Electronic Journal of Differential Equations, Vol. 2011 (2011), No. 119, pp. 1–10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

ESTIMATES AND UNIQUENESS FOR BOUNDARY BLOW-UP SOLUTIONS OF P-LAPLACE EQUATIONS

MONICA MARRAS, GIOVANNI PORRU

ABSTRACT. We investigate boundary blow-up solutions of the p-Laplace equation $\Delta_p u = f(u), p > 1$, in a bounded smooth domain $\Omega \subset \mathbb{R}^N$. Under appropriate conditions on the growth of f(t) as t approaches infinity, we find an estimate of the solution u(x) as x approaches $\partial\Omega$, and a uniqueness result.

1. INTRODUCTION

Let f(t) be a $C^1(0,\infty)$ function, positive, non decreasing, satisfying f(0) = 0and the condition

$$\lim_{t \to \infty} \frac{t \left(f^{\frac{1}{p-1}}(t) \right)'}{f^{\frac{1}{p-1}}(t)} = \alpha,$$
(1.1)

with p > 1 and $\alpha > 1$. It is well known (see [6, page 282]) that a smooth function f which satisfies (1.1) has the following representation

$$f^{\frac{1}{p-1}}(t) = Ct^{\alpha} \exp\left(\int_{t_0}^t \frac{g(\tau)}{\tau} d\tau\right),\tag{1.2}$$

where C and t_0 are positive constants and $g(t) \to 0$ as $t \to \infty$. Functions which have this representation are said to be normalized regularly varying at ∞ . More precisely, $f^{\frac{1}{p-1}}(t)$ is regularly varying of index α , and f(t) is regularly varying of index $\alpha(p-1)$. Since

$$\left(\frac{f^{\frac{1}{p-1}}(t)}{t^{\beta}}\right)' = t^{-\beta-1} f^{\frac{1}{p-1}}(t) \left[\frac{t\left(f^{\frac{1}{p-1}}(t)\right)'}{f^{\frac{1}{p-1}}(t)} - \beta\right],$$

if f satisfies (1.1) then the function $\frac{f^{\frac{1}{p-1}}(t)}{t^{\beta}}$ is increasing for large t whenever $\beta < \alpha$. In particular, since $\alpha > 1$, the function $\frac{f(t)}{t^{p-1}}$ is increasing for large t. Furthermore, condition (1.1) implies the generalized Keller-Osserman condition

$$\int_{1}^{\infty} \frac{dt}{\left(F(t)\right)^{1/p}} < \infty, \quad F(t) = \int_{0}^{t} f(\tau) d\tau.$$
(1.3)

²⁰⁰⁰ Mathematics Subject Classification. 35B40, 35B44, 35J92.

Key words and phrases. p-Laplace equations; large equations; uniqueness;

second order boundary approximation.

^{©2011} Texas State University - San Marcos.

Submitted November 21, 2010. Published September 15, 2011.

Consider the Dirichlet problem

$$\Delta_p u = f(u) \quad \text{in } \Omega, \quad u(x) \to \infty \quad \text{as } x \to \partial \Omega. \tag{1.4}$$

It is well known that when f satisfies condition (1.3), problem (1.4) has a solution (see for example [9]). In the present paper, assuming condition (1.1), we find a quite precise estimate for a solution near the boundary $\partial\Omega$, and we derive a result of uniqueness.

In case of p = 2, problems about the existence of boundary blow-up solutions have been investigated for a long time, see the classical papers [11, 17], and the recent survey [18]. We refer to the paper [14] for a description of spatial heterogeneity models, including historical hints. For the investigation of the boundary behaviour of blow-up solutions we refer to [1, 3, 4, 5, 6, 12]. The case of weighted semilinear equations has been discussed in [13, 15, 20]. The case p > 1, has been treated in [9, 10, 16]. In the present paper, assuming condition (1.1), we find an estimate of the solution up to the second order.

In case of p = 2, condition (1.1) appears in the paper [7], where the author proves a uniqueness result for problem (1.4). We emphasize that the method used in [7] is not applicable in the present case because of the nonlinearity of the p-Laplacian.

