Electronic Journal of Differential Equations, Vol. 2011 (2011), No. 119, pp. 1-10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

ESTIMATES AND UNIQUENESS FOR BOUNDARY BLOW-UP SOLUTIONS OF P-LAPLACE EQUATIONS

MONICA MARRAS, GIOVANNI PORRU

Abstract

We investigate boundary blow-up solutions of the p-Laplace equation $\Delta_{p} u=f(u), p>1$, in a bounded smooth domain $\Omega \subset R^{N}$. Under appropriate conditions on the growth of $f(t)$ as t approaches infinity, we find an estimate of the solution $u(x)$ as x approaches $\partial \Omega$, and a uniqueness result.

1. Introduction

Let $f(t)$ be a $C^{1}(0, \infty)$ function, positive, non decreasing, satisfying $f(0)=0$ and the condition

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{t\left(f^{\frac{1}{p-1}}(t)\right)^{\prime}}{f^{\frac{1}{p-1}}(t)}=\alpha, \tag{1.1}
\end{equation*}
$$

with $p>1$ and $\alpha>1$. It is well known (see [6, page 282]) that a smooth function f which satisfies (1.1) has the following representation

$$
\begin{equation*}
f^{\frac{1}{p-1}}(t)=C t^{\alpha} \exp \left(\int_{t_{0}}^{t} \frac{g(\tau)}{\tau} d \tau\right) \tag{1.2}
\end{equation*}
$$

where C and t_{0} are positive constants and $g(t) \rightarrow 0$ as $t \rightarrow \infty$. Functions which have this representation are said to be normalized regularly varying at ∞. More precisely, $f^{\frac{1}{p-1}}(t)$ is regularly varying of index α, and $f(t)$ is regularly varying of index $\alpha(p-1)$. Since

$$
\left(\frac{f^{\frac{1}{p-1}}(t)}{t^{\beta}}\right)^{\prime}=t^{-\beta-1} f^{\frac{1}{p-1}}(t)\left[\frac{t\left(f^{\frac{1}{p-1}}(t)\right)^{\prime}}{f^{\frac{1}{p-1}}(t)}-\beta\right]
$$

if f satisfies (1.1) then the function $\frac{f^{\frac{1}{p-1}}(t)}{t^{\beta}}$ is increasing for large t whenever $\beta<\alpha$. In particular, since $\alpha>1$, the function $\frac{f(t)}{t^{p-1}}$ is increasing for large t. Furthermore, condition (1.1) implies the generalized Keller-Osserman condition

$$
\begin{equation*}
\int_{1}^{\infty} \frac{d t}{(F(t))^{1 / p}}<\infty, \quad F(t)=\int_{0}^{t} f(\tau) d \tau \tag{1.3}
\end{equation*}
$$

[^0]Consider the Dirichlet problem

$$
\begin{equation*}
\Delta_{p} u=f(u) \quad \text { in } \Omega, \quad u(x) \rightarrow \infty \quad \text { as } x \rightarrow \partial \Omega \tag{1.4}
\end{equation*}
$$

It is well known that when f satisfies condition (1.3), problem (1.4) has a solution (see for example [9]). In the present paper, assuming condition 1.1), we find a quite precise estimate for a solution near the boundary $\partial \Omega$, and we derive a result of uniqueness.

In case of $p=2$, problems about the existence of boundary blow-up solutions have been investigated for a long time, see the classical papers [11, 17], and the recent survey [18]. We refer to the paper [14] for a description of spatial heterogeneity models, including historical hints. For the investigation of the boundary behaviour of blow-up solutions we refer to [1, 3, 4, 5, 6, 12]. The case of weighted semilinear equations has been discussed in [13, 15, 20. The case $p>1$, has been treated in [9, 10, 16. In the present paper, assuming condition (1.1), we find an estimate of the solution up to the second order.

In case of $p=2$, condition (1.1) appears in the paper [7, where the author proves a uniqueness result for problem (1.4). We emphasize that the method used in $[7$ is not applicable in the present case because of the nonlinearity of the p-Laplacian.

