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EXISTENCE OF POSITIVE SOLUTIONS FOR SOME
NONLINEAR ELLIPTIC SYSTEMS ON THE HALF SPACE

NOUREDDINE ZEDDINI

Abstract. We prove some existence of positive solutions to the semilinear
elliptic system

∆u = λp(x)g(v)

∆v = µq(x)f(u)

in the half space Rn
+, n ≥ 2, subject to some Dirichlet conditions, where λ and

µ are nonnegative parameters. The functions f, g are nonnegative continuous
monotone on (0,∞) and the potentials p, q are nonnegative and satisfy some
hypotheses related to the Kato class K∞(Rn

+).

1. Introduction

The existence and nonexistence of solutions for semilinear elliptic systems have
received much attention recently. Most of the studies are about existence and
nonexistence of positive radial solutions [8, 12].

In [8], the authors consider the system
∆u = p(x)g(v),

∆v = q(x)f(u) x ∈ Rn,
(1.1)

where f, g are positive and nondecreasing functions on (0,∞) and p, q are nonnega-
tive locally holder and radially symmetric functions in Rn, n ≥ 2. They established
the existence of positive entire solutions for (1.1) provided that limt→∞ g(cf(t))/t =
0 for all c > 0. Moreover, they proved that if∫ ∞

0

tp(t) dt =
∫ ∞

0

tq(t) dt = ∞,

then all positive entire radial solutions of (1.1) blow-up at infinity. However, if p
and q satisfy the following condition∫ ∞

0

t[p(t) + q(t)] dt <∞,

then all positive entire radial solutions of (1.1) are bounded.
In [12], the authors studied the system (1.1) when f(u) = uβ , g(v) = vα, α > 0,

β > 0 and p, q are nonnegative continuous and not necessarily radial. They showed
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that entire positive bounded solutions exist if p and q satisfy at infinity the following
decay condition

p(x) + q(x) ≤ C|x|−(2+δ)

for some positive constant δ.
In [9], we were interested in the existence of positive bounded solution for (1.1) in

some domains with compact boundary in the case where f and g are monotone on
(0,∞) and p, q satisfy some hypotheses related to the Kato class associated to these
domains. Our aim in this paper is to establish the existence of positive bounded and
unbounded continuous solutions for a domain with non compact boundary which
are parallel to those established in [9].

Throughout this paper, we denote

Rn+ = {x = (x1, x2, . . . , xn) ∈ Rn : xn > 0},
where n ≥ 2. By ∂Rn+ we denote the boundary of Rn+, by B(Rn+) the set of
Borel measurable functions in Rn+, and by C0(Rn+) the set of continuous functions
vanishing at ∂Rn+ ∪ {∞}. We fix some nonnegative constants a, b, α, β such that
a+α > 0, b+ β > 0 and two nontrivial nonnegative bounded continuous functions
ϕ and ψ on ∂Rn+ and we will deal with the existence of positive continuous bounded
solutions (in the sense of distributions) for the system

∆u = λp(x)g(v), in Rn+
∆v = µq(x)f(u), in Rn+

u
∣∣
∂Rn

+
= aϕ, lim

xn→∞

u(x)
xn

= α,

v
∣∣
∂Rn

+
= bψ, lim

xn→∞

v(x)
xn

= β,

(1.2)

where λ, µ are nonnegative constants, the functions f, g : (0,∞) → [0,∞) are con-
tinuous and the functions p, q are nonnegative in B(Rn+) satisfying some hypotheses
related to the Kato class K∞(Rn+) introduced and studied in [3] for n ≥ 3 and in [4]
for n = 2. More precisely, we will give two existence results for (1.2) as f and g are
nondecreasing or nonincreasing. To this aim, we give in the sequel some notations
and we recall some properties of the Kato class defined by means of the Green
function G(x, y) of the Dirichlet Laplacian in Rn+.

Definition 1.1 ([3, 4]). A Borel measurable function s in Rn+ belongs to the Kato
class K∞(Rn+) if

lim
α→0

sup
x∈Rn

+

∫
Rn

+∩B(x,α)

yn
xn
G(x, y)|s(y)|dy = 0,

lim
M→∞

sup
x∈Rn

+

∫
Rn

+∩{|y|≥M}

yn
xn
G(x, y)|s(y)|dy = 0.