For s > 0, define the function $\phi(s)$ as

$$\int_{\phi(s)}^{\infty} \frac{dt}{(qF(t))^{1/p}} = s,$$
(1.5)

where $q = \frac{p}{p-1}$. If u is a solution to problem (1.4), we prove the estimate

$$u(x) = \phi(\delta)[1 + O(1)\delta], \qquad (1.6)$$

where $\delta = \delta(x) = operatornamedist(x, \partial \Omega)$ and O(1) denotes a bounded quantity. Estimate (1.6) implies, in particular, that if u_1 and u_2 are two solutions of problem (1.4) then

$$\lim_{x \to \partial \Omega} \frac{u_1(x)}{u_2(x)} = 1.$$

By using this result, the monotonicity of f(t) for t > 0 and the monotonicity of $\frac{f(t)}{tp-1}$ for large t we prove the uniqueness of the solution to problem (1.4).

2. Main results

We have already noticed that if f(t) satisfies (1.1) then the representation (1.2) holds. By (1.2) it follows that, for $\epsilon > 0$, we can find positive constants C_1 and C_2 such that for t large we have

$$C_1 t^{\alpha(p-1)+1-\epsilon} < F(t) < C_2 t^{\alpha(p-1)+1+\epsilon},$$
(2.1)

where F is defined as in (1.3). Furthermore, the function ϕ defined in (1.5), for s small satisfies

$$C_1\left(\frac{1}{s}\right)^{\frac{p-\epsilon}{(p-1)(\alpha-1)}} < \phi(s) < C_2\left(\frac{1}{s}\right)^{\frac{p+\epsilon}{(p-1)(\alpha-1)}}.$$
(2.2)

Lemma 2.1. Let $A(\rho, R) \subset \mathbb{R}^N$, $N \geq 2$, be the annulus with radii ρ and R centered at the origin. Let f(t) > 0 be smooth, increasing for t > 0 and such that (1.1) holds with $\alpha > 1$. If u(x) is a radial solution to problem (1.4) in $\Omega = A(\rho, R)$ and v(r) = u(x) for r = |x|, then

$$v(r) < \phi(R-r)[1+C(R-r)], \quad \tilde{r} < r < R,$$
(2.3)

and,

$$v(r) > \phi(r-\rho)[1 - C(r-\rho)], \quad \rho < r < \tilde{r},$$
 (2.4)

where ϕ is defined as in (1.5), $\rho < \tilde{r} < R$ and C is a suitable positive constant.

Proof. We have

$$\left(|v'|^{p-2}v'\right)' + \frac{N-1}{r}|v'|^{p-2}v' = f(v), \quad v(\rho) = v(R) = \infty.$$
(2.5)

It is easy to show that there is r_0 such that v(r) is decreasing for $\rho < r < r_0$ and increasing for $r_0 < r < R$, with $v'(r_0) = 0$. For $r > r_0$ we have

$$(|v'|^{p-2}v')' = ((v')^{p-1})' = (p-1)(v')^{p-2}v''.$$

Therefore, multiplying (2.5) by v' and integrating over (r_0, r) we find

$$\frac{(v')^p}{q} + (N-1)\int_{r_0}^r \frac{(v')^p}{s} ds = F(v) - F(v_0), \quad v_0 = v(r_0).$$
(2.6)

Since $F(v_0) > 0$, (2.6) implies that

$$v' < (qF(v))^{1/p}, \quad r \in (r_0, R).$$
 (2.7)

As a consequence we have

$$\int_{r_0}^r \frac{(v')^p}{s} ds \le \frac{1}{r_0} \int_{r_0}^r (qF(v))^{1/q} v' ds < \frac{q^{1/q}}{r_0} \int_0^v (F(t))^{1/q} dt.$$
(2.8)

On the other hand, by (2.6) we find

$$\frac{(v')^p}{qF(v)} = 1 - \frac{(N-1)\int_{r_0}^r \frac{(v')^p}{s} ds + F(v_0)}{F(v)}$$