For $s>0$, define the function $\phi(s)$ as

$$
\begin{equation*}
\int_{\phi(s)}^{\infty} \frac{d t}{(q F(t))^{1 / p}}=s \tag{1.5}
\end{equation*}
$$

where $q=\frac{p}{p-1}$. If u is a solution to problem $\sqrt[1.4]{ }$, we prove the estimate

$$
\begin{equation*}
u(x)=\phi(\delta)[1+O(1) \delta] \tag{1.6}
\end{equation*}
$$

where $\delta=\delta(x)=$ operatornamedist $(x, \partial \Omega)$ and $O(1)$ denotes a bounded quantity. Estimate (1.6) implies, in particular, that if u_{1} and u_{2} are two solutions of problem (1.4) then

$$
\lim _{x \rightarrow \partial \Omega} \frac{u_{1}(x)}{u_{2}(x)}=1
$$

By using this result, the monotonicity of $f(t)$ for $t>0$ and the monotonicity of $\frac{f(t)}{t^{p-1}}$ for large t we prove the uniqueness of the solution to problem (1.4).

2. Main Results

We have already noticed that if $f(t)$ satisfies 1.1 then the representation 1.2 holds. By 1.2 it follows that, for $\epsilon>0$, we can find positive constants C_{1} and C_{2} such that for t large we have

$$
\begin{equation*}
C_{1} t^{\alpha(p-1)+1-\epsilon}<F(t)<C_{2} t^{\alpha(p-1)+1+\epsilon} \tag{2.1}
\end{equation*}
$$

where F is defined as in (1.3). Furthermore, the function ϕ defined in 1.5, for s small satisfies

$$
\begin{equation*}
C_{1}\left(\frac{1}{s}\right)^{\frac{p-\epsilon}{(p-1)(\alpha-1)}}<\phi(s)<C_{2}\left(\frac{1}{s}\right)^{\frac{p+\epsilon}{(p-1)(\alpha-1)}} \tag{2.2}
\end{equation*}
$$

Lemma 2.1. Let $A(\rho, R) \subset \mathbb{R}^{N}, N \geq 2$, be the annulus with radii ρ and R centered at the origin. Let $f(t)>0$ be smooth, increasing for $t>0$ and such that 1.1) holds with $\alpha>1$. If $u(x)$ is a radial solution to problem 1.4 in $\Omega=A(\rho, R)$ and $v(r)=u(x)$ for $r=|x|$, then

$$
\begin{equation*}
v(r)<\phi(R-r)[1+C(R-r)], \quad \tilde{r}<r<R \tag{2.3}
\end{equation*}
$$

and,

$$
\begin{equation*}
v(r)>\phi(r-\rho)[1-C(r-\rho)], \quad \rho<r<\tilde{r} \tag{2.4}
\end{equation*}
$$

where ϕ is defined as in (1.5), $\rho<\tilde{r}<R$ and C is a suitable positive constant.
Proof. We have

$$
\begin{equation*}
\left(\left|v^{\prime}\right|^{p-2} v^{\prime}\right)^{\prime}+\frac{N-1}{r}\left|v^{\prime}\right|^{p-2} v^{\prime}=f(v), \quad v(\rho)=v(R)=\infty . \tag{2.5}
\end{equation*}
$$

It is easy to show that there is r_{0} such that $v(r)$ is decreasing for $\rho<r<r_{0}$ and increasing for $r_{0}<r<R$, with $v^{\prime}\left(r_{0}\right)=0$. For $r>r_{0}$ we have

$$
\left(\left|v^{\prime}\right|^{p-2} v^{\prime}\right)^{\prime}=\left(\left(v^{\prime}\right)^{p-1}\right)^{\prime}=(p-1)\left(v^{\prime}\right)^{p-2} v^{\prime \prime}
$$

Therefore, multiplying (2.5) by v^{\prime} and integrating over $\left(r_{0}, r\right)$ we find

$$
\begin{equation*}
\frac{\left(v^{\prime}\right)^{p}}{q}+(N-1) \int_{r_{0}}^{r} \frac{\left(v^{\prime}\right)^{p}}{s} d s=F(v)-F\left(v_{0}\right), \quad v_{0}=v\left(r_{0}\right) \tag{2.6}
\end{equation*}
$$

Since $F\left(v_{0}\right)>0$, 2.6 implies that

$$
\begin{equation*}
v^{\prime}<(q F(v))^{1 / p}, \quad r \in\left(r_{0}, R\right) \tag{2.7}
\end{equation*}
$$

As a consequence we have

$$
\begin{equation*}
\int_{r_{0}}^{r} \frac{\left(v^{\prime}\right)^{p}}{s} d s \leq \frac{1}{r_{0}} \int_{r_{0}}^{r}(q F(v))^{1 / q} v^{\prime} d s<\frac{q^{1 / q}}{r_{0}} \int_{0}^{v}(F(t))^{1 / q} d t \tag{2.8}
\end{equation*}
$$