For any nonnegative function f in B(Rn+), we denote the Green potential of f
defined on Rn+ by

V f(x) :=
∫

Rn
+

G(x, y)f(y)dy

and
‖f‖ := sup

x∈Rn
+

∫
Rn

+

yn
xn
G(x, y)f(y)dy.
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Next, we recall some properties of K∞(Rn+).

Proposition 1.2. Let q be a nonnegative function in K∞(Rn+). Then we have
(i) ‖q‖ <∞.
(ii) V q ∈ C0(Rn+).

The proof of the above propositions is found in [3, 4].

Theorem 1.3 (3G-Theorem). There exists a constant C0 > 0 such that for all x, y
and z in Rn+, we have

G(x, z)G(y, z)
G(x, y)

≤ C0

( zn
xn
G(x, z) +

zn
yn
G(x, z)

)
.

The proof of the above Theorem is found in [3, 4].

Proposition 1.4. Let q be a nonnegative function in K∞(Rn+). Then we have

(i) αq := supx,y∈Rn
+

∫
Rn

+

G(x,z)G(z,y)
G(x,y) q(z)dz <∞.

(ii) For any nonnegative superharmonic function v in Rn+ and all x ∈ Rn+, we
have ∫

Rn
+

G(x, y)v(y)q(y) dy ≤ αqv(x).

(iii) Let h0 be a positive harmonic function in Rn+ which is continuous and
bounded in Rn+. Then the family of functions{∫

Rn
+

G(., y)h0(y)p(y) dy : |p| ≤ q
}

is relatively compact in C0(Rn+).

Proof. (i) From the 3G-Theorem, we have αq ≤ 2C0‖q‖. Which implies by Propo-
sition 1.2 that αq <∞.

(ii) Let v be a nonnegative superharmonic function in Rn+. Then by [13, theorem
2.1], there exists a sequence (fk)k∈N of nonnegative measurable functions in Rn+
such that the sequence (vk)k defined on Rn+ by

vk(y) :=
∫

Rn
+

G(y, z)fk(z)dz

increases to v. Since for each x ∈ Rn+, we have∫
Rn

+

G(x, y)vk(y)q(y) dy ≤ αqvk(x),

the result follows from the monotone convergence theorem.
(iii) This assertion was proved in [5, 4]. �

For any nonnegative bounded continuous function ϕ on ∂Rn+, we denote by Hϕ
the unique bounded harmonic function u in Rn+ with boundary value ϕ. As long of
this work, we denote by θ the harmonic function defined on Rn+ by θ(x) = xn.

Let v and ω be two positive functions on a set S. We denote v ∼ ω, if there
exists a constant C > 0 such that

1
C
v(x) ≤ ω(x) ≤ Cv(x), ∀x ∈ S.

In this paper, by C we denote a positive generic constant whose value may vary
from line to line.
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2. First existence result

In this section we will give a first existence result for the system (1.2) in the case
where f and g are nondecreasing. We assume the following hypotheses:

(H1) The functions f, g : [0,∞) → [0,∞) are nondecreasing and continuous.
(H2) The functions p, q are nonnegative in Rn+ such that for each positive constant

c, the functions x 7→ p(x)g(c(xn + 1)) and x 7→ q(x)f(c(xn + 1)) belong to
K∞(Rn+).

(H3)

λ0 := inf
x∈Rn

+

αθ(x) + aHϕ(x)
V

(
pg(βθ + bHψ)

)
(x)

> 0, µ0 := inf
x∈Rn

+

βθ(x) + bHψ(x)
V

(
qf(αθ + aHϕ)

)
(x)

> 0.

Next, we give our first existence result.

Theorem 2.1. Assume (H1)–(H3). Then for each λ ∈ [0, λ0) and each µ ∈ [0, µ0),
problem (1.2) has a positive continuous solution (u, v) such that

(1− λ

λ0
)[αθ + aHϕ] ≤ u ≤ αθ + aHϕ,

(1− µ

µ0
)[βθ + bHψ] ≤ v ≤ βθ + bHψ.