The above equation yields

$$\frac{v'}{(qF(v))^{1/p}} = 1 - \Gamma(r), \qquad (2.9)$$

where,

$$\Gamma(r) = 1 - \left(1 - \frac{(N-1)\int_{r_0}^r \frac{(v')^p}{s} ds + F(v_0)}{F(v)}\right)^{1/p}.$$

By using the inequality $1 - (1 - t)^{1/p} < t$ (true for 0 < t < 1), and (2.8) we find, for some constant M,

$$\Gamma(r) \le \frac{(N-1)\int_{r_0}^r \frac{(v')^p}{s} ds + F(v_0)}{F(v)} \le M \frac{\int_0^v (F(t))^{1/q} dt}{F(v)}.$$

Since

$$\int_0^v (F(t))^{1/q} dt \le (F(v))^{1/q} v,$$

we have

$$\Gamma(r) < \frac{Mv(r)}{(F(v(r)))^{1/p}}.$$
(2.10)

By using (2.1) (with ϵ small enough) one finds that $\Gamma(r) \to 0$ as $r \to R$. Furthermore, using (1.2) one proves that

$$\lim_{t \to \infty} \frac{F(t)}{tf(t)} = \frac{1}{\alpha(p-1)+1}.$$

Hence, since

$$\left(\frac{t}{(F(t))^{1/p}}\right)' = \frac{tf(t)}{(F(t))^{\frac{p+1}{p}}} \left[\frac{F(t)}{tf(t)} - \frac{1}{p}\right],$$

and $\frac{1}{\alpha(p-1)+1} < \frac{1}{p}$, the function $\frac{t}{(F(t))^{1/p}}$ is decreasing for large t. As a consequence, the function $\frac{Mv(r)}{(F(v(r)))^{1/p}}$ tends to zero monotonically as r tends to R.

The inverse function of ϕ is the following

$$\psi(s) = \int_s^\infty \frac{1}{(qF(t))^{1/p}} dt.$$

Integration of (2.9) over (r, R) yields

$$\psi(v) = R - r - \int_{r}^{R} \Gamma(s) ds, \qquad (2.11)$$

from which we find

$$v(r) = \phi(R - r) - \phi'(\omega) \int_{r}^{R} \Gamma(s) ds, \qquad (2.12)$$

with

$$R-r > \omega > R-r - \int_{r}^{R} \Gamma(s) ds.$$

Since

$$-\phi'(\omega) = (qF(\phi(\omega))^{1/p},$$

and since the function $t \to F(\phi(t))$ is decreasing we have

$$-\phi'(\omega) < \left(qF\left(\phi\left(R-r-\int_r^R \Gamma(s)ds\right)\right)\right)^{1/p} = (qF(v))^{1/p},$$

where (2.11) has been used in the last step. Hence, by (2.12) and (2.10) we find

$$v(r) < \phi(R-r) + (qF(v))^{1/p} \int_{r}^{R} \frac{Mv(s)}{(F(v(s)))^{1/p}} ds$$

Recalling that the function $\frac{Mv(r)}{(F(v(r)))^{1/p}}$ is decreasing for r close to R, the latter estimate implies

$$v(r) < \phi(R-r) + q^{1/p} M v(r)(R-r),$$

and

$$v(r) < \frac{\phi(R-r)}{1-q^{1/p}M(R-r)},$$

from which inequality (2.3) follows.

For $r < r_0$ we have v' < 0 and, instead of equation (2.6), we find

$$\frac{|v'|^p}{q} = F(v) - F(v_0) + (N-1) \int_r^{r_0} \frac{|v'|^p}{s} ds,$$
(2.13)

with $\rho < r < r_0$. Note that, since $|v'(r)|^p \to \infty$ as $r \to \rho$ and v'' > 0, we have (Lemma 2.1 of [12])

$$\lim_{r \to \rho} \frac{\int_{r}^{r_0} \frac{|v'|^p}{t} dt}{|v'|^p} = 0.$$

4

Hence, (2.13) implies $|v'| < q(F(v))^{1/p}$ for r near to ρ . Using equation (2.13) again we find

$$\frac{|v'|^p}{qF(v)} = 1 + \frac{(N-1)\int_r^{r_0} \frac{|v'|^p}{s} ds - F(v_0)}{F(v)}.$$