On the other hand, by 2.6 we find

$$
\frac{\left(v^{\prime}\right)^{p}}{q F(v)}=1-\frac{(N-1) \int_{r_{0}}^{r} \frac{\left(v^{\prime}\right)^{p}}{s} d s+F\left(v_{0}\right)}{F(v)}
$$

The above equation yields

$$
\begin{equation*}
\frac{v^{\prime}}{(q F(v))^{1 / p}}=1-\Gamma(r) \tag{2.9}
\end{equation*}
$$

where,

$$
\Gamma(r)=1-\left(1-\frac{(N-1) \int_{r_{0}}^{r} \frac{\left(v^{\prime}\right)^{p}}{s} d s+F\left(v_{0}\right)}{F(v)}\right)^{1 / p}
$$

By using the inequality $1-(1-t)^{1 / p}<t$ (true for $0<t<1$), and 2.8) we find, for some constant M,

$$
\Gamma(r) \leq \frac{(N-1) \int_{r_{0}}^{r} \frac{\left(v^{\prime}\right)^{p}}{s} d s+F\left(v_{0}\right)}{F(v)} \leq M \frac{\int_{0}^{v}(F(t))^{1 / q} d t}{F(v)}
$$

Since

$$
\int_{0}^{v}(F(t))^{1 / q} d t \leq(F(v))^{1 / q} v
$$

we have

$$
\begin{equation*}
\Gamma(r)<\frac{M v(r)}{(F(v(r)))^{1 / p}} \tag{2.10}
\end{equation*}
$$

By using 2.1) (with ϵ small enough) one finds that $\Gamma(r) \rightarrow 0$ as $r \rightarrow R$. Furthermore, using (1.2) one proves that

$$
\lim _{t \rightarrow \infty} \frac{F(t)}{t f(t)}=\frac{1}{\alpha(p-1)+1}
$$

Hence, since

$$
\left(\frac{t}{(F(t))^{1 / p}}\right)^{\prime}=\frac{t f(t)}{(F(t))^{\frac{p+1}{p}}}\left[\frac{F(t)}{t f(t)}-\frac{1}{p}\right]
$$

and $\frac{1}{\alpha(p-1)+1}<\frac{1}{p}$, the function $\frac{t}{(F(t))^{1 / p}}$ is decreasing for large t. As a consequence, the function $\frac{M v(r)}{(F(v(r)))^{1 / p}}$ tends to zero monotonically as r tends to R.

The inverse function of ϕ is the following

$$
\psi(s)=\int_{s}^{\infty} \frac{1}{(q F(t))^{1 / p}} d t
$$

Integration of 2.9 over (r, R) yields

$$
\begin{equation*}
\psi(v)=R-r-\int_{r}^{R} \Gamma(s) d s \tag{2.11}
\end{equation*}
$$

from which we find

$$
\begin{equation*}
v(r)=\phi(R-r)-\phi^{\prime}(\omega) \int_{r}^{R} \Gamma(s) d s \tag{2.12}
\end{equation*}
$$

with

$$
R-r>\omega>R-r-\int_{r}^{R} \Gamma(s) d s
$$

Since

$$
-\phi^{\prime}(\omega)=\left(q F(\phi(\omega))^{1 / p}\right.
$$

and since the function $t \rightarrow F(\phi(t))$ is decreasing we have

$$
-\phi^{\prime}(\omega)<\left(q F\left(\phi\left(R-r-\int_{r}^{R} \Gamma(s) d s\right)\right)\right)^{1 / p}=(q F(v))^{1 / p}
$$

where (2.11 has been used in the last step. Hence, by 2.12 and 2.10 we find

$$
v(r)<\phi(R-r)+(q F(v))^{1 / p} \int_{r}^{R} \frac{M v(s)}{(F(v(s)))^{1 / p}} d s
$$

Recalling that the function $\frac{M v(r)}{(F(v(r)))^{1 / p}}$ is decreasing for r close to R, the latter estimate implies

$$
v(r)<\phi(R-r)+q^{1 / p} M v(r)(R-r)
$$

and

$$
v(r)<\frac{\phi(R-r)}{1-q^{1 / p} M(R-r)},
$$

from which inequality (2.3) follows.
For $r<r_{0}$ we have $v^{\prime}<0$ and, instead of equation 2.6 , we find

$$
\begin{equation*}
\frac{\left|v^{\prime}\right|^{p}}{q}=F(v)-F\left(v_{0}\right)+(N-1) \int_{r}^{r_{0}} \frac{\left|v^{\prime}\right|^{p}}{s} d s \tag{2.13}
\end{equation*}
$$

with $\rho<r<r_{0}$. Note that, since $\left|v^{\prime}(r)\right|^{p} \rightarrow \infty$ as $r \rightarrow \rho$ and $v^{\prime \prime}>0$, we have (Lemma 2.1 of [12])

$$
\lim _{r \rightarrow \rho} \frac{\int_{r}^{r_{0}} \frac{\left|v^{\prime}\right|^{p}}{t} d t}{\left|v^{\prime}\right|^{p}}=0 .
$$

