\Omega^{\varepsilon}}\left|c^{\varepsilon}(\mathbf{x}, t)\right|^{2} d x+\int_{\Omega_{T}^{\varepsilon}}\left|\nabla c^{\varepsilon}\right|^{2} d x d t \leqslant M_{1}^{2} . \tag{4.1}
\end{equation*}
$$

To get the basic estimate (4.1) we first rewrite 1.1 in the form

$$
\frac{\partial c^{\varepsilon}}{\partial t}=\nabla \cdot\left(\nabla c^{\varepsilon}-\mathbf{v}^{\varepsilon} c^{\varepsilon}\right)
$$

multiply by c^{ε} and integrate by parts over domain Ω^{ε} :

$$
\frac{1}{2} \frac{d}{d t} \int_{\Omega^{\varepsilon}}\left|c^{\varepsilon}(\mathbf{x}, t)\right|^{2} d x+\int_{\Omega^{\varepsilon}}\left|\nabla c^{\varepsilon}\right|^{2} d x=\int_{\Omega^{\varepsilon}} c^{\varepsilon} \mathbf{v}^{\varepsilon} \cdot \nabla c^{\varepsilon} d x
$$

Let $\tilde{c}^{\varepsilon}(., t)=\mathbb{A}^{\varepsilon}\left(c^{\varepsilon}(., t)\right)$ be an extension of the function c^{ε} onto domain Ω. Then

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t} \int_{\Omega} \chi^{\varepsilon}\left|\tilde{c}^{\varepsilon}(\mathbf{x}, t)\right|^{2} d x+\int_{\Omega} \chi^{\varepsilon}\left|\nabla \tilde{c}^{\varepsilon}\right|^{2} d x=\int_{\Omega} \chi^{\varepsilon} \tilde{c}^{\varepsilon} \mathbf{v}^{\varepsilon} \cdot \nabla \tilde{c}^{\varepsilon} d x \equiv J_{1} \tag{4.2}
\end{equation*}
$$

To estimate J_{1} we use the Hölder inequality:

$$
\begin{aligned}
\left|J_{1}\right| & \leqslant\left(\int_{\Omega} \chi^{\varepsilon}\left|\mathbf{v}^{\varepsilon}\right|^{4} d x\right)^{1 / 4} \cdot\left(\int_{\Omega} \chi^{\varepsilon}\left|\tilde{c}^{\varepsilon}\right|^{4} d x\right)^{1 / 4} \cdot\left(\int_{\Omega} \chi^{\varepsilon}\left|\nabla \tilde{c}^{\varepsilon}\right|^{2} d x\right)^{1 / 2} \\
& \leqslant\left(\int_{\Omega} \chi^{\varepsilon}\left|\mathbf{v}^{\varepsilon}\right|^{4} d x\right)^{1 / 4} \cdot\left(\int_{\Omega}\left|\tilde{c}^{\varepsilon}\right|^{4} d x\right)^{1 / 4} \cdot\left(\int_{\Omega}\left|\nabla \tilde{c}^{\varepsilon}\right|^{2} d x\right)^{1 / 2}
\end{aligned}
$$

Due to Assumption 4.1

$$
\tilde{c}^{\varepsilon} \in \dot{W}_{2}^{1}(\Omega)
$$

and we may apply the well-known interpolation inequality (see [13])

$$
\left(\int_{\Omega}\left|\tilde{c}^{\varepsilon}\right|^{4} d x\right)^{1 / 4} \leqslant \beta\left(\int_{\Omega}\left|\tilde{c}^{\varepsilon}\right|^{2} d x\right)^{1 / 8} \cdot\left(\int_{\Omega}\left|\nabla \tilde{c}^{\varepsilon}\right|^{2} d x\right)^{3 / 8}
$$