The above equation yields

$$\frac{-v'}{(qF(v))^{1/p}} = 1 + \tilde{\Gamma}(r), \qquad (2.14)$$

where

$$\tilde{\Gamma}(r) = \left(1 + \frac{(N-1)\int_{r}^{r_{0}} \frac{|v'|^{p}}{s}ds - F(v_{0})}{F(v)}\right)^{1/p} - 1.$$

Since $(1+t)^{1/p} - 1 < t$ (true for t > 0), we have

$$\tilde{\Gamma}(r) < \frac{(N-1)\int_{r}^{r_0} \frac{|v'|^p}{s} ds - F(v_0)}{F(v)}$$

Using the estimate $|v'| < q(F(v))^{1/p}$ we find $|v'|^p < q^{p-1}(F(v))^{\frac{p-1}{p}}(-v')$. Therefore, $\tilde{\Gamma}(r)$ satisfies

$$\tilde{\Gamma}(r) \le \frac{Mv(r)}{(F(v(r)))^{1/p}},\tag{2.15}$$

where M is a suitable constant (possible different from that of (2.10)). It follows that $\tilde{\Gamma}(r) \to 0$ as $r \to \rho$.

Integration of (2.14) over (ρ, r) yields

$$\psi(v) = r - \rho + \int_{\rho}^{r} \tilde{\Gamma}(s) ds,$$

from which we find

$$v(r) = \phi(r-\rho) + \phi'(\omega_1) \int_{\rho}^{r} \tilde{\Gamma}(s) ds, \qquad (2.16)$$

with

$$r - \rho < \omega_1 < r - \rho + \int_{\rho}^{r} \tilde{\Gamma}(s) ds.$$

Since $\phi'(s)$ is increasing we have

$$\phi'(\omega_1) > \phi'(r-\rho) = -\left(qF(\phi(r-\rho))\right)^{1/p}$$

This estimate, (2.15) and (2.16) imply

$$v(r) > \phi(r-\rho) - \left(qF(\phi(r-\rho))\right)^{1/p} \int_{\rho}^{r} \frac{Mv(s)}{\left(F(v(s))\right)^{1/p}} ds.$$

Since the function $\frac{t}{(F(t))^{1/p}}$ is decreasing for t large and the function v(r) is decreasing for r close to ρ , it follows that $\frac{v(r)}{(F(v(r)))^{1/p}}$ is increasing. Therefore,

$$v(r) > \phi(r-\rho) - \left(qF(\phi(r-\rho))\right)^{1/p} \frac{Mv(r)}{\left(F(v(r))\right)^{1/p}} (r-\rho).$$
(2.17)

On the other hand, by (2.14) we have

$$\frac{-v'}{(qF(v))^{1/p}} < 2, \quad \rho < r < \tilde{r}.$$

Integrating over (ρ, r) we find

$$\psi(v) < 2(r - \rho),$$

whence,

$$v(r) > \phi(2(r-\rho)).$$
 (2.18)

We claim that, for some M>1 and δ small, we have

$$\frac{1}{M}\phi(\delta) \le \phi(2\delta). \tag{2.19}$$

Indeed, putting $\phi(\delta) = t$, we can write (2.19) as

$$\frac{t}{M} \le \phi(2\psi(t)),$$

or

$$\psi(t) \le \frac{1}{2}\psi\Big(\frac{t}{M}\Big)$$

for t large. To prove this inequality, we write

$$\psi(t) = \int_{t}^{\infty} (qF(\tau))^{-1/p} d\tau = M \int_{\frac{t}{M}}^{\infty} (qF(M\tau))^{-1/p} d\tau.$$

