
Electronic Journal of Differential Equations, Vol. 2011 (2011), No. 119, pp. 1–10.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

ESTIMATES AND UNIQUENESS FOR BOUNDARY BLOW-UP
SOLUTIONS OF P-LAPLACE EQUATIONS

MONICA MARRAS, GIOVANNI PORRU

Abstract. We investigate boundary blow-up solutions of the p-Laplace equa-
tion ∆pu = f(u), p > 1, in a bounded smooth domain Ω ⊂ RN . Under ap-
propriate conditions on the growth of f(t) as t approaches infinity, we find an
estimate of the solution u(x) as x approaches ∂Ω, and a uniqueness result.

1. Introduction

Let f(t) be a C1(0,∞) function, positive, non decreasing, satisfying f(0) = 0
and the condition

lim
t→∞

t
(
f

1
p−1 (t)

)′
f

1
p−1 (t)

= α, (1.1)

with p > 1 and α > 1. It is well known (see [6, page 282]) that a smooth function
f which satisfies (1.1) has the following representation

f
1

p−1 (t) = Ctα exp
(∫ t

t0

g(τ)
τ

dτ
)
, (1.2)

where C and t0 are positive constants and g(t) → 0 as t → ∞. Functions which
have this representation are said to be normalized regularly varying at ∞. More
precisely, f

1
p−1 (t) is regularly varying of index α, and f(t) is regularly varying of

index α(p− 1). Since(f 1
p−1 (t)
tβ

)′
= t−β−1f

1
p−1 (t)

[ t(f 1
p−1 (t)

)′
f

1
p−1 (t)

− β
]
,

if f satisfies (1.1) then the function f
1

p−1 (t)
tβ is increasing for large t whenever β < α.

In particular, since α > 1, the function f(t)
tp−1 is increasing for large t. Furthermore,

condition (1.1) implies the generalized Keller-Osserman condition∫ ∞

1

dt(
F (t)

)1/p
<∞, F (t) =

∫ t

0

f(τ)dτ. (1.3)
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Consider the Dirichlet problem

∆pu = f(u) in Ω, u(x) →∞ as x→ ∂Ω. (1.4)

It is well known that when f satisfies condition (1.3), problem (1.4) has a solution
(see for example [9]). In the present paper, assuming condition (1.1), we find a
quite precise estimate for a solution near the boundary ∂Ω, and we derive a result
of uniqueness.

In case of p = 2, problems about the existence of boundary blow-up solutions
have been investigated for a long time, see the classical papers [11, 17], and the
recent survey [18]. We refer to the paper [14] for a description of spatial hetero-
geneity models, including historical hints. For the investigation of the boundary
behaviour of blow-up solutions we refer to [1, 3, 4, 5, 6, 12]. The case of weighted
semilinear equations has been discussed in [13, 15, 20]. The case p > 1, has been
treated in [9, 10, 16]. In the present paper, assuming condition (1.1), we find an
estimate of the solution up to the second order.

In case of p = 2, condition (1.1) appears in the paper [7], where the author proves
a uniqueness result for problem (1.4). We emphasize that the method used in [7] is
not applicable in the present case because of the nonlinearity of the p-Laplacian.

For s > 0, define the function φ(s) as∫ ∞

φ(s)

dt

(qF (t))1/p
= s, (1.5)

where q = p
p−1 . If u is a solution to problem (1.4), we prove the estimate

u(x) = φ(δ)[1 +O(1)δ], (1.6)

where δ = δ(x) = operatornamedist(x, ∂Ω) and O(1) denotes a bounded quantity.
Estimate (1.6) implies, in particular, that if u1 and u2 are two solutions of problem
(1.4) then

lim
x→∂Ω

u1(x)
u2(x)

= 1.

By using this result, the monotonicity of f(t) for t > 0 and the monotonicity of
f(t)
tp−1 for large t we prove the uniqueness of the solution to problem (1.4).