Therefore (see 1.9 and 1.10)

$$
\begin{aligned}
\left|J_{1}\right| & \leqslant \beta\left(\int_{\Omega} \chi^{\varepsilon}\left|\mathbf{v}^{\varepsilon}\right|^{4} d x\right)^{1 / 4} \cdot\left(\int_{\Omega}\left|\tilde{c}^{\varepsilon}\right|^{2} d x\right)^{1 / 8} \cdot\left(\int_{\Omega}\left|\nabla \tilde{c}^{\varepsilon}\right|^{2} d x\right)^{7 / 8} \\
& \leqslant C_{0} \beta\left(\int_{\Omega} \chi^{\varepsilon}\left|\mathbf{v}^{\varepsilon}\right|^{4} d x\right)^{1 / 4} \cdot\left(\int_{\Omega} \chi^{\varepsilon}\left|\tilde{c}^{\varepsilon}\right|^{2} d x\right)^{1 / 8} \cdot\left(\int_{\Omega} \chi^{\varepsilon}\left|\nabla \tilde{c}^{\varepsilon}\right|^{2} d x\right)^{7 / 8}
\end{aligned}
$$

Applying Young's and Gronwall inequalities and using assumption 1.5 and properties of the extension operator \mathbb{A}^{ε} we arrive at

$$
\begin{equation*}
\max _{0<t<T} \int_{\Omega}\left|\tilde{c}^{\varepsilon}(\mathbf{x}, t)\right|^{2} d x+\int_{\Omega_{T}}\left|\nabla \tilde{c}^{\varepsilon}\right|^{2} d x d t \leqslant M_{1}^{2} \tag{4.3}
\end{equation*}
$$

which is obviously equivalent to 4.1.
The integral identity for the function \tilde{c}^{ε} with test functions $\phi=\varphi(t) \psi(\mathbf{x}), \varphi \in$ ${ }^{\circ}{ }_{2}^{1}(0, T), \psi \in \dot{W}_{2}^{1}(\Omega)$ takes a form

$$
\int_{\Omega_{T}} \frac{d \varphi}{d t}(t) \chi^{\varepsilon} \tilde{c}^{\varepsilon} \psi(\mathbf{x}) d x d t=\int_{\Omega_{T}} \varphi(t) \chi^{\varepsilon}\left(\nabla \tilde{c}^{\varepsilon}-\mathbf{v}^{\varepsilon} \tilde{c}^{\varepsilon}\right) \cdot \nabla \psi(\mathbf{x}) d x d t
$$

Thus,

$$
\frac{\partial}{\partial t}\left(\chi^{\varepsilon}(\mathbf{x}) \tilde{c}^{\varepsilon}\right) \in L_{2}\left((0, T) ; W_{2}^{-1}(\Omega)\right)
$$

and we may apply Theorem 2.1 and Nguetseng's Theorem [16 to state, that up to some subsequence the sequence $\left\{\tilde{c}^{\varepsilon}\right\}$ weakly in $\mathscr{W}_{2}^{1,0}\left(\Omega_{T}\right)$ and strongly in $L_{2}\left(\Omega_{T}\right)$ converges to the function $c(\mathbf{x}, t)$, and the sequence $\left\{\nabla \tilde{c}^{\varepsilon}\right\}$ two-scale converges in $L_{2}\left(\Omega_{T}\right)$ to 1-periodic in variable \mathbf{y} function $\nabla c(\mathbf{x}, t)+\nabla_{y} C(\mathbf{x}, \mathbf{y}, t)$.

We may also assume that the sequence $\left\{\mathbf{v}^{\varepsilon}\right\}$ two-scale converges to 1-periodic in variable \mathbf{y} function $\mathbf{V}(\mathbf{x}, \mathbf{y}, t)$.

The next lemmas are standard. We derive the macro-and microscopic equations and find the solution of microscopic equation.

Lemma 4.3. Under conditions of Theorem 2.2, the two-scale limits $c(\mathbf{x}, t)$ and $C(\mathbf{x}, \mathbf{y}, t)$ satisfy the macroscopic integral identity

$$
\begin{equation*}
\int_{\Omega_{T}}\left(m c \frac{\partial \phi}{\partial t}-\left(m \nabla c+\left\langle\nabla_{y} C\right\rangle_{Y_{f}}-\mathbf{v} c\right) \cdot \nabla \phi\right) d x d t=-\int_{\Omega} m c_{0}(\mathbf{x}) \phi(\mathbf{x}, 0) d x \tag{4.4}
\end{equation*}
$$

for arbitrary smooth functions $\phi(\mathbf{x}, t)$, such that $\phi(\mathbf{x}, T)=0$, which is equivalent to the macroscopic equation

$$
\begin{equation*}
m \frac{\partial c}{\partial t}=\nabla \cdot\left(m \nabla c+\left\langle\nabla_{y} C\right\rangle_{Y_{f}}-c \mathbf{v}\right), \quad \mathbf{x} \in \Omega, t \in(0, T) \tag{4.5}
\end{equation*}
$$

with boundary and initial conditions

$$
\begin{gather*}
c(\mathbf{x}, t)=0, \mathbf{x} \in S, t \in(0, T) \tag{4.6}\\
c(\mathbf{x}, 0)=c_{0}(\mathbf{x}), \quad \mathbf{x} \in \Omega \tag{4.7}
\end{gather*}
$$