Since f(t) is regularly varying with index $\alpha(p-1)$, F(t) is regularly varying with index $\alpha(p-1) + 1$, and (see [6])

$$\lim_{t \to \infty} \frac{F(Mt)}{F(t)} = M^{\alpha(p-1)+1}.$$

Therefore, for t large we have

$$(F(M\tau))^{-1/p} \le \frac{(F(\tau))^{-1/p}}{M^{\frac{\alpha(p-1)+1}{p}} - 1}.$$

Hence,

$$\psi(t) \le \frac{M}{M^{\frac{\alpha(p-1)+1}{p}} - 1} \int_{\frac{t}{M}}^{\infty} (qF(\tau))^{-1/p} d\tau = \frac{M}{M^{\frac{\alpha(p-1)+1}{p}} - 1} \psi(\frac{t}{M}).$$

The claim follows with M such that

$$\frac{M}{M^{\frac{\alpha(p-1)+1}{p}} - 1} = \frac{1}{2}.$$

Using (2.18), (2.19), and recalling that F(t) is regularly varying with index $\alpha(p-1) + 1$ we find, for r close to ρ ,

$$\frac{F(\phi(r-\rho))}{F(v(r))} \le \frac{F(\phi(r-\rho))}{F(\phi(2(r-\rho)))} \le \frac{F(\phi(r-\rho))}{F\left(\frac{1}{M}\phi(r-\rho)\right)} < M^{\alpha(p-1)+1} + 2.$$

Insertion of the latter estimate into (2.17) yields

$$v(r) > \phi(r-\rho) - \tilde{M}v(r)(r-\rho),$$

from which (2.4) follows. The lemma is proved.

Theorem 2.2. Let $\Omega \subset \mathbb{R}^N$, $N \geq 2$, be a bounded smooth domain and let f(t) > 0 be smooth, increasing and satisfying (1.1) with $\alpha > 1$. If u(x) is a solution to problem (1.4) then we have

$$\phi(\delta) \left[1 - C\delta \right] < u(x) < \phi(\delta) \left[1 + C\delta \right], \tag{2.20}$$

where ϕ is defined as in (1.5), δ denotes the distance from x to $\partial\Omega$ and C is a suitable positive constant.

Proof. If $P \in \partial \Omega$ we consider a suitable annulus of radii ρ and R contained in Ω and such that its external boundary is tangent to $\partial \Omega$ in P. If v(x) is the solution of problem (1.4) in this annulus, by using the comparison principle for elliptic equations [8, Theorem 10.1] we have $u(x) \leq v(x)$ for x belonging to the annulus. Choose the origin in the center of the annulus and put v(x) = v(r) for r = |x|. By (2.3), for r near to R we have

$$v(r) < \phi(\delta) \left[1 + C\delta \right].$$

The latter estimate together with the inequality $u(x) \leq v(x)$ yield the right hand side of (2.20).

Consider a new annulus of radii ρ and R containing Ω and such that its internal boundary is tangent to $\partial\Omega$ in P. If v(x) is the solution of problem (1.4) in this annulus, by using the comparison principle for elliptic equations we have $u(x) \geq$ v(x) for x belonging to Ω . Choose the origin in the center of the annulus and put again v(x) = v(r) for r = |x|. By (2.4), for r near to ρ we have

$$v(r) > \phi(\delta) [1 - C\delta].$$

The latter estimate together with the inequality $u(x) \ge v(x)$ yield the left hand side of (2.20). The theorem is proved.

Theorem 2.3. Let $\Omega \subset \mathbb{R}^N$, $N \geq 2$, be a bounded smooth domain and let f(t) > 0 be smooth, increasing and satisfying (1.1) with $\alpha > 1$. If u(x) is a solution to problem (1.4) then, $|\nabla u| \to \infty$ as $x \to \partial \Omega$.

