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S-ASYMPTOTICALLY PERIODIC SOLUTIONS FOR PARTIAL
DIFFERENTIAL EQUATIONS WITH FINITE DELAY

WILLIAM DIMBOUR, GISÈLE MOPHOU, GASTON M. N’GUÉRÉKATA

Abstract. In this article, we give some sufficient conditions for the existence
and uniqueness of S-asymptotically periodic (mild) solutions for some partial
functional differential equations. To illustrate our main result, we study a
diffusion equation with delay.

1. Introduction

The main purpose of this work is to study the existence and uniqueness of S-
asymptotically periodic solutions in the α-norm for the partial differential equation

d

dt
u(t) = −Au(t) + L(ut) + f(t, u(t)) for t ≥ 0,

u0 = ϕ
(1.1)

where −A is the infinitesimal generator of an analytic semigroup T (t), t ≥ 0 on a
Banach space X.

For 0 < α ≤ 1, let Aα be the fractional power of A with domain D(Aα),
which endowed with the norm |x|α = ‖Aαx‖ forms a Banach space Xα. Let
Cα = C([−r, 0], Xα) be the Banach space of all continuous functions from [−r, 0] to
Xα endowed with the norm

|φ|Cα = sup
−r≤θ≤0

|φ(θ)|α.

Let L be a bounded linear operator from Cα to Xα, and f : R × Xα → Xα a
continuous function. As usual the history function xt ∈ Cα is defined by

xt(θ) = x(t + θ) for θ ∈]− r, 0].

The theory of partial functional differential equations and its applications are
an active are of research; see for instance [16, 17, 29] and the references therein.
Several articles study the existence and uniqueness of almost periodic, almost au-
tomorphic, and weighted pseudo almost periodic solutions of various differential
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equations. In [11], the author deals with the existence of C(n)-almost periodic and
C(n)-automorphic solution of the equation

d

dt
u(t) = −Au(t) + L(ut) + f(t) for t ≥ 0,

u0 = ϕ
(1.2)

To achieve his goal, the author uses the the variation of constants formula and
the reduction method developed by Adimy et al. [1]. Ezzinbi and Boukli-Hacene
[13] studied the existence and uniqueness of weighted pseudo-almost automorphic
solution for (1.2), using the variation of constants formula developed by Ezzinbi
and N’Guérékata [14].

The literature relative to S-asymptotically periodic functions remains limited due
to the novelty of the concept. Qualitative properties of such functions are discussed
for instance in [4, 18, 21]. In [4], the authors present a new composition theorem for
such functions. Various properties of S-asymptotically periodic functions are also
investigated in a general study of classes of bounded continuous functions taking
values in a Banach space X . In [6], a new concept of weighted S-asymptotically
periodic functions is introduced generalizing in a natural way the one studied here.
There are some papers dealing with the existence of S-asymptotically periodic so-
lutions of differential equations and fractional differential equations in finite as well
as infinite dimensional spaces; see [4, 18, 19, 21, 25]. In this paper, motivated by all
these works, we first reconsider (1.2) and prove that if f is an S-asymptotically peri-
odic function in the α-norm then its has a unique solution on [−r, +∞[ . Moreover,
the restriction of the solution on R+ is S-asymptotically periodic solutions in the
α-norm. This allow us to study the existence and uniqueness of an S-asymptotically
periodic solution in the α-norm, for (1.1).

This work is organized as follows. In Section 2, we recall some fundamental
properties of S-asymptotically periodic functions and fractional powers of a closed
operator. Section 3 is devoted to the main result. We illustrate our main result in
Section 4 by examining the existence and uniqueness of S-asymptotically periodic
(mild) solutions for some diffusion equations with delay.

2. PRELIMINARIES

Let (X, ‖·‖) be a Banach space. Denote by C(R+, X), the space of all continuous
functions from R+ to X, and by BC(R+, X) the space of all bounded continuous
functions R+ → X. The space BC(R+, X) endowed with the supremum norm
‖f‖∞ := supt≥0 ||f(t)|| is a Banach space.

S-asymptotically periodic functions.

Definition 2.1. For a function f in BC(R+, X), we say that f belongs to C0(R+, X)
if limt→∞ ‖f(t)‖ = 0.

Let ω be a fixed positive number and f ∈ BC(R+, X). We say that f is ω-
periodic, denoted by f ∈ Pω(X), if f has period ω. Note that Pω(X) is a Banach
subspace of BC(R+, X) under the supremum norm.