Hence, 2.13 implies $\left|v^{\prime}\right|<q(F(v))^{1 / p}$ for r near to ρ. Using equation 2.13 again we find

$$
\frac{\left|v^{\prime}\right|^{p}}{q F(v)}=1+\frac{(N-1) \int_{r}^{r_{0}} \frac{\left|v^{\prime}\right|^{p}}{s} d s-F\left(v_{0}\right)}{F(v)}
$$

The above equation yields

$$
\begin{equation*}
\frac{-v^{\prime}}{(q F(v))^{1 / p}}=1+\tilde{\Gamma}(r) \tag{2.14}
\end{equation*}
$$

where

$$
\tilde{\Gamma}(r)=\left(1+\frac{(N-1) \int_{r}^{r_{0}} \frac{\left|v^{\prime}\right|^{p}}{s} d s-F\left(v_{0}\right)}{F(v)}\right)^{1 / p}-1
$$

Since $(1+t)^{1 / p}-1<t$ (true for $t>0$), we have

$$
\tilde{\Gamma}(r)<\frac{(N-1) \int_{r}^{r_{0}} \frac{\left|v^{\prime}\right|^{p}}{s} d s-F\left(v_{0}\right)}{F(v)}
$$

Using the estimate $\left|v^{\prime}\right|<q(F(v))^{1 / p}$ we find $\left|v^{\prime}\right|^{p}<q^{p-1}(F(v))^{\frac{p-1}{p}}\left(-v^{\prime}\right)$. Therefore, $\tilde{\Gamma}(r)$ satisfies

$$
\begin{equation*}
\tilde{\Gamma}(r) \leq \frac{M v(r)}{(F(v(r)))^{1 / p}} \tag{2.15}
\end{equation*}
$$

where M is a suitable constant (possible different from that of 2.10). It follows that $\tilde{\Gamma}(r) \rightarrow 0$ as $r \rightarrow \rho$.

Integration of 2.14 over (ρ, r) yields

$$
\psi(v)=r-\rho+\int_{\rho}^{r} \tilde{\Gamma}(s) d s
$$

from which we find

$$
\begin{equation*}
v(r)=\phi(r-\rho)+\phi^{\prime}\left(\omega_{1}\right) \int_{\rho}^{r} \tilde{\Gamma}(s) d s \tag{2.16}
\end{equation*}
$$

with

$$
r-\rho<\omega_{1}<r-\rho+\int_{\rho}^{r} \tilde{\Gamma}(s) d s
$$

Since $\phi^{\prime}(s)$ is increasing we have

$$
\phi^{\prime}\left(\omega_{1}\right)>\phi^{\prime}(r-\rho)=-(q F(\phi(r-\rho)))^{1 / p}
$$

This estimate, 2.15 and 2.16 imply

$$
v(r)>\phi(r-\rho)-(q F(\phi(r-\rho)))^{1 / p} \int_{\rho}^{r} \frac{M v(s)}{(F(v(s)))^{1 / p}} d s
$$

Since the function $\frac{t}{(F(t))^{1 / p}}$ is decreasing for t large and the function $v(r)$ is decreasing for r close to ρ, it follows that $\frac{v(r)}{(F(v(r)))^{1 / p}}$ is increasing. Therefore,

$$
\begin{equation*}
v(r)>\phi(r-\rho)-(q F(\phi(r-\rho)))^{1 / p} \frac{M v(r)}{(F(v(r)))^{1 / p}}(r-\rho) . \tag{2.17}
\end{equation*}
$$

On the other hand, by 2.14 we have

$$
\frac{-v^{\prime}}{(q F(v))^{1 / p}}<2, \quad \rho<r<\tilde{r} .
$$

Integrating over (ρ, r) we find

$$
\psi(v)<2(r-\rho)
$$

whence,

$$
\begin{equation*}
v(r)>\phi(2(r-\rho)) \tag{2.18}
\end{equation*}
$$

We claim that, for some $M>1$ and δ small, we have

$$
\begin{equation*}
\frac{1}{M} \phi(\delta) \leq \phi(2 \delta) \tag{2.19}
\end{equation*}
$$