Proof. By Theorem 2.2 we have

$$\lim_{x \to \partial \Omega} \frac{u(x)}{\phi(\delta(x))} = 1.$$

In particular, for $\delta < \delta_0$, δ_0 small, we have

$$\frac{1}{2} < \frac{u(x)}{\phi(\delta(x))} < 2.$$

Now we follow the argument described in [2, page 105], using the same notation (with $\beta = \rho$ and $\rho < \rho_0$). For $\xi \in \check{D}(\rho)$, define

$$v(\xi) = \frac{u(\rho\xi)}{\phi(\rho)}$$

For $\xi \in \check{D}(\rho)$ we have

$$\frac{1}{2} \le v(\xi) \le 2. \tag{2.21}$$

$$\nabla v = \frac{\rho}{\phi(\rho)} \nabla u(\rho\xi),$$

We find

and

$$\Delta_p v = \frac{\rho^p}{(\phi(\rho))^{p-1}} \Delta_p u(\rho\xi) = \frac{\rho^p}{(\phi(\rho))^{p-1}} f(u(\rho\xi)) = \frac{\rho^p}{(\phi(\rho))^{p-1}} f(v(\xi)\phi(\rho)).$$

With $\psi(t) = \rho$ we have

$$\Delta_p v = \frac{(\psi(t))^p}{t^{p-1}} f(v(\xi)t) = \left(\frac{\psi(t)}{t^{\frac{p-1}{p}}(f(t))^{-1/p}}\right)^p \frac{f(v(\xi)t)}{f(t)}.$$
 (2.22)

Since f(t) is regularly varying with index $\alpha(p-1)$ we have

$$\lim_{t \to \infty} \frac{f(v(\xi)t)}{f(t)} = (v(\xi))^{\alpha(p-1)}.$$
(2.23)

Furthermore, we have

$$\frac{\psi(t)}{t^{\frac{p-1}{p}}(f(t))^{-1/p}} = \frac{\psi(t)}{t(F(t))^{-\frac{1}{p}}} \left(\frac{tf(t)}{F(t)}\right)^{1/p}.$$

We have already observed that (1.2) implies

$$\lim_{t \to \infty} \frac{tf(t)}{F(t)} = \alpha(p-1) + 1$$

Using de l'Hospital rule and the latter estimate we get

$$\lim_{t \to \infty} \frac{\psi(t)}{t(F(t))^{-\frac{1}{p}}} = \frac{q^{1/q}}{\alpha - 1}.$$

Hence,

$$\lim_{t \to \infty} \frac{\psi(t)}{t^{\frac{p-1}{p}}(f(t))^{-1/p}} = \frac{q^{1/q}}{\alpha - 1} \left(\alpha(p-1) + 1\right)^{1/p}.$$
(2.24)

By (2.24), (2.23) and (2.21), (2.22) implies that

$$C_1 \le \Delta_p v \le C_2, \quad \xi \in \dot{D}(\rho) \tag{2.25}$$

where C_1 and C_2 are suitable positive constants independent of ρ .

Let $x_i \in \Omega$, $x_i \to \partial\Omega$, and let $\rho_i = \operatorname{dist}(x_i, \partial\Omega)$. By (2.25) with $v_i(\xi) = \frac{u(\rho_i\xi)}{\phi(\rho_i)}$, and standard regularity results (see [19]), we find that the $C^{1,\beta}(\check{D}(\rho_i))$ norm of the sequence $v_i(\xi)$ is bounded for from zero. In particular,

$$\nabla v_i(\xi) | \ge c,$$

with c > 0 independent of *i*. Hence,

$$|\nabla u(x_i)| = |\nabla v_i(\xi)| \frac{\phi(\rho_i)}{\rho_i} \ge c \frac{\phi(\rho_i)}{\rho_i}$$

Since $\frac{\phi(\rho_i)}{\rho_i} \to \infty$ as $i \to \infty$, the theorem follows.