Definition 2.2 ([4, 21]). Let f ∈ BC(R+, X) and ω > 0. We say that f is
asymptotically ω-periodic if f = g + h where g ∈ Pω(X) and h ∈ C0(R+, X).

We denote by APω(X) the set of all asymptotically ω-periodic functions from
R+ to X. Note that APω(X) is a Banach space under the supremum norm.
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From the above definitions, it follows that APω(X) = Pω(X)
⊕

C0(R+, X); cf.
[21].

Definition 2.3 ([18]). A function f ∈ BC(R+, X) is called S-asymptotically ω-
periodic if there exists ω such that limt→∞(f(t + ω) − f(t)) = 0. In this case we
say that ω is an asymptotic period of f and that f is S-asymptotically ω-periodic.

We will denote by SAPω(X), the set of all S-asymptotically ω-periodic functions
from R+toX. Then we have

APω(X) ⊂ SAPω(X).

Note that the inclusion above is strict. Consider the function f : R+ → c0 where
c0 = {x = (xn)n∈N : limn→∞ xn = 0} equipped with the norm ‖x‖ = supn∈N |x(n)|,
and f(t) = ( 2nt2

t2+n2 )n∈N. Then f ∈ SAPω(c0) but f /∈ APω(c0); see [18, Example
3.1].

The following result is due to Henriquez-Pierri-Tàboas; [18, Proposition 3.5].

Theorem 2.4. The space SAPω(X) endowed with the norm ‖ · ‖∞ is a Banach
space.

Theorem 2.5 ([4, Theorem 3.7]). Let φ : X → Y be a function which is uniformly
continuous on bounded subsets of X and such that φ maps bounded subsets of X into
bounded subsets of Y. Then for all f ∈ SAPω(X), the composition φ ◦ f := [t →
φ(f(t))] ∈ SAPω(X).

Corollary 2.6 ([4, Corollary 3.10]). Let X and Y be two Banach spaces, and
denote by B(X, Y), the space of all bounded linear operators from X into Y. Let
A ∈ B(X, Y). Then when f ∈ SAPω(X), we have Af := [t → Af(t)] ∈ SAPω(Y).

Next we consider asymptotically ω-periodic functions with parameters.

Definition 2.7 ([18]). A continuous function f : [0,∞[×X → X is said to be
uniformly S-asymptotically ω-periodic on bounded sets if for every bounded set K ⊂
X, the set {f(t, x) : t ≥ 0, x ∈ K} is bounded and limt→∞(f(t, x)− f(t + ω, x)) = 0
uniformly in x ∈ K.

Definition 2.8 ([18]). A continuous function f : [0,∞[×X → X is said to be
asymptotically uniformly continuous on bounded sets if for every ε > 0 and every
bounded set K ⊂ X, there exist Lε,K > 0 and δε,K > 0 such that ||f(t, x)−f(t, y)‖ <
ε for all t ≥ Lε,K and all x, y ∈ K with ‖x− y‖ < δε,K .

Theorem 2.9 ([18]). Let f : [0,∞[×X → X be a function which uniformly S-
asymptotically ω-periodic on bounded sets and asymptotically uniformly continuous
on bounded sets. Let u : [0,∞[ be S-asymptotically ω-periodic function. Then the
Nemytskii operator φ(·) := f(·, u(·)) is S-asymptotically ω-periodic function.

Fractional powers of the operator A. Let %(A) denote the resolvent set of A.
We assume without loss of generality that

0 ∈ %(A). (2.1)

This allows us, on the one hand, to say that there exist constants M > 1 and δ > 0
such that

‖T (t)x‖ ≤ Me−δt‖x‖, ∀t ≥ 0, x ∈ X , (2.2)
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and on the other hand, to define the fractional power Aα for 0 < α < 1, as a closed
linear operator on its domain D(Aα) with inverse A−α given by

A−α =
1

Γ(α)

∫ t

0

tα−1T (t)dt

where Γ denotes the Gamma function

Γ(α) =
∫ t

0

tα−1e−αtdt.

We have the following basic properties for Aα.