For the next Corollary, (H2) and (H3) are replaced by the following hypotheses:
(H2’) The functions p, q are nonnegative in K∞(Rn+);
(H3’) λ′0 := infx∈Rn

+

Hϕ(x)
V (pg(Hψ))(x) > 0 and µ′0 := infx∈Rn

+

Hψ(x)
V (qf(Hϕ))(x) > 0 .

Corollary 2.2. Assume (H1), (H2’), (H3’). Then for each λ ∈ [0, λ′0) and each
µ ∈ [0, µ′0), problem (1.2) has a positive bounded continuous solution (u, v) such
that

(1− λ

λ′0
)Hϕ ≤ u ≤ Hϕ,

(1− µ

µ′0
)Hψ ≤ v ≤ Hψ.

Before proving Theorem 2.1, we give an example where the hypotheses (H2) and
(H3) are satisfied.

Example. Let f, g be two continuous functions such that there exists η > 0 satis-
fying 0 ≤ f(t) ≤ η(t+1) and 0 ≤ g(t) ≤ η(t+1) for all t > 0. Let ψ be a nontrivial
nonnegative bounded continuous function in ∂Rn+. Let α = 1, a = 0, β = 0, b = 1
and p, q be two nonnegative measurable function in Rn+ such that

0 ≤ p(y) ≤ C

yσn(1 + |y|)γ−σ
with σ < 1 < 3 < γ,

0 ≤ q(y) ≤ C

yrn(1 + |y|)s−r
with r < 1, n+ 2 < s.

For this choice of γ, σ and using [3, Proposition 5] we deduce that for each c > 0,
the functions y → p(y)g(c(yn + 1)); y → q(y)f(c(yn + 1)) and y → p0(y) = p(y)

yn
are

in K∞(Rn+). This implies that (H2) is satisfied. Moreover, using Proposition 1.4
we obtain

θ(x)
V (pg(Hψ))(x)

≥ C
θ(x)

‖g(Hψ)‖∞V (p0θ)(x)
≥ C

θ(x)
αp0θ(x)

.
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Therefore, λ0 > 0.
On the other hand taking into account this choice of q, we deduce from [3,

Proposition 8] that

V (q(1 + θ))(x) ≤ C
xn

(1 + |x|)n
.

This together with Hψ(x) ≥ C xn

(1+|x|)n imply that

Hψ(x)
V (qf(θ))(x)

≥ Hψ(x)
ηV (q(1 + θ))(x)

≥ C > 0.

Consequently µ0 > 0.

Proof of Theorem 2.1. Let λ ∈ [0, λ0) and µ ∈ [0, µ0), then for each x ∈ Rn+ we
have

λ0V (pg(βθ + bHψ))(x) ≤ αθ(x) + aHϕ(x),

µ0V (qf(αθ + aHϕ))(x) ≤ βθ(x) + bHψ(x).

We define the sequences (uk)k≥0 and (vk)k≥0 by

v0 = βθ + bHψ,

uk = αθ + aHϕ− λV (pg(vk)),

vk+1 = βθ + bHψ − µV (qf(uk)).

We intend to prove that for all k ∈ N,

0 < (1− λ

λ0
)(αθ + aHϕ) ≤ uk ≤ uk+1 ≤ αθ + aHϕ,

0 < (1− µ

µ0
)(βθ + bHψ) ≤ vk+1 ≤ vk ≤ βθ + bHψ.

For all integer k, we have

uk ≥ αθ + aHϕ− λV (pg(βθ + bHψ))

≥ αθ + aHϕ− λ

λ0
(αθ + aHϕ)

≥ (1− λ

λ0
)(αθ + aHϕ) > 0.

and

vk ≥ βθ + bHψ − µV (qf(αθ + aHϕ))

≥ βθ + bHψ − µ

µ0
(βθ + bHψ)

≥ (1− µ

µ0
)(βθ + bHψ) > 0.

On the other hand, we have v1−v0 = −µV (qf(u0)) ≤ 0 and u1−u0 = λV (p(g(v0)−
g(v1)) ≥ 0. Since u1 ≤ αθ + aHϕ, we have

u0 ≤ u1 ≤ αθ + aHϕ, v1 ≤ v0 ≤ βθ + bHψ.