Let us discuss now the uniqueness of problem (1.4). Observe that if $\alpha > 1 + \frac{p}{p-1}$ then

$$\lim_{\delta \to 0} \phi(\delta)\delta = \lim_{t \to \infty} t\psi(t) = \lim_{t \to \infty} \frac{t^2}{(qF(t))^{1/p}} = 0,$$

where (2.1) with $\epsilon < (\alpha - 1)(p - 1) - p$ has been used in the last step. Hence, if u(x) and v(x) are solutions to problem (1.4) in case of $\alpha > 1 + \frac{p}{p-1}$, by Theorem 2.2 we have

$$\lim_{x \to \partial \Omega} [u(x) - v(x)] = 0.$$

Since f(t) is non decreasing, the comparison principle yields u(x) = v(x) in Ω . For general $\alpha > 1$, we have the following result.

Theorem 2.4. Let $\Omega \subset \mathbb{R}^N$, $N \geq 2$, be a bounded smooth domain and let f(t) > 0 be smooth, increasing and satisfying (1.1) with $\alpha > 1$. If u(x) and v(x) are positive large solutions to problem (1.4) then u(x) = v(x).

Proof. Theorem 2.2 implies

$$\lim_{x \to \partial \Omega} \frac{u(x)}{v(x)} = 1.$$

Let t_0 large enough so that $\frac{f(t)}{t^{p-1}}$ is increasing for $t > t_0$, and let $\eta > 0$ such that $u(x) > t_0$ in $\Omega_\eta = \{x \in \Omega : \delta(x) < \eta\}$. For $\epsilon > 0$ define

$$D_{\epsilon,\eta} = \{ x \in \Omega_\eta : (1+\epsilon)u(x) < v(x) \}.$$

If $D_{\epsilon,\eta}$ is empty for any $\epsilon > 0$ then we have $u(x) \ge v(x)$ in Ω_{η} . Define $\Omega^{\eta} = \{x \in \Omega : \delta(x) > \eta\}$. Using the equations for u and v in Ω^{η} and the monotonicity of f(t) one proves that $u(x) \ge v(x)$ in Ω^{η} . Hence, in this case, $u(x) \ge v(x)$ in Ω . Changing the roles of u and v we get u(x) = v(x).

Suppose $D_{\epsilon,\eta}$ is not empty for $\epsilon < \epsilon_0$. In this open set, since $\frac{f(t)}{t^{p-1}}$ is increasing for large t, we have

$$\Delta_p \big((1+\epsilon)u \big) = (1+\epsilon)^{p-1} f(u) \le f \big((1+\epsilon)u \big),$$
$$\Delta_p v = f(v).$$

By the comparison principle we have

$$v(x) - (1+\epsilon)u(x) \le \max_{\delta(x)=\eta} [v(x) - (1+\epsilon)u(x)]$$
 in $D_{\epsilon,\eta}$.

Letting $\epsilon \to 0$ we find

$$v(x) - u(x) \le \max_{\delta(x) = \eta} [v(x) - u(x)]$$
 in Ω_{η}

Put

$$\max_{\delta(x)=\eta} [v(x) - u(x)] = v(x_1) - u(x_1) = C.$$

Using the equations for u and v in Ω^{η} and the monotonicity of f(t) one proves that $v(x) - u(x) \leq C$ in Ω^{η} . Then, $v(x) - u(x) \leq C$ in Ω . We observe that decreasing η and arguing as before we find $x_{\eta} \to \partial \Omega$ such that

$$v(x) - u(x) \le v(x_{\eta}) - u(x_{\eta})$$
 in Ω_{η}

with $v(x_{\eta}) - u(x_{\eta}) = constant$. In other words, v(x) - u(x) attains its maximum value in the set described by x_{η} (which approaches $\partial\Omega$). By Theorem 2.3, ∇u and ∇v do not vanish in Ω_{η} for η small. Hence, the strong comparison principle applies (see [8]) and we must have v(x) - u(x) = C in Ω_{η} .

Since

$$\Delta_p v = f(v) = f(u+C)$$

and

$$\Delta_p v = \Delta_p u = f(u),$$

we must have f(u) = f(u+C) in Ω_{η} . Since f(t) is strictly increasing for t large, we find C = 0. The theorem follows.