2. Main results

We have already noticed that if f(t) satisfies (1.1) then the representation (1.2)
holds. By (1.2) it follows that, for ε > 0, we can find positive constants C1 and C2

such that for t large we have

C1t
α(p−1)+1−ε < F (t) < C2t

α(p−1)+1+ε, (2.1)

where F is defined as in (1.3). Furthermore, the function φ defined in (1.5), for s
small satisfies

C1

(1
s

) p−ε
(p−1)(α−1)

< φ(s) < C2

(1
s

) p+ε
(p−1)(α−1)

. (2.2)

Lemma 2.1. Let A(ρ,R) ⊂ RN , N ≥ 2, be the annulus with radii ρ and R centered
at the origin. Let f(t) > 0 be smooth, increasing for t > 0 and such that (1.1) holds
with α > 1. If u(x) is a radial solution to problem (1.4) in Ω = A(ρ,R) and
v(r) = u(x) for r = |x|, then

v(r) < φ(R− r)[1 + C(R− r)], r̃ < r < R, (2.3)
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and,
v(r) > φ(r − ρ)[1− C(r − ρ)], ρ < r < r̃, (2.4)

where φ is defined as in (1.5), ρ < r̃ < R and C is a suitable positive constant.

Proof. We have(
|v′|p−2v′

)′ + N − 1
r

|v′|p−2v′ = f(v), v(ρ) = v(R) = ∞. (2.5)

It is easy to show that there is r0 such that v(r) is decreasing for ρ < r < r0 and
increasing for r0 < r < R, with v′(r0) = 0. For r > r0 we have(

|v′|p−2v′
)′ =

(
(v′)p−1

)′ = (p− 1)(v′)p−2v′′.

Therefore, multiplying (2.5) by v′ and integrating over (r0, r) we find

(v′)p

q
+ (N − 1)

∫ r

r0

(v′)p

s
ds = F (v)− F (v0), v0 = v(r0). (2.6)

Since F (v0) > 0, (2.6) implies that

v′ < (qF (v))1/p, r ∈ (r0, R). (2.7)

As a consequence we have∫ r

r0

(v′)p

s
ds ≤ 1

r0

∫ r

r0

(qF (v))1/qv′ds <
q1/q

r0

∫ v

0

(F (t))1/qdt. (2.8)

On the other hand, by (2.6) we find

(v′)p

qF (v)
= 1−

(N − 1)
∫ r

r0

(v′)p

s ds+ F (v0)

F (v)
.

The above equation yields

v′

(qF (v))1/p
= 1− Γ(r), (2.9)

where,

Γ(r) = 1−
(
1−

(N − 1)
∫ r

r0

(v′)p

s ds+ F (v0)

F (v)

)1/p

.

By using the inequality 1 − (1 − t)1/p < t (true for 0 < t < 1), and (2.8) we find,
for some constant M ,

Γ(r) ≤
(N − 1)

∫ r

r0

(v′)p

s ds+ F (v0)

F (v)
≤M

∫ v

0
(F (t))1/qdt

F (v)
.

Since ∫ v

0

(F (t))1/qdt ≤ (F (v))1/qv,

we have

Γ(r) <
Mv(r)

(F (v(r)))1/p
. (2.10)

By using (2.1) (with ε small enough) one finds that Γ(r) → 0 as r → R. Further-
more, using (1.2) one proves that

lim
t→∞

F (t)
tf(t)

=
1

α(p− 1) + 1
.
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Hence, since ( t

(F (t))1/p

)′ =
tf(t)

(F (t))
p+1

p

[ F (t)
tf(t)

− 1
p

]
,

and 1
α(p−1)+1 <

1
p , the function t

(F (t))1/p is decreasing for large t. As a consequence,

the function Mv(r)
(F (v(r)))1/p tends to zero monotonically as r tends to R.

The inverse function of φ is the following

ψ(s) =
∫ ∞

s

1
(qF (t))1/p

dt.

Integration of (2.9) over (r,R) yields

ψ(v) = R− r −
∫ R

r

Γ(s)ds, (2.11)

from which we find

v(r) = φ(R− r)− φ′(ω)
∫ R

r

Γ(s)ds, (2.12)

with

R− r > ω > R− r −
∫ R

r

Γ(s)ds.

Since
−φ′(ω) = (qF (φ(ω))1/p,

and since the function t→ F (φ(t)) is decreasing we have

−φ′(ω) <
(
qF

(
φ
(
R− r −

∫ R

r

Γ(s)ds
)))1/p

= (qF (v))1/p,

where (2.11) has been used in the last step. Hence, by (2.12) and (2.10) we find

v(r) < φ(R− r) + (qF (v))1/p

∫ R

r

Mv(s)
(F (v(s)))1/p

ds.