Indeed, putting $\phi(\delta)=t$, we can write 2.19 as

$$
\frac{t}{M} \leq \phi(2 \psi(t))
$$

or

$$
\psi(t) \leq \frac{1}{2} \psi\left(\frac{t}{M}\right)
$$

for t large. To prove this inequality, we write

$$
\psi(t)=\int_{t}^{\infty}(q F(\tau))^{-1 / p} d \tau=M \int_{\frac{t}{M}}^{\infty}(q F(M \tau))^{-1 / p} d \tau
$$

Since $f(t)$ is regularly varying with index $\alpha(p-1), F(t)$ is regularly varying with index $\alpha(p-1)+1$, and (see [6])

$$
\lim _{t \rightarrow \infty} \frac{F(M t)}{F(t)}=M^{\alpha(p-1)+1}
$$

Therefore, for t large we have

$$
(F(M \tau))^{-1 / p} \leq \frac{(F(\tau))^{-1 / p}}{M^{\frac{\alpha(p-1)+1}{p}}-1}
$$

Hence,

$$
\psi(t) \leq \frac{M}{M^{\frac{\alpha(p-1)+1}{p}}-1} \int_{\frac{t}{M}}^{\infty}(q F(\tau))^{-1 / p} d \tau=\frac{M}{M^{\frac{\alpha(p-1)+1}{p}}-1} \psi\left(\frac{t}{M}\right)
$$

The claim follows with M such that

$$
\frac{M}{M^{\frac{\alpha(p-1)+1}{p}}-1}=\frac{1}{2}
$$

Using 2.18, 2.19), and recalling that $F(t)$ is regularly varying with index $\alpha(p-$ 1) +1 we find, for r close to ρ,

$$
\frac{F(\phi(r-\rho))}{F(v(r))} \leq \frac{F(\phi(r-\rho))}{F(\phi(2(r-\rho)))} \leq \frac{F(\phi(r-\rho))}{F\left(\frac{1}{M} \phi(r-\rho)\right)}<M^{\alpha(p-1)+1}+2
$$

Insertion of the latter estimate into 2.17) yields

$$
v(r)>\phi(r-\rho)-\tilde{M} v(r)(r-\rho)
$$

from which (2.4) follows. The lemma is proved.

Theorem 2.2. Let $\Omega \subset \mathbb{R}^{N}, N \geq 2$, be a bounded smooth domain and let $f(t)>0$ be smooth, increasing and satisfying 1.1 with $\alpha>1$. If $u(x)$ is a solution to problem (1.4) then we have

$$
\begin{equation*}
\phi(\delta)[1-C \delta]<u(x)<\phi(\delta)[1+C \delta] \tag{2.20}
\end{equation*}
$$

where ϕ is defined as in (1.5), δ denotes the distance from x to $\partial \Omega$ and C is a suitable positive constant.

Proof. If $P \in \partial \Omega$ we consider a suitable annulus of radii ρ and R contained in Ω and such that its external boundary is tangent to $\partial \Omega$ in P. If $v(x)$ is the solution of problem (1.4) in this annulus, by using the comparison principle for elliptic equations [8, Theorem 10.1] we have $u(x) \leq v(x)$ for x belonging to the annulus. Choose the origin in the center of the annulus and put $v(x)=v(r)$ for $r=|x|$. By (2.3), for r near to R we have

$$
v(r)<\phi(\delta)[1+C \delta]
$$

The latter estimate together with the inequality $u(x) \leq v(x)$ yield the right hand side of 2.20).

Consider a new annulus of radii ρ and R containing Ω and such that its internal boundary is tangent to $\partial \Omega$ in P. If $v(x)$ is the solution of problem 1.4 in this annulus, by using the comparison principle for elliptic equations we have $u(x) \geq$ $v(x)$ for x belonging to Ω. Choose the origin in the center of the annulus and put again $v(x)=v(r)$ for $r=|x|$. By 2.4, for r near to ρ we have

$$
v(r)>\phi(\delta)[1-C \delta]
$$

The latter estimate together with the inequality $u(x) \geq v(x)$ yield the left hand side of 2.20 . The theorem is proved.

Theorem 2.3. Let $\Omega \subset \mathbb{R}^{N}, N \geq 2$, be a bounded smooth domain and let $f(t)>0$ be smooth, increasing and satisfying (1.1) with $\alpha>1$. If $u(x)$ is a solution to problem (1.4) then, $|\nabla u| \rightarrow \infty$ as $x \rightarrow \overline{\partial \Omega}$.