References

- C. Anedda and G. Porru; Higher order boundary estimates for blow-up solutions of elliptic equations, *Differential and Integral Equations*, 19: 345–360 (2006).
- [2] C. Bandle and M. Essén; On the solutions of quasilinear elliptic problems with boundary blow-up, Symposia Mathematica, Volume XXXV: 93–111 (1994).
- [3] C. Bandle and M. Marcus; On second order effects in the boundary behaviour of large solutions of semilinear elliptic problems, *Differential and Integral Equations*, 11: 23–34 (1998).
- [4] S. Berhanu and G. Porru; Qualitative and quantitative estimates for large solutions to semilinear equations, *Communications in Applied Analysis*, 4: 121–131 (2000).
- [5] F. Cirstea and V. Radulescu; Uniqueness of the blow-up boundary solution of logistic equations with absorbtion, C.R. Acad. Sc. Paris, Sér. I, 335: 447–452 (2002).
- [6] F. Cirstea and V. Radulescu; Nonlinear problems with boundary blow-up: a Karamata regular variation approach, Asymptotic Analysis, 46: 275–298 (2006).
- [7] J. García-Melián; Uniqueness of positive solutions for a boundary blow-up problem, J. Math. Anal. Appl. 360: 530-536 (2009).
- [8] D. Gilbarg and N. S. Trudinger; Elliptic Partial Differential Equations of Second Order, Springer Verlag, Berlin, 1977.
- F. Gladiali and G. Porru; Estimates for explosive solutions to p-Laplace equations, Progress in partial differential equations, Vol. 1 (Pont--Mousson, 1997), Pitman Res. Notes Math. Ser., Longman, Harlow, 383: 117–127 (1998).
- [10] Shuibo Huang and Qiaoyu Tian; Asymptotic behaviour of large solutions to p-Laplacian of Bieberbach-Rademacher type, Nonlinear Analysis, 71: 5773–5780 (2009).
- [11] J. B. Keller, On solutions of $\Delta u = f(u)$, Comm. Pure Appl. Math., 10 503–510 (1957).
- [12] A. C. Lazer and P. J. McKenna; Asymptotic behaviour of solutions of boundary blow-up problems, *Differential and Integral Equations*, 7: 1001–1019 (1994).
- [13] J. López-Gómez; The boundary blow-up rate of large solutions, J. Diff. Eqns. 195: 25-45 (2003).
- [14] J. López-Gómez; Metasolutions: Malthus versus Verhulst in population dynamics. A dream of Volterra. Stationary partial differential equatins. Vol. II, 211-309, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2005.
- [15] J. López-Gómez; Optimal uniqueness theorems and exact blow-up rates of large solutions, J. Diff. Eqns. 224: 385–439 (2006).
- [16] A. Mohammed; Existence and asymptotic behavior of blow-up solutions to weighted quasilinear equations, J. Math. Anal. Appl. 298: 621–637 (2004).
- [17] R. Osserman; On the inequality $\Delta u \ge f(u)$, Pacific J. Math., 7: 1641–1647 (1957).
- [18] V. Radulescu; Singular phenomena in nonlinear elliptic problems: from boundary blow-up solutions to equations with singular nonlinearities, in "Handbook of Differential Equations: Stationary Partial Differential Equations", Vol. 4 (Michel Chipot, Editor), 483–591 (2007).
- [19] P. Tolksdorf; Regularity for a more general class of quasilinear elliptic equations. J. Differential Equations, 51: 126–150 (1984).
- [20] Z. Zhang; The asymptotic behaviour of solutions with blow-up at the boundary for semilinear elliptic problems, J. Math. Anal. Appl. 308: 532–540 (2005).

Monica Marras

DIPARTIMENTO DI MATEMATICA E INFORMATICA, UNIVERSITÁ DI CAGLIARI, VIA OSPEDALE 72, 09124 CAGLIARI, ITALY

E-mail address: mmarras@unica.it

GIOVANNI PORRU

DIPARTIMENTO DI MATEMATICA E INFORMATICA, UNIVERSITÁ DI CAGLIARI, VIA OSPEDALE 72, 09124 CAGLIARI, ITALY

E-mail address: porru@unica.it