Recalling that the function Mv(r)
(F (v(r)))1/p is decreasing for r close to R, the latter

estimate implies
v(r) < φ(R− r) + q1/pMv(r)(R− r),

and

v(r) <
φ(R− r)

1− q1/pM(R− r)
,

from which inequality (2.3) follows.
For r < r0 we have v′ < 0 and, instead of equation (2.6), we find

|v′|p

q
= F (v)− F (v0) + (N − 1)

∫ r0

r

|v′|p

s
ds, (2.13)

with ρ < r < r0. Note that, since |v′(r)|p → ∞ as r → ρ and v′′ > 0, we have
(Lemma 2.1 of [12])

lim
r→ρ

∫ r0

r
|v′|p

t dt

|v′|p
= 0.
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Hence, (2.13) implies |v′| < q(F (v))1/p for r near to ρ. Using equation (2.13) again
we find

|v′|p

qF (v)
= 1 +

(N − 1)
∫ r0

r
|v′|p

s ds− F (v0)
F (v)

.

The above equation yields
−v′

(qF (v))1/p
= 1 + Γ̃(r), (2.14)

where

Γ̃(r) =
(
1 +

(N − 1)
∫ r0

r
|v′|p

s ds− F (v0)
F (v)

)1/p

− 1.

Since (1 + t)1/p − 1 < t (true for t > 0), we have

Γ̃(r) <
(N − 1)

∫ r0

r
|v′|p

s ds− F (v0)
F (v)

.

Using the estimate |v′| < q(F (v))1/p we find |v′|p < qp−1(F (v))
p−1

p (−v′). There-
fore, Γ̃(r) satisfies

Γ̃(r) ≤ Mv(r)
(F (v(r)))1/p

, (2.15)

where M is a suitable constant (possible different from that of (2.10)). It follows
that Γ̃(r) → 0 as r → ρ.

Integration of (2.14) over (ρ, r) yields

ψ(v) = r − ρ+
∫ r

ρ

Γ̃(s)ds,

from which we find

v(r) = φ(r − ρ) + φ′(ω1)
∫ r

ρ

Γ̃(s)ds, (2.16)

with

r − ρ < ω1 < r − ρ+
∫ r

ρ

Γ̃(s)ds.

Since φ′(s) is increasing we have

φ′(ω1) > φ′(r − ρ) = −
(
qF (φ(r − ρ))

)1/p
.

This estimate, (2.15) and (2.16) imply

v(r) > φ(r − ρ)−
(
qF (φ(r − ρ))

)1/p
∫ r

ρ

Mv(s)(
F (v(s))

)1/p
ds.

Since the function t
(F (t))1/p is decreasing for t large and the function v(r) is decreas-

ing for r close to ρ, it follows that v(r)
(F (v(r)))1/p is increasing. Therefore,

v(r) > φ(r − ρ)−
(
qF (φ(r − ρ))

)1/p Mv(r)(
F (v(r))

)1/p
(r − ρ). (2.17)

On the other hand, by (2.14) we have

−v′

(qF (v))1/p
< 2, ρ < r < r̃.
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Integrating over (ρ, r) we find

ψ(v) < 2(r − ρ),

whence,
v(r) > φ(2(r − ρ)). (2.18)

We claim that, for some M > 1 and δ small, we have

1
M
φ(δ) ≤ φ(2δ). (2.19)

Indeed, putting φ(δ) = t, we can write (2.19) as

t

M
≤ φ(2ψ(t)),

or

ψ(t) ≤ 1
2
ψ

( t

M

)
for t large. To prove this inequality, we write

ψ(t) =
∫ ∞

t

(qF (τ))−1/pdτ = M

∫ ∞

t
M

(qF (Mτ))−1/pdτ.

Since f(t) is regularly varying with index α(p − 1), F (t) is regularly varying with
index α(p− 1) + 1, and (see [6])

lim
t→∞

F (Mt)
F (t)

= Mα(p−1)+1.

Therefore, for t large we have

(F (Mτ))−1/p ≤ (F (τ))−1/p

M
α(p−1)+1

p − 1
.

Hence,

ψ(t) ≤ M

M
α(p−1)+1

p − 1

∫ ∞

t
M

(qF (τ))−1/pdτ =
M

M
α(p−1)+1

p − 1
ψ

( t

M

)
.

The claim follows with M such that
M

M
α(p−1)+1

p − 1
=

1
2
.