Proof. By Theorem 2.2 we have

$$
\lim _{x \rightarrow \partial \Omega} \frac{u(x)}{\phi(\delta(x))}=1
$$

In particular, for $\delta<\delta_{0}, \delta_{0}$ small, we have

$$
\frac{1}{2}<\frac{u(x)}{\phi(\delta(x))}<2
$$

Now we follow the argument described in [2, page 105], using the same notation (with $\beta=\rho$ and $\rho<\rho_{0}$). For $\xi \in \check{D}(\rho)$, define

$$
v(\xi)=\frac{u(\rho \xi)}{\phi(\rho)}
$$

For $\xi \in \check{D}(\rho)$ we have

$$
\begin{equation*}
\frac{1}{2} \leq v(\xi) \leq 2 \tag{2.21}
\end{equation*}
$$

We find

$$
\nabla v=\frac{\rho}{\phi(\rho)} \nabla u(\rho \xi)
$$

and

$$
\Delta_{p} v=\frac{\rho^{p}}{(\phi(\rho))^{p-1}} \Delta_{p} u(\rho \xi)=\frac{\rho^{p}}{(\phi(\rho))^{p-1}} f(u(\rho \xi))=\frac{\rho^{p}}{(\phi(\rho))^{p-1}} f(v(\xi) \phi(\rho)) .
$$

With $\psi(t)=\rho$ we have

$$
\begin{equation*}
\Delta_{p} v=\frac{(\psi(t))^{p}}{t^{p-1}} f(v(\xi) t)=\left(\frac{\psi(t)}{t^{\frac{p-1}{p}}(f(t))^{-1 / p}}\right)^{p} \frac{f(v(\xi) t)}{f(t)} \tag{2.22}
\end{equation*}
$$

Since $f(t)$ is regularly varying with index $\alpha(p-1)$ we have

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{f(v(\xi) t)}{f(t)}=(v(\xi))^{\alpha(p-1)} \tag{2.23}
\end{equation*}
$$

Furthermore, we have

$$
\frac{\psi(t)}{t^{\frac{p-1}{p}}(f(t))^{-1 / p}}=\frac{\psi(t)}{t(F(t))^{-\frac{1}{p}}}\left(\frac{t f(t)}{F(t)}\right)^{1 / p} .
$$

We have already observed that 1.2 implies

$$
\lim _{t \rightarrow \infty} \frac{t f(t)}{F(t)}=\alpha(p-1)+1
$$

Using de l'Hospital rule and the latter estimate we get

$$
\lim _{t \rightarrow \infty} \frac{\psi(t)}{t(F(t))^{-\frac{1}{p}}}=\frac{q^{1 / q}}{\alpha-1} .
$$

Hence,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{\psi(t)}{t^{\frac{p-1}{p}}(f(t))^{-1 / p}}=\frac{q^{1 / q}}{\alpha-1}(\alpha(p-1)+1)^{1 / p} . \tag{2.24}
\end{equation*}
$$

By (2.24), (2.23) and (2.21), (2.22) implies that

$$
\begin{equation*}
C_{1} \leq \Delta_{p} v \leq C_{2}, \quad \xi \in \check{D}(\rho) \tag{2.25}
\end{equation*}
$$

where C_{1} and C_{2} are suitable positive constants independent of ρ.
Let $x_{i} \in \Omega, x_{i} \rightarrow \partial \Omega$, and let $\rho_{i}=\operatorname{dist}\left(x_{i}, \partial \Omega\right)$. By 2.25 with $v_{i}(\xi)=\frac{u\left(\rho_{i} \xi\right)}{\phi\left(\rho_{i}\right)}$, and standard regularity results (see [19]), we find that the $C^{1, \beta}\left(\check{D}\left(\rho_{i}\right)\right)$ norm of the sequence $v_{i}(\xi)$ is bounded far from zero. In particular,

$$
\left|\nabla v_{i}(\xi)\right| \geq c,
$$

with $c>0$ independent of i. Hence,

$$
\left|\nabla u\left(x_{i}\right)\right|=\left|\nabla v_{i}(\xi)\right| \frac{\phi\left(\rho_{i}\right)}{\rho_{i}} \geq c \frac{\phi\left(\rho_{i}\right)}{\rho_{i}} .
$$