Theorem 2.10 ([26, pp. 69-75]). For 0 < α < 1, the following properties hold.
(i) Xα = D(Aα) is a Banach space with the norm |x|α = ‖Aαx‖ for x ∈ D(Aα);
(ii) A−α is the closed linear operator with Im(A−α) = D(Aα) and we have

Aα = (A−α)−1;
(iii) A−α ∈ B(X, X);
(iv) T (t) : X → Xα for every t > 0;
(v) AαT (t)x = T (t)Aαx for each x ∈ D(Aα) and t ≥ 0;
(vi) 0 < α ≤ β implies D(Aβ) ↪→ D(Aα);
(vii) There exists Mα > 1 such that

‖AαT (t)x|| ≤ Mα
e−δt

tα
‖x‖ for x ∈ X, t > 0.

where δ > 0 is given by (2.2)

Remark 2.11. Observe as in [20, 22] that from Theorem 2.10 (iv) and (v), the
restriction Tα(t) of T (t) to Xα is exactly the part of T (t) in Xα.

Let x ∈ Xα.

|T (t)x|α = ‖AαT (t)x‖ = ‖T (t)Aαx‖ ≤ |T (t)| ||Aαx‖ = |T (t)| |x|α,

and as t decreases to 0,

|T (t)x− x|α = ‖AαT (t)x−Aαx‖ = ‖T (t)Aαx−Aαx‖ → 0,

for all x ∈ Xα; it follows that (T (t))t≥0 is a family of strongly continuous semigroup
on Xα and |Tα(t)| ≤ |T (t)| for all t ≥ 0.

Proposition 2.12 ([11, 28]). ((T (t)t≥0) is a strongly continuous semigroup on Cα;
that is,

(i) for all t ≥ 0 T (t) is a bounded linear operator on Cα;
(ii) T (0) = I;
(iii) T (t + s) = T (t)T (s) for all t, s ≥ 0;
(iv) for all ϕ ∈ Cα, T (t)ϕ is a continuous function of t ≥ 0 with values in Cα.

3. Applications to partial differential equations with finite delay

Definition 3.1. Let ϕ ∈ Cα. A function u : [−r, +∞[→ Xα is said to be a mild
solution of (1.2) if the following conditions hold:

(i) u : [−r, +∞[→ Xα is continuous;
(ii) u(t) = T (t)ϕ(0) +

∫ t

0
T (t− s)[L(us) + f(s)]ds for t ≥ 0;

(iii) u0 = ϕ.
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For the rest of this article, we define

Ω = {u : [−r, +∞[→ Xα such that u|[−r,0] ∈ Cα and u|R+ ∈ SAPω(Xα)}.
Note that if u ∈ Ω then u is bounded on [−r, +∞[. We set

‖u‖Ω = sup
s∈[−r,+∞[

|u(s)|α. (3.1)

It is clear that ‖u‖∞ ≤ ‖u‖Ω.

Lemma 3.2. Under assumption (2.1), the function l defined by

l(t) = T (t)ϕ(0)

belongs to SAPω(Xα).

Proof. Since ϕ(0) ∈ Xα, we have on the one hand that (T (t))t≥0 is a family of
strongly continuous semigroup on Xα (see Remark 2.11), and on the other hand
that |l(t)|α ≤ M |ϕ(0)|α because (2.2) holds. Consequently l ∈ BC(R+, Xα).

Now using (2.2) and Remark 2.11, we obtain for t ≥ 0,

|l(t + ω)− l(t)|α = |T (t + ω)ϕ(0)− T (t)ϕ(0)|α
≤ |T (t + ω)ϕ(0)|α + |T (t)ϕ(0)|α
≤ |T (t + ω)||ϕ(0)|α + |T (t)||ϕ(0)|α
≤ Me−δ(t+ω)|ϕ(0)|α + Me−δt|ϕ(0)|α.

As δ > 0, we deduce that

lim
t→∞

|l(t + ω)− l(t)|α = 0.

Thus l ∈ SAPω(Xα). �

Lemma 3.3. If u ∈ Ω, then

|ut|Cα ≤ ‖u‖Ω, (3.2)

|L(ut)|α ≤ |L|B(Cα,Xα)‖u‖Ω (3.3)

lim
t→+∞

|ut+ω − ut|Cα = 0. (3.4)

Proof. For any θ ∈ [−r, 0] and t ≥ 0, we have

|ut(θ)|α = |u(t + θ)|α.

Since ut is continuous on [−r, 0] which is compact, we know that there exists θ∗ ∈
[−r, 0] such that

|ut|Cα = sup
−r≤θ≤0

|u(t + θ)|α = |u(t + θ∗)|α.