By induction, assume that uk ≤ uk+1 ≤ αθ + aHϕ and vk+1 ≤ vk. Then, we have

vk+2 − vk+1 = µV (q(f(uk)− f(uk+1))) ≤ 0,

uk+2 − uk+1 = λV (p(g(vk+1)− g(vk+2))) ≥ 0.
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Since vk+1 > 0, we have,

uk+1 ≤ uk+2 ≤ αθ + aHϕ, vk+2 ≤ vk+1 ≤ βθ + bHψ.

Therefore, the sequences (uk)k≥0 and (vk)k≥0 converge to two functions u and v
(respectively) satisfying

0 < (1− λ

λ0
)(αθ + aHϕ) ≤ u ≤ αθ + aHϕ,

0 < (1− µ

µ0
)(βθ + bHψ) ≤ v ≤ βθ + bHψ.

We prove now that (u, v) is a solution for the system (1.2). Since (uk)k and (vk)k are
monotone and f, g are nondecreasing, then the sequences (f(uk))k and (g(vk))k are
monotone. Hence it follows from hypothesis (H2), Proposition 1.2 and Lebesgue’s
theorem that (u, v) satisfies

u = αθ + aHϕ− λV (pg(v)),

v = βθ + bHψ − µV (qf(u)).
(2.1)

So (u, v) is a positive continuous solution of (1.2). �

3. Second existence result

Let ϕ and ψ be two nontrivial nonnegative bounded continuous functions on
∂Rn+ and α, β ≥ 0. We fix φ a nontrivial nonnegative bounded continuous function
on ∂Rn+ and we put h0 = Hφ.

In this section, we aim at proving the existence of positive continuous solutions
for the system

∆u = p(x)g(v), in Rn+
∆v = q(x)f(u), in Rn+

u
∣∣
∂Rn

+
= ϕ, lim

xn→∞

u(x)
xn

= α,

v
∣∣
∂Rn

+
= ψ, lim

xn→∞

v(x)
xn

= β,

(3.1)

where f and g are continuous and nonincreasing. We assume the following hy-
potheses:

(H4) The functions f, g : (0,∞) → [0,∞) are non-increasing and continuous;
(H5) the functions p̃ := p f(h0)

h0
and q̃ := q g(h0)

h0
belong to the Kato class K∞(Rn+).

Our second existence result is the following.

Theorem 3.1. Under assumptions (H4) and (H5), there exists a constant c >
1 such that if ϕ ≥ cφ and ψ ≥ cφ on ∂Rn+, then problem (3.1) has a positive
continuous solution (u, v) satisfying for each x ∈ Rn+,

αxn + h0(x) ≤ u(x) ≤ αxn +Hϕ(x),

βxn + h0(x) ≤ v(x) ≤ βxn +Hψ(x).

We note that this result generalizes those of Athreya [2] and Bachar, Mâagli and
Zribi [5] stated for semilinear elliptic equations.



EJDE-2011/12 EXISTENCE OF POSITIVE SOLUTIONS 7

Proof of Theorem 2.1. Let c = 1 + αep + αeq, where αep and αeq are the constants
defined in Proposition 1.4 associated to the functions p̃ and q̃ given in hypothesis
(H5). Let us consider two nonnegative continuous functions ϕ and ψ on ∂Rn+ such
that ϕ ≥ cφ and ψ ≥ cφ. It follows from the maximum principle that for each
x ∈ Rn+, we have

Hϕ(x) ≥ ch0(x), Hψ(x) ≥ ch0(x).
Let α ≥ 0, β ≥ 0 and Λ be the non-empty closed convex set given by

Λ = {w ∈ Cb(Rn+) : h0 ≤ w ≤ Hϕ},
where Cb(Rn+) denotes the set of continuous bounded functions in Rn+.

We define the operator T on Λ by

T (w) = Hϕ− V (pf [βθ +Hψ − V (qg(w + αθ))]).

And we prove that T has a fixed point. Let w ∈ Λ. Since w + αθ ≥ h0, then we
deduce from hypotheses (H4) that

V (qg(w + αθ)) ≤ V (qg(h0)).