Since $\frac{\phi\left(\rho_{i}\right)}{\rho_{i}} \rightarrow \infty$ as $i \rightarrow \infty$, the theorem follows.
Let us discuss now the uniqueness of problem 1.4. Observe that if $\alpha>1+\frac{p}{p-1}$ then

$$
\lim _{\delta \rightarrow 0} \phi(\delta) \delta=\lim _{t \rightarrow \infty} t \psi(t)=\lim _{t \rightarrow \infty} \frac{t^{2}}{(q F(t))^{1 / p}}=0,
$$

where 2.1) with $\epsilon<(\alpha-1)(p-1)-p$ has been used in the last step. Hence, if $u(x)$ and $v(x)$ are solutions to problem (1.4) in case of $\alpha>1+\frac{p}{p-1}$, by Theorem 2.2 we have

$$
\lim _{x \rightarrow \partial \Omega}[u(x)-v(x)]=0 .
$$

Since $f(t)$ is non decreasing, the comparison principle yields $u(x)=v(x)$ in Ω.
For general $\alpha>1$, we have the following result.
Theorem 2.4. Let $\Omega \subset \mathbb{R}^{N}, N \geq 2$, be a bounded smooth domain and let $f(t)>0$ be smooth, increasing and satisfying (1.1) with $\alpha>1$. If $u(x)$ and $v(x)$ are positive large solutions to problem (1.4) then $u(x)=v(x)$.

Proof. Theorem 2.2 implies

$$
\lim _{x \rightarrow \partial \Omega} \frac{u(x)}{v(x)}=1
$$

Let t_{0} large enough so that $\frac{f(t)}{t^{p-1}}$ is increasing for $t>t_{0}$, and let $\eta>0$ such that $u(x)>t_{0}$ in $\Omega_{\eta}=\{x \in \Omega: \delta(x)<\eta\}$. For $\epsilon>0$ define

$$
D_{\epsilon, \eta}=\left\{x \in \Omega_{\eta}:(1+\epsilon) u(x)<v(x)\right\} .
$$

If $D_{\epsilon, \eta}$ is empty for any $\epsilon>0$ then we have $u(x) \geq v(x)$ in Ω_{η}. Define $\Omega^{\eta}=\{x \in$ $\Omega: \delta(x)>\eta\}$. Using the equations for u and v in Ω^{η} and the monotonicity of $f(t)$ one proves that $u(x) \geq v(x)$ in Ω^{η}. Hence, in this case, $u(x) \geq v(x)$ in Ω. Changing the roles of u and v we get $u(x)=v(x)$.

Suppose $D_{\epsilon, \eta}$ is not empty for $\epsilon<\epsilon_{0}$. In this open set, since $\frac{f(t)}{t^{p-1}}$ is increasing for large t, we have

$$
\begin{gathered}
\Delta_{p}((1+\epsilon) u)=(1+\epsilon)^{p-1} f(u) \leq f((1+\epsilon) u) \\
\Delta_{p} v=f(v)
\end{gathered}
$$

By the comparison principle we have

$$
v(x)-(1+\epsilon) u(x) \leq \max _{\delta(x)=\eta}[v(x)-(1+\epsilon) u(x)] \quad \text { in } D_{\epsilon, \eta} .
$$

Letting $\epsilon \rightarrow 0$ we find

$$
v(x)-u(x) \leq \max _{\delta(x)=\eta}[v(x)-u(x)] \quad \text { in } \Omega_{\eta}
$$

Put

$$
\max _{\delta(x)=\eta}[v(x)-u(x)]=v\left(x_{1}\right)-u\left(x_{1}\right)=C .
$$

Using the equations for u and v in Ω^{η} and the monotonicity of $f(t)$ one proves that $v(x)-u(x) \leq C$ in Ω^{η}. Then, $v(x)-u(x) \leq C$ in Ω. We observe that decreasing η and arguing as before we find $x_{\eta} \rightarrow \partial \Omega$ such that

$$
v(x)-u(x) \leq v\left(x_{\eta}\right)-u\left(x_{\eta}\right) \quad \text { in } \Omega
$$

with $v\left(x_{\eta}\right)-u\left(x_{\eta}\right)=$ constant. In other words, $v(x)-u(x)$ attains its maximum value in the set described by x_{η} (which approaches $\partial \Omega$). By Theorem 2.3, ∇u and ∇v do not vanish in Ω_{η} for η small. Hence, the strong comparison principle applies (see [8]) and we must have $v(x)-u(x)=C$ in Ω_{η}.