Since u ∈ Ω, we deduce that (3.2) holds. As L ∈ B(Cα, Xα), we can write

|L(ut)|Xα ≤ |L|B(Cα,Xα)|ut|Cα .

Therefore, using (3.2), we obtain (3.3).
To complete the proof of the lemma, it suffices to prove (3.4). As ut is continuous

on [−r, 0] which is compact, there exists θ∗ ∈ [−r, 0] such that

|ut+ω − ut|Cα = sup
−r≤θ≤0

|u(t + θ + ω)− u(t + θ)|α

= |u(t + θ∗ + ω)− u(t + θ∗)|α.
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Set s = t + θ. Then, as t tends to +∞ we have s tends to +∞. Consequently

lim
t→∞

|u(t + θ∗ + ω)− u(t + θ∗)|α = lim
s→∞

|u(s + ω)− u(s)|α = 0

since u ∈ Ω. Hence, limt→∞ |ut+ω − ut|Cα = 0. �

Lemma 3.4. Assume that (2.1) holds. Let f ∈ SAPω(Xα) and φ ∈ Ω. Then the
function Φ : t 7→ L(φt) + f(t) belongs to SAPω(Xα).

Proof. It is clear that Φ ∈ C(R+, Xα). Using Lemma 3.3, we obtain

|Φ(t)|α ≤ |L(φt)|α + |f(t)|α ≤ |L|B(Cα,Xα)‖φ‖Ω + ‖f‖∞.

This implies that Φ ∈ BC(R+, Xα). Hence

‖Φ‖∞ ≤ |L|B(Cα,Xα)||φ‖Ω + ‖f‖∞. (3.5)

On the other hand, for all t ≥ 0,

|Φt+ω − Φt|α ≤ |L(φt+ω − φt)|α + |f(t + ω)− f(t)|α
≤ |L|B(Cα,Xα)|φt+ω − φt|Cα + |f(t + ω)− f(t)|α,

Since φ ∈ Ω, using Lemma 3.3-(3.4) and the fact that f ∈ SAPω(Xα), we deduce
that

lim
t→∞

|Φt+ω − Φt|α = 0. (3.6)

This completes the proof. �

Proposition 3.5. Assume that (2.1) holds. Let f ∈ SAPω(Xα). For each φ ∈ Ω,
define the nonlinear operator ∧0 by

(∧0φ)(t) =

{
ϕ(t) if t ∈ [−r, 0],
T (t)ϕ(0) +

∫ t

0
T (t− s)[L(φs) + f(s)]ds if t ≥ 0.

Then ∧0 maps Ω into itself.

Proof. It is clear that (∧0φ) is defined on [−r, +∞[ and because ϕ ∈ Cα, we have
(∧0φ)|[−r,0] ∈ Cα. Thus it suffices to show that the function

v : t →
∫ t

0

T (t− s)[L(φs) + f(s)]ds ∈ SAPω(Xα)

to complete the proof, since by Lemma 3.2, T (t)ϕ(0) ∈ SAPω(Xα).
For t ≥ 0, let Φ(t) = L(φt) + f(t). Then

v(t + ω)− v(t) =
∫ t+ω

0

T (t + ω − s)Φ(s) ds−
∫ t

0

T (t− s)Φ(s) ds

=
∫ ω

0

T (t + ω − s)Φ(s) ds +
∫ t+ω

ω

T (t + ω − s)Φ(s) ds

−
∫ t

0

T (t− s)Φ(s) ds.

Then
|v(t + ω)− v(t)|α ≤ |I1(t)|α + |I2(t)|α,

where

I1(t) =
∫ ω

0

T (t + ω − s)Φ(s) ds,



EJDE-2011/117 S-ASYMPTOTICALLY PERIODIC SOLUTIONS 7

I2(t) =
∫ t+ω

ω

T (t + ω − s)Φ(s) ds−
∫ t

0

T (t− s)Φ(s) ds,

|I1(t)|α =
∣∣ ∫ ω

0

T (t + ω − s)Φ(s) ds
∣∣
α
≤

∫ ω

0

|T (t + ω − s)Φ(s)|αds

Since ∫ ω

0

|T (t + ω − s)Φ(s)|αds =
∫ ω

0

||AαT (t + ω − s)Φ(s)||ds

=
∫ ω

0

||T (t + ω − s)AαΦ(s)||ds

≤
∫ ω

0

Me−δ(t+ω−s)‖AαΦ(s)‖ ds,

using (3.5) we deduce that

|I1(t)|α ≤ Me−δ(t+ω)