To prove this lemma we just fulfill the two-scale limit as $\varepsilon \rightarrow 0$ in the integral identity 1.7 for the functions \tilde{c}^{ε} in the form

$$
\begin{equation*}
\int_{\Omega_{T}} \chi^{\varepsilon}\left(\tilde{c}^{\varepsilon} \frac{\partial \phi}{\partial t}-\left(\nabla \tilde{c}^{\varepsilon}-\tilde{\mathbf{v}}^{\varepsilon} \tilde{c}^{\varepsilon}\right) \cdot \nabla \phi\right) d x d t=-\int_{\Omega} \chi^{\varepsilon} c_{0}(\mathbf{x}) \phi(\mathbf{x}, 0) d x \tag{4.8}
\end{equation*}
$$

with the test functions $\phi=\phi(\mathbf{x}, t)$.
Lemma 4.4. Under conditions of Theorem 2.2 the two-scale limits $c(\mathbf{x}, t)$ and $C(\mathbf{x}, \mathbf{y}, t)$ satisfy the microscopic integral identity

$$
\begin{equation*}
\int_{Y} \chi(\mathbf{y})\left(\nabla c+\nabla_{y} C-c \mathbf{V}\right) \cdot \nabla \phi_{1} d y=0 \tag{4.9}
\end{equation*}
$$

for arbitrary 1-periodic in variable \mathbf{y} smooth functions $\phi_{1}(\mathbf{y})$.
The integral identity $\left(\begin{array}{l}4.9 \\)\end{array}\right.$ follows from $(\sqrt{4.8})$ after fulfilling the two-scale limit as $\varepsilon \rightarrow 0$ with test functions $\phi=\varepsilon \phi_{0}(\mathbf{x}, t) \phi_{1}(\mathbf{x} / \varepsilon)$.

Lemma 4.5. Let $C^{(i)}(\mathbf{y}), i=1,2,3$, be the solution to the integral identity

$$
\begin{equation*}
\int_{Y} \chi(\mathbf{y})\left(\mathbf{e}_{i}+\nabla_{y} C^{(i)}\right) \cdot \nabla \phi_{1} d y=0 \tag{4.10}
\end{equation*}
$$

and $C^{(0)}(\mathbf{y}, \mathbf{x}, t)$ be the solution to the integral identity

$$
\begin{equation*}
\int_{Y} \chi(\mathbf{y})\left(\mathbf{V}+\nabla_{y} C^{(0)}\right) \cdot \nabla \phi_{1} d y=0 \tag{4.11}
\end{equation*}
$$

with arbitrary 1-periodic in variable \mathbf{y} smooth functions $\phi_{1}(\mathbf{y})$. Then the function

$$
\begin{equation*}
C(\mathbf{x}, \mathbf{y}, t)=\left(\sum_{i=1}^{3} C^{(i)}(\mathbf{y}) \otimes \mathbf{e}_{i}\right) \cdot \nabla c(\mathbf{x}, t)+C^{(0)}(\mathbf{y}, \mathbf{x}, t) c(\mathbf{x}, t) \tag{4.12}
\end{equation*}
$$

solves the integral identity 4.9.
In 4.10-4.12) \mathbf{e}_{i} is the standard Cartesian basis vector and the matrix $\mathbf{a} \otimes \mathbf{b}$ is defined by the formula

$$
(\mathbf{a} \otimes \mathbf{b}) \cdot \mathbf{c}=\mathbf{a}(\mathbf{b} \cdot \mathbf{c})
$$

for any vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$.
The proof of the lemma is straightforward. It is omitted.
Substitution 4.12 into 4.5 gives us desired homogenized equation (2.3) with boundary and initial conditions $2.4-2.5)$.