Then

βθ +Hψ − V (qg(w + αθ)) ≥ βθ +Hψ − V (q̃h0)
≥ βθ +Hψ − αeqh0

≥ βθ + ch0 − αeqh0

= βθ + (1 + αep)h0

≥ h0 > 0.

Hence, V (pf(βθ+Hψ−V (qg(w+αθ)))) ≤ V (pf(h0)) = V (p̃h0). Using Proposition
1.4 we deduce that the family of functions{

V (pf(βθ +Hψ − V (qg(w + αθ)))) : w ∈ Λ
}

is relatively compact in C0(Rn+). Since Hϕ ∈ Cb(Rn+), we deduce that the set TΛ
is relatively compact in Cb(Rn+).

Next, we shall prove that T maps Λ into itself. Since βθ+Hψ−V (qg(w+αθ)) ≥
h0 > 0, we have for all w ∈ Λ, Tw(x) ≤ Hϕ(x), for all x ∈ Rn+. Moreover,

V (pf(βθ +Hψ − V (qg(w + αθ)))) ≤ V (pf(h0)) = V (p̃h0) ≤ αeph0.

Then, we obtain Tw(x) ≥ Hϕ− αeqh0 ≥ h0, which proves that T (Λ) ⊂ Λ.
Now, we prove the continuity of the operator T in Λ in the supremum norm. Let

(wk)k∈N be a sequence in Λ which converges uniformly to a function w in Λ. Then,
for each x ∈ Rn+, we have

|Twk(x)−Tw(x)| ≤ V [p|f(βθ+Hψ−V (qg(wk+αθ)))−f(βθ+Hψ−V (qg(w+αθ)))|].
On the other hand we have

p|f(βθ +Hψ − V (qg(wk + αθ)))− f(βθ +Hψ − V (qg(w + αθ)))|
≤ p[f(βθ +Hψ − V (qg(wk + αθ))) + f(βθ +Hψ − V (qg(w + αθ)))]

≤ 2pf(βθ +Hψ − V (qg(h0)))

≤ 2pf(βθ +Hψ − αeqh0)

≤ 2pf(h0)

≤ 2‖h0‖∞p̃.
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Since p̃ belongs to K∞(Rn+), V p̃ is bounded, we conclude by the dominated con-
vergence theorem that for all x ∈ Rn+,

Twk(x) → Tw(x) as k → +∞.

Consequently, as T (Λ) is relatively compact in Cb(Rn+), we deduce that the point-
wise convergence implies the uniform convergence, namely,

‖Twk − Tw‖∞ → 0ask → +∞.

Therefore, T is a continuous mapping from Λ into itself. So, since T (Λ) is relatively
compact in Cb(Rn+), it follows that T is compact mapping on Λ. Finally, the
Schauder fixed-point theorem implies the existence of a function w ∈ Λ such that
w = Tw. For x ∈ Rn+, put

u(x) = αθ(x) + w(x), v(x) = βθ(x) +Hψ(x)− V (qg(u)), .

Then (u, v) is a positive continuous solution of (3.1). �

Example. Let δ > 0, γ > 0, λ < 2 < µ and r < 2 < s. Let p, q be two nonnegative
functions such that

p(x) ≤ C

(1 + |x|)n(1+δ)+µ−λxλ−1−δ
n

, q(x) ≤ C

(1 + |x|)n(1+γ)+s−rxr−1−γ
n

.

Let ϕ, ψ and φ be three nontrivial nonnegative bounded continuous functions on
∂Rn+. Then, for each α ≥ 0, β ≥ 0, there exist a constant c > 1 such that if ϕ ≥ cφ
and ψ ≥ cφ, the problem

∆u = p(x)v−γ , in Rn+
∆v = q(x)u−δ, in Rn+

u
∣∣
∂Rn

+
= ϕ, lim

xn→∞

u(x)
xn

= α,

v
∣∣
∂Rn

+
= ψ, lim

xn→∞

v(x)
xn

= β,

has a positive continuous solution (u, v) satisfying for each x ∈ Rn+,

αxn +Hφ(x) ≤ u(x) ≤ αxn +Hϕ(x),

βxn +Hφ(x) ≤ v(x) ≤ βxn +Hψ(x).
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