∫ ω

0

eδs|Φ(s)|αds

≤ Me−δ(t+ω)‖Φ‖∞
∫ ω

0

eδsds

≤ 1
δ
Me−δ(t+ω)‖Φ‖∞(eδw − 1)

≤ 1
δ
M‖Φ‖∞e−δt

Consequently, limt→∞ |I1(t)|α = 0 In view of (3.6), we can find Tε sufficiently large
such that

|Φ(t + ω)− Φ(t)|α <
δ

M
ε, for t > Tε.

After a change of variable, we obtain

I2(t) =
∫ t

0

T (t− s)(Φ(s + ω)− Φ(s)) ds.

Thus we obtain

|I2(t)|α ≤
∣∣ ∫ Tε

0

T (t−s)(Φ(s+ω)−Φ(s)) ds
∣∣
α

+
∣∣ ∫ t

Tε

T (t−s)(Φ(s+ω)−Φ(s)) ds
∣∣
α
.

Observing that∣∣ ∫ Tε

0

T (t− s)(Φ(s + ω)− Φ(s)) ds
∣∣
α
≤

∫ Tε

0

∣∣T (t− s)
(
Φ(s + ω)− Φ(s)

)∣∣
α
ds

≤
∫ Tε

0

Me−δ(t−s)|Φ(s + ω)− Φ(s)|αds

≤ 2
∫ Tε

0

Me−δ(t−s)‖Φ‖∞ds

≤ 2M‖Φ||∞e−δt

∫ Tε

0

eδsds

≤ 2M‖Φ||∞e−δt
(eδTε

δ
− 1

δ

)
,
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we deduce that

lim
t→∞

∣∣ ∫ Tε

0

T (t− s)(Φ(s + ω)− Φ(s)) ds
∣∣
α

= 0

since limt→∞[2M‖Φ||∞e−δt( eδTε

δ − 1
δ )] = 0. Also we have

∣∣ ∫ t

Tε

T (t− s)(Φ(s + ω)− Φ(s)) ds
∣∣
α
≤

∫ t

Tε

∣∣T (t− s)(Φ(s + ω)− Φ(s))
∣∣
α
ds

≤
∫ t

Tε

|T (t− s)||(Φ(s + ω)− Φ(s))|αds

≤
∫ t

Tε

Me−δ(t−s) δ

M
ε ≤ ε.

Therefore

lim
t→∞

∫ t

Tε

T (t− s)(Φ(s + ω)− Φ(s)) ds = 0.

Finally, we obtain limt→∞I2(t) = 0 and we have t →
∫ t

0
T (t− s)[L(φs) + f(s)]ds ∈

SAPω(Xα). In summary, we have proved that

• (∧0φ) is defined [−r, +∞[,
• (∧0φ)|[ − r, 0] ∈ Cα,
• (∧0φ)|R+ ∈ SAPω(Xα);

that is, (∧0φ) ∈ Ω. �

Theorem 3.6. Suppose that (2.1) holds and f ∈ SAPω(Xα). Let v be the restric-
tion of the mild solution of (1.2) on R+. Then v ∈ SAPω(Xα).

Proof. According to the definition of mild solution of (1.2) given by Definition 3.1,
we have for any t ≥ 0,

v(t) = T (t)ϕ(0) +
∫ t

0

T (t− s)[L(us) + f(s)]ds.

Hence it suffices to apply Proposition (3.5), with u = φ, to obtain that v belongs
to SAPω(Xα). �

We make the following assumption.

(H1) The function g : R+ ×Xα → Xα, t → g(t, u) is continuous and there exists
a constant Kf ≥ 0 such that

|g(t, u)− g(t, v)|α ≤ Kg|u− v|α for all t ∈ R+ (u, v) ∈ X2.

(H2) M
(
|L|B(Cα,Xα) + Kg

)
/δ < 1.