Since

$$
\Delta_{p} v=f(v)=f(u+C)
$$

and

$$
\Delta_{p} v=\Delta_{p} u=f(u)
$$

we must have $f(u)=f(u+C)$ in Ω_{η}. Since $f(t)$ is strictly increasing for t large, we find $C=0$. The theorem follows.

References

[1] C. Anedda and G. Porru; Higher order boundary estimates for blow-up solutions of elliptic equations, Differential and Integral Equations, 19: 345-360 (2006).
[2] C. Bandle and M. Essén; On the solutions of quasilinear elliptic problems with boundary blow-up, Symposia Mathematica, Volume XXXV: 93-111 (1994).
[3] C. Bandle and M. Marcus; On second order effects in the boundary behaviour of large solutions of semilinear elliptic problems, Differential and Integral Equations, 11: 23-34 (1998).
[4] S. Berhanu and G. Porru; Qualitative and quantitative estimates for large solutions to semilinear equations, Communications in Applied Analysis, 4: 121-131 (2000).
[5] F. Cirstea and V. Radulescu; Uniqueness of the blow-up boundary solution of logistic equations with absorbtion, C.R. Acad. Sc. Paris, Sér. I, 335: 447-452 (2002).
[6] F. Cirstea and V. Radulescu; Nonlinear problems with boundary blow-up: a Karamata regular variation approach, Asymptotic Analysis, 46: 275-298 (2006).
[7] J. García-Melián; Uniqueness of positive solutions for a boundary blow-up problem, J. Math. Anal. Appl. 360: 530-536 (2009).
[8] D. Gilbarg and N. S. Trudinger; Elliptic Partial Differential Equations of Second Order, Springer Verlag, Berlin, 1977.
[9] F. Gladiali and G. Porru; Estimates for explosive solutions to p-Laplace equations, Progress in partial differential equations, Vol. 1 (Pont--Mousson, 1997), Pitman Res. Notes Math. Ser., Longman, Harlow, 383: 117-127 (1998).
[10] Shuibo Huang and Qiaoyu Tian; Asymptotic behaviour of large solutions to p-Laplacian of Bieberbach-Rademacher type, Nonlinear Analysis, 71: 5773-5780 (2009).
[11] J. B. Keller, On solutions of $\Delta u=f(u)$, Comm. Pure Appl. Math., 10 503-510 (1957).
[12] A. C. Lazer and P. J. McKenna; Asymptotic behaviour of solutions of boundary blow-up problems, Differential and Integral Equations, 7: 1001-1019 (1994).
[13] J. López-Gómez; The boundary blow-up rate of large solutions, J. Diff. Eqns. 195: 25-45 (2003).
[14] J. López-Gómez; Metasolutions: Malthus versus Verhulst in population dynamics. A dream of Volterra. Stationary partial differential equatins. Vol. II, 211-309, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2005.
[15] J. López-Gómez; Optimal uniqueness theorems and exact blow-up rates of large solutions, J. Diff. Eqns. 224: 385-439 (2006).
[16] A. Mohammed; Existence and asymptotic behavior of blow-up solutions to weighted quasilinear equations, J. Math. Anal. Appl. 298: 621-637 (2004).
[17] R. Osserman; On the inequality $\Delta u \geq f(u)$, Pacific J. Math., 7: 1641-1647 (1957).
[18] V. Radulescu; Singular phenomena in nonlinear elliptic problems: from boundary blow-up solutions to equations with singular nonlinearities, in "Handbook of Differential Equations: Stationary Partial Differential Equations", Vol. 4 (Michel Chipot, Editor), 483-591 (2007).
[19] P. Tolksdorf; Regularity for a more general class of quasilinear elliptic equations. J. Differential Equations, 51: 126-150 (1984).
[20] Z. Zhang; The asymptotic behaviour of solutions with blow-up at the boundary for semilinear elliptic problems, J. Math. Anal. Appl. 308: 532-540 (2005).

Monica Marras
Dipartimento di Matematica e Informatica, Universitá di Cagliari, Via Ospedale 72, 09124 Cagliari, Italy

E-mail address: mmarras@unica.it
Giovanni Porru
Dipartimento di Matematica e Informatica, Universitá di Cagliari, Via Ospedale 72, 09124 Cagliari, Italy

E-mail address: porru@unica.it

[^0]: 2000 Mathematics Subject Classification. 35B40, 35B44, 35J92.
 Key words and phrases. p-Laplace equations; large equations; uniqueness;
 second order boundary approximation.
 (C) 2011 Texas State University - San Marcos.

 Submitted November 21, 2010. Published September 15, 2011.