Using (2.18), (2.19), and recalling that F (t) is regularly varying with index α(p−
1) + 1 we find, for r close to ρ,

F (φ(r − ρ))
F (v(r))

≤ F (φ(r − ρ))
F (φ(2(r − ρ)))

≤ F (φ(r − ρ))

F
(

1
M φ(r − ρ)

) < Mα(p−1)+1 + 2.

Insertion of the latter estimate into (2.17) yields

v(r) > φ(r − ρ)− M̃v(r)(r − ρ),

from which (2.4) follows. The lemma is proved. �
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Theorem 2.2. Let Ω ⊂ RN , N ≥ 2, be a bounded smooth domain and let f(t) > 0
be smooth, increasing and satisfying (1.1) with α > 1. If u(x) is a solution to
problem (1.4) then we have

φ(δ)
[
1− Cδ

]
< u(x) < φ(δ)

[
1 + Cδ

]
, (2.20)

where φ is defined as in (1.5), δ denotes the distance from x to ∂Ω and C is a
suitable positive constant.

Proof. If P ∈ ∂Ω we consider a suitable annulus of radii ρ and R contained in Ω
and such that its external boundary is tangent to ∂Ω in P . If v(x) is the solution
of problem (1.4) in this annulus, by using the comparison principle for elliptic
equations [8, Theorem 10.1] we have u(x) ≤ v(x) for x belonging to the annulus.
Choose the origin in the center of the annulus and put v(x) = v(r) for r = |x|. By
(2.3), for r near to R we have

v(r) < φ(δ)
[
1 + Cδ

]
.

The latter estimate together with the inequality u(x) ≤ v(x) yield the right hand
side of (2.20).

Consider a new annulus of radii ρ and R containing Ω and such that its internal
boundary is tangent to ∂Ω in P . If v(x) is the solution of problem (1.4) in this
annulus, by using the comparison principle for elliptic equations we have u(x) ≥
v(x) for x belonging to Ω. Choose the origin in the center of the annulus and put
again v(x) = v(r) for r = |x|. By (2.4), for r near to ρ we have

v(r) > φ(δ)
[
1− Cδ

]
.

The latter estimate together with the inequality u(x) ≥ v(x) yield the left hand
side of (2.20). The theorem is proved. �

Theorem 2.3. Let Ω ⊂ RN , N ≥ 2, be a bounded smooth domain and let f(t) > 0
be smooth, increasing and satisfying (1.1) with α > 1. If u(x) is a solution to
problem (1.4) then, |∇u| → ∞ as x→ ∂Ω.

Proof. By Theorem 2.2 we have

lim
x→∂Ω

u(x)
φ(δ(x))

= 1.

In particular, for δ < δ0, δ0 small, we have

1
2
<

u(x)
φ(δ(x))

< 2.

Now we follow the argument described in [2, page 105], using the same notation
(with β = ρ and ρ < ρ0). For ξ ∈ Ď(ρ), define

v(ξ) =
u(ρξ)
φ(ρ)

.

For ξ ∈ Ď(ρ) we have
1
2
≤ v(ξ) ≤ 2. (2.21)

We find
∇v =

ρ

φ(ρ)
∇u(ρξ),
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and

∆pv =
ρp

(φ(ρ))p−1
∆pu(ρξ) =

ρp

(φ(ρ))p−1
f(u(ρξ)) =

ρp

(φ(ρ))p−1
f(v(ξ)φ(ρ)).

With ψ(t) = ρ we have

∆pv =
(ψ(t))p

tp−1
f(v(ξ)t) =

( ψ(t)

t
p−1

p (f(t))−1/p

)p f(v(ξ)t)
f(t)

. (2.22)

Since f(t) is regularly varying with index α(p− 1) we have

lim
t→∞

f(v(ξ)t)
f(t)

= (v(ξ))α(p−1). (2.23)

Furthermore, we have
ψ(t)

t
p−1

p (f(t))−1/p
=

ψ(t)

t(F (t))−
1
p

( tf(t)
F (t)

)1/p

.

We have already observed that (1.2) implies

lim
t→∞

tf(t)
F (t)

= α(p− 1) + 1.

Using de l’Hospital rule and the latter estimate we get

lim
t→∞

ψ(t)

t(F (t))−
1
p

=
q1/q

α− 1
.