Definition 3.7. Let ϕ ∈ Cα. A function u : [−r, +∞[→ Xα is said to be a mild
solution of (1.1) if the following conditions hold:

(i) u : [−r, +∞[→ Xα is continuous;
(ii) u(t) = T (t)ϕ(0) +

∫ t

0
T (t− s)[L(us) + g(s, u(s))]ds for t ≥ 0;

(iii) u0 = ϕ.
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Proposition 3.8. Suppose that (2.1) holds. Assume also that the function g is
uniformly S-asymptotically ω-periodic on bounded sets and (H1) hold. For each
φ ∈ Ω, define the nonlinear operator ∧1 by

(∧1φ)(t) =

{
ϕ(t) if t ∈ [−r, 0],
T (t)ϕ(0) +

∫ t

0
T (t− s)[L(φs) + g(s, φ(s))]ds if t ≥ 0.

Then ∧1 maps Ω into itself.

Proof. We have φ|R+ ∈ SAPω(Xα) since φ ∈ Ω. Since g satisfying (H1), it follows
from Theorem 2.9 that the function h : t 7→ g(t, φ(t)) belongs to SAPω(Xα). Hence,
it suffices to proceed exactly as for the proof of the Proposition 3.5 replacing f(·)
by h(·) to obtain that ∧1 maps Ω into itself. �

Theorem 3.9. Suppose that (2.1) and (H2) hold. Also assume that the function g
is uniformly S-asymptotically ω-periodic on bounded sets and (H1) hold. Then for
all ϕ ∈ Cα, Equation (1.1) has a unique mild solution in Ω.

Proof. Consider the operator Q : Ω → Ω defined by:

(Qu)(t) =

{
ϕ(t) if t ∈ [−r, 0],
T (t)ϕ(0) +

∫ t

0
T (t− s)[L(us) + g(s, u(s))]ds if t ≥ 0.

Observe that in view of Proposition 3.8, Q is well defined. Consider u, v ∈ Ω. For
all t ∈ [−r, +∞[, we have

|(Qu)(t)− (Qv)(t)|α

=
∣∣ ∫ t

0

T (t− s)[(L(us)− L(vs)) + (g(s, u(s))− g(s, v(s)))]ds
∣∣
α

≤
∫ t

0

∣∣T (t− s)[(L(us)− L(vs)) + (g(s, u(s))− g(s, v(s)))]
∣∣
α
ds.

Therefore, using (2.2) and (3.2), we obtain

|(Qu)(t)− (Qv)(t)|α

≤
∫ t

0

Me−δ(t−s)[|L(us)− L(vs)|α + |g(s, u(s))− g(s, v(s))|α]ds

≤ Me−δt|L|B(Cα,Xα)

∫ t

0

eδs|us − vs|Cαds

+ Me−δtKg

∫ t

0

eδs|u(s)− v(s)|αds

≤ Me−δt|L|B(Cα,Xα)‖u− v‖Ω

∫ t

0

eδsds

+ Me−δtKg‖u− v‖∞
∫ t

0

eδsds.

Since ‖u− v‖∞ ≤ ‖u− v‖Ω, we deduce that for all t ≥ −r,

|(Qu)(t)− (Qv)(t)|α ≤ Me−δt|L|B(Cα,Xα)‖u− v‖Ω

∫ t

0

eδsds

+ Me−δtKg‖u− v‖∞
∫ t

0

eδsds
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≤ Me−δt

δ

(
|L|B(Cα,Xα) + Kg

)
‖u− v‖Ω(eδt − 1)

≤ M

δ

(
|L|B(Cα,Xα) + Kg

)
‖u− v‖Ω.

Hence

‖(Qu)(t)− (Qv)(t)‖Ω ≤ M

δ

(
|L|B(Cα,Xα) + Kg

)
‖u− v‖Ω.

Hence assumption (H2) allows us to conclude in view of the contraction mapping
principle that Q has a unique point fixed in u ∈ Ω. The proof is now complete. �

4. Application

Consider the functional partial differential equation

∂

∂t
u(t, x) =

∂2

∂x2
u(t, x) +

∫ 0

−r

q(θ)y(t + θ, x)dθ + g(t, u(t, x)) t ∈ R+, x ∈ [0, π]

u(t, 0) = u(t, π) = 0 t ∈ R+

u(θ, x) = φ(θ, x), for θ ∈ [−r, 0] and x ∈ [0, π]
(4.1)

where q : [−r, 0] → R is continuous. To study this system in the abstractt form
(1.1), we choose X = L2([0, π]) and the operator A : D(A) ⊂ X → X is given by
Au = −u′′ with domain

D(A) = {u ∈ X : u′ ∈ X, u′′ ∈ X, u(0) = u(π) = 0}.