The matrix \mathbb{B} and the vector $\mathbf{v}_{0}(\mathbf{x}, t)$ are defined as

$$
\begin{gather*}
\mathbb{B}=m \mathbb{I}+\left(\sum_{i=1}^{3}\left\langle\nabla_{y} C^{(i)}\right\rangle_{Y_{f}} \otimes \mathbf{e}_{i}\right), \tag{4.13}\\
\mathbf{v}_{0}(\mathbf{x}, t)=\left\langle\nabla_{y} C^{(0)}\right\rangle_{Y_{f}}, \tag{4.14}
\end{gather*}
$$

where by definition $\langle f\rangle_{Y_{f}}=\int_{Y_{f}} f(\mathbf{y}) d y$.
Lemma 4.6. The matrix \mathbb{B} is symmetric and strictly positively defined.
The proof is well-known, see [7, 11].
Acknowledgments. This research is partially supported by the Federal Program "Research and scientific-pedagogical brainpower of Innovative Russia" for 20092013 (State Contract 02.740.11.0613).

References

[1] E. Acerbi, V. Chiado Piat, G. Dal Maso and D. Percivale; An extension theorem from connected sets and homogenization in general periodic domains, Nonlinear Anal., 18(1992), 481496.
[2] R. E. Adams; Sobolev spaces, Academic Press, New York, 1975.
[3] G. Allaire and Y. Capdeboscq; Homogenization of a spectral problem in neutronic multigroup diffusion, Comput. Methods Appl. Mech. Engrg. 187 (2000), pp. 91-117.
[4] B. Amaziane, S. Antontsev, L. Pankratov, A. Piatnitski; Homogenization of immiscible compressible two-phase flow in porous media: application to gas migration in a nuclear waste repository, SIAM J. of Multiscale Model. Simul., v. 8, N. 5 (2010), 2023-2047.
[5] B. Amaziane, M. Goncharenko and L. Pankratov; Homogenization of a convectiondiffusion equation in perforated domains with a weak adsorption, Z. angew. Math. Phys. 58 (2007) 592-611.
[6] J. P. Aubin; Un th'eore'me de compacit'e, C. R. Acad. Sc., 256 (1963), 5042-5044.
[7] A. Bensoussan, J.-L Lions, G. Papanicolau; Asymptotic Analysis for Periodic Structure. Amsterdam: North Holland, 1978.
[8] A. Bourgeat, M. Jurak and A. L. Piatnitski; Averaging a transport equation with small diffusion and oscillating velocity, Math. Meth. Appl. Sci. 26 (2003), 95-117.
[9] U. Hornung; Homogenization and Porous Media, SpringerVerlag, 1997.
[10] U. Hornung, W. Jager; Diffusion, convection, adsorption, and reaction of chemicals in porous media, J. Diff. Eq. 92 (1991), 199-225.
[11] V. V. Jikov, S. M. Kozlov, O. A. Oleinik; Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, New York, 1994.
[12] A. N. Kolmogorov, S. V. Fomin; Elements of the Theory of Functions and Functional Analysis, Dover Publications, 1999.
[13] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva; Linear and Quasilinear Equations of Parabolic Type, Providence, Rhode Island, 1968.
[14] J. L. Lions; Quelques methodes de resolution des problemes aux limites non lineaire, Dunod, Paris, 1969.
[15] A. Meirmanov; A description of seismic acoustic wave propagation in porous media via homogenization, SIAM J. Math. Anal. V. 40, No. 3 (2008) pp. 1272-1289.
[16] G. Nguetseng; A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623.
[17] L. Tartar; Cours Peccot. Paris: Coll'ege de France, 1977.
Anvarbek M. Meirmanov
Department of mahtematics, Belgorod State University, ul.Pobedi 85, 308015 Belgorod, Russia

E-mail address: meirmanov@bsu.edu.ru
Reshat Zimin
Department of mahtematics, Belgorod State University, ul.Pobedi 85, 308015 Belgorod, Russia

E-mail address: reshat85@mail.ru

[^0]: 2000 Mathematics Subject Classification. 35B27, 46E35, 76R99.
 Key words and phrases. Weak, strong and two-scale convergence; homogenization; diffusion-convection.
 © 2011 Texas State University - San Marcos.
 Submitted April 10, 2011. Published September 6, 2011.