Hence,

lim
t→∞

ψ(t)

t
p−1

p (f(t))−1/p
=

q1/q

α− 1
(
α(p− 1) + 1

)1/p
. (2.24)

By (2.24), (2.23) and (2.21), (2.22) implies that

C1 ≤ ∆pv ≤ C2, ξ ∈ Ď(ρ) (2.25)

where C1 and C2 are suitable positive constants independent of ρ.
Let xi ∈ Ω, xi → ∂Ω, and let ρi = dist(xi, ∂Ω). By (2.25) with vi(ξ) = u(ρiξ)

φ(ρi)
,

and standard regularity results (see [19]), we find that the C1,β(Ď(ρi)) norm of the
sequence vi(ξ) is bounded far from zero. In particular,

|∇vi(ξ)| ≥ c,

with c > 0 independent of i. Hence,

|∇u(xi)| = |∇vi(ξ)|
φ(ρi)
ρi

≥ c
φ(ρi)
ρi

.

Since φ(ρi)
ρi

→∞ as i→∞, the theorem follows. �

Let us discuss now the uniqueness of problem (1.4). Observe that if α > 1+ p
p−1

then

lim
δ→0

φ(δ)δ = lim
t→∞

tψ(t) = lim
t→∞

t2

(qF (t))1/p
= 0,

where (2.1) with ε < (α − 1)(p − 1) − p has been used in the last step. Hence, if
u(x) and v(x) are solutions to problem (1.4) in case of α > 1 + p

p−1 , by Theorem
2.2 we have

lim
x→∂Ω

[u(x)− v(x)] = 0.
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Since f(t) is non decreasing, the comparison principle yields u(x) = v(x) in Ω.
For general α > 1, we have the following result.

Theorem 2.4. Let Ω ⊂ RN , N ≥ 2, be a bounded smooth domain and let f(t) > 0
be smooth, increasing and satisfying (1.1) with α > 1. If u(x) and v(x) are positive
large solutions to problem (1.4) then u(x) = v(x).

Proof. Theorem 2.2 implies

lim
x→∂Ω

u(x)
v(x)

= 1.

Let t0 large enough so that f(t)
tp−1 is increasing for t > t0, and let η > 0 such that

u(x) > t0 in Ωη = {x ∈ Ω : δ(x) < η}. For ε > 0 define

Dε,η = {x ∈ Ωη : (1 + ε)u(x) < v(x)}.

If Dε,η is empty for any ε > 0 then we have u(x) ≥ v(x) in Ωη. Define Ωη = {x ∈
Ω : δ(x) > η}. Using the equations for u and v in Ωη and the monotonicity of f(t)
one proves that u(x) ≥ v(x) in Ωη. Hence, in this case, u(x) ≥ v(x) in Ω. Changing
the roles of u and v we get u(x) = v(x).

Suppose Dε,η is not empty for ε < ε0. In this open set, since f(t)
tp−1 is increasing

for large t, we have

∆p

(
(1 + ε)u

)
= (1 + ε)p−1f(u) ≤ f

(
(1 + ε)u

)
,

∆pv = f(v).

By the comparison principle we have

v(x)− (1 + ε)u(x) ≤ max
δ(x)=η

[v(x)− (1 + ε)u(x)] in Dε,η.

Letting ε→ 0 we find

v(x)− u(x) ≤ max
δ(x)=η

[v(x)− u(x)] in Ωη.

Put
max

δ(x)=η
[v(x)− u(x)] = v(x1)− u(x1) = C.

Using the equations for u and v in Ωη and the monotonicity of f(t) one proves that
v(x) − u(x) ≤ C in Ωη. Then, v(x) − u(x) ≤ C in Ω. We observe that decreasing
η and arguing as before we find xη → ∂Ω such that

v(x)− u(x) ≤ v(xη)− u(xη) in Ω,

with v(xη) − u(xη) = constant. In other words, v(x) − u(x) attains its maximum
value in the set described by xη (which approaches ∂Ω). By Theorem 2.3, ∇u and
∇v do not vanish in Ωη for η small. Hence, the strong comparison principle applies
(see [8]) and we must have v(x)− u(x) = C in Ωη.

Since
∆pv = f(v) = f(u+ C)

and
∆pv = ∆pu = f(u),

we must have f(u) = f(u + C) in Ωη. Since f(t) is strictly increasing for t large,
we find C = 0. The theorem follows. �
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