Then −A generates an analytic semigroup T (·) such that ‖T (t)‖ ≤ e−t, t ≥ 0
([15]). Moreover, the eigenvalues of A are n2π2 and the corresponding normalized
eigenvectors are en(x) =

√
2 sin(nπx), n = 1, 2, · · · . Hence, we have

(a) Au =
∑∞

n=1 n2π2〈u, en〉en if u ∈ D(A);
(b) A−1/2u =

∑∞
n=1

1
n 〈u, en〉en if u ∈ X;

(c) The operator A1/2 is given by

A1/2u =
∞∑

n=1

n〈u, en〉en

for each u ∈ D(A1/2) = {u ∈ X :
∑∞

n=1
1
n 〈u, en〉en ∈ X}.

Let X1/2 =
(
D(A1/2), | · |1/2

)
where |x|1/2 = ‖A1/2x‖2 for each x ∈ D(A1/2).

Let Cα be the Banach space C([−r , 0], X1/2) equipped with norm | · |∞. We define
g : R+ × X1/2 → X1/2 and ϕ : [−r, 0]× [0, π] → X1/2 by g(t, u(t))(x) = g(t, u(t, x))
and φ(θ)(x) = φ(θ, x) respectively. We define the operator L by

L(φ)(x) =
∫ 0

−r

q(θ)φ(θ)(x)dθ for x ∈ [0, π], φ ∈ C1/2.

we have A1/2φ(θ)(x) ∈ L2([−r, 0]) since φ ∈ C1/2 . It follows that∣∣A1/2L(φ)(x)
∣∣2 ≤ ∫ 0

−r

q(θ)2dθ

∫ 0

−r

∣∣A1/2φ(θ)(x)
∣∣2dθ

≤ r
(

sup
−r≤θ≤0

q(θ)
)2

∫ 0

−r

|A1/2φ(θ)(x)|2dθ
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since q is continuous on [−r, 0] which is a compact set of R. Therefore we deduce
that ∫ π

0

|A1/2L(φ)(x)|2 dx ≤ r
(

sup
−r≤θ≤0

q(θ)
)2

∫ π

0

∫ 0

−r

|A1/2φ(θ)(x)|2dθ dx

= r
(

sup
−r≤θ≤0

q(θ)
)2

∫ 0

−r

∫ π

0

|A1/2φ(θ)(x)|2dx dθ.

Hence, we obtain
|L(φ)|1/2 ≤ r2

(
sup

−r≤θ≤0
q(θ)

)2|φ|2C1/2
.

This means that L is a bounded linear operator from C1/2 to X1/2. Therefore, (4.1)
takes the abstract form (1.1).

Assume
∫ 0

−r
|q(θ)|dθ < 1 and that the function g : R+ ×Xα → Xα, t → g(t, u) is

continuous and there exists a constant Kf ≥ 0 such that

|g(t, u)− g(t, v)|α ≤ Kg|u− v|α for all t ∈ R+, (u, v) ∈ X2.

Note that such a function exists. Take for instance Let f(t, x) = e−tx then |f(t, x)−
f(t, y)|1/2 ≤ |x− y|1/2.

Theorem 4.1. Assume that g is uniformly S-asymptotically ω-periodic on bounded
sets and asymptotically uniformly continuous on bounded sets. Then System (4.1)
has a unique solution defined on [−r,∞[ such that its restriction on R+ belongs to
SAPω(Xα) provided (r2

(
sup−r≤θ≤0q(θ)

)2 + Kg) < 1.

Proof. It suffices to apply Theorem 3.9, observing that (H2) is satisfied since
r2

(
sup−r≤θ≤0q(θ)

)2 + Kg < 1 and M = δ = 1. �

References

[1] M. Adimy, A. Elazzouzi, K. Ezzinbi; Reduction principle and dynamic behaviors for a class
of partial functional differential equations, Nonlinear Analysis. Theory, Methods and Appli-
cations, 71(56), 2009, 1709-1727.

[2] M. Adimy, K. Ezzinbi; Existence and linearized stability for partial neutral functional differ-
ential equations, Differential Equations Dynam. Systems, Vol.7 (1999) 371-417.

[3] M. Adimy, K. Ezzinbi, M.Laklach; Spectral decomposition for partial neutral functional dif-
ferential equations, Canadian. Appl. Math. Q. 9, Vol. 1 (2001), 1-34.
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