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SOLVABILITY OF A SECOND-ORDER MULTI-POINT
BOUNDARY-VALUE PROBLEMS AT RESONANCE ON A

HALF-LINE WITH DIMKER L=2

WEIHUA JIANG, BIN WANG, ZHENJI WANG

Abstract. We show the existence of solutions for a second-order multi-point
boundary-value problem at resonance on a half-line, where the dimension of
the kernel of the differential operator is 2. Our main tools are the coincidence
degree theory due to Mawhin, suitable operators, and algebraic methods. Our
results are illustrated with an example.

1. Introduction

In this article, we show the existence of solutions for the boundary-value problem

x′′(t) = f(t, x(t), x′(t)) + e(t), t ∈ (0,+∞), (1.1)

x(0) =
m∑

i=1

αix(ξi), lim
t→+∞

x′(t) =
n∑

j=1

βjx
′(ηj), (1.2)

where f : [0,+∞) × R2 → R, e ∈ L1[0,+∞), 0 < ξ1 < ξ2 < · · · < ξm < +∞,
0 < η1 < η2 < · · · < ηn < +∞, m ≥ 2, n ≥ 1.

Multi-point boundary value problems of ordinary differential equations arise in
a variety of different areas of Applied Mathematics and Physics. For example, the
vibrations of a guy wire of a uniform cross-section being composed of N parts of
different densities can be set up as a multi-point boundary-value problem (see [19]);
many problems in the theory of elastic stability can be handled by the method
of multi-point problems(see [26]). Bridges of small size are often designed with
two supported points, which leads to a standard two-point boundary condition
and bridges of large size are sometimes contrived with multi-point supports, which
corresponds to a multi-point boundary condition (see [30]).

Boundary-value problem (1.1)-(1.2) is called a problem at resonance if Lx :=
x′′(t) = 0 has non-trivial solutions under the boundary condition (1.2); i.e., when
dim kerL ≥ 1.

On the finite interval [0,1], the first-order, second-order and high-order multi-
point boundary-value problems at resonance have been studied by many authors
(see [2, 4, 5, 6, 7, 8, 9, 10, 14, 15, 16, 18, 20, 21, 22, 24, 25]), where dim ker L = 1.
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In [11, 28, 29], the second-order multi-point boundary-value problems at resonance
have been discussed when dim kerL = 2 on the finite interval [0,1]. Recently, the
boundary-value problems at resonance on the infinite interval with dim kerL = 1
has been investigated by many authors, see [12, 13, 27, 17]and references cited
therein. Although the existing literature on solutions of multi-point boundary-
value problems is quite wide, to the best of our knowledge, there is few paper to
investigate the resonance case with dim ker L = 2 on the infinite interval.

Motivated by the above results, by constructing the suitable operators and get-
ting help from the algebraic methods, we will show the existence of solutions for the
second-order multi-point boundary-value problem at resonance on a half-line with
dim kerL = 2, which brings many difficulties. And we give an example to illustrate
our results. Some methods used in this paper are new and they can be used to
solve the nth-order boundary-value problems at resonance with 1 < dim kerL ≤ n.

This paper is organized as follows. In Section 2, some necessary backgrounds
will be stated and some lemmas be proved. In Section 3, the main results will be
given and proved. In Section 4, an example is given to illustrate our results.

In this article, we will assume the following conditions:
(C1) f : [0,+∞)×R2 → R is a S-Carathéodory function; i.e.,

(i) f(t, ·) is continuous on R2 for a.e. t ∈ [0,+∞).
(ii) f(·, x) is Lebesgue measurable on [0,+∞) for each x ∈ R2.
(iii) For each r > 0, there exists a function ϕr ∈ L1[0,+∞), ϕr(t) ≥ 0,

t ∈ [0,+∞) satisfying
∫ +∞
0

sϕr(s)ds < +∞ such that

|f(t, x)| ≤ ϕr(t), a. e. t ∈ [0,+∞), ||x|| < r.

(C2)
∑m

i=1 αi =
∑n

j=1 βj = 1,
∑m

i=1 αiξi = 0.

(C3) ∆ =
∣∣∣∣ Q1e

−t Q2e
−t

Q1te
−t Q2te

−t

∣∣∣∣ :=
∣∣∣∣a11 a12

a21 a22

∣∣∣∣ 6= 0, where

Q1y =
m∑

i=1

αi

∫ ξi

0

(ξi − s)y(s)ds, Q2y =
n∑

j=1

βj

∫ +∞

ηj

y(s)ds.

2. Preliminary

To obtain our results, we introduce some notation and two theorems.
Let X and Y be real Banach spaces and let L : dom(L) ⊂ X → Y be a Fredholm

operator with index zero, P : X → X, Q : Y → Y be projectors such that

Im P = kerL, ker Q = Im L, X = kerL⊕ ker P, Y = Im L⊕ Im Q.

It follows that
L|dom L∩ker P : dom L ∩ ker P → Im L

is invertible. We denote the inverse by KP .
If Ω is an open bounded subset of X, dom L ∩ Ω 6= ∅, the map N : X → Y

will be called L-compact on Ω if QN(Ω) is bounded and KP (I −Q)N : Ω → X is
compact.

Theorem 2.1 (citem4). Let L : dom L ⊂ X → Y be a Fredholm operator of index
zero and N : X → Y L-compact on Ω. Assume that the following conditions are
satisfied:

(1) Lx 6= λNx for every (x, λ) ∈ [(dom L \ ker L) ∩ ∂Ω]× (0, 1);
(2) Nx /∈ Im L for every x ∈ ker L ∩ ∂Ω;
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(3) deg(QN |ker L, Ω∩ ker L, 0) 6= 0, where Q : Y → Y is a projection such that
Im L = kerQ.

Then the equation Lx = Nx has at least one solution in dom L ∩ Ω.

Let

X = {x ∈ C1[0,+∞) : lim
t→+∞

|x(t)|
1 + t

and lim
t→+∞

x′(t) exist}

with norm ‖x‖ = max{‖x‖0, ‖x′‖∞}, where

‖x‖0 = sup
t∈[0,∞)

|x(t)|
1 + t

, ‖x‖∞ = sup
t∈[0,+∞)

|x(t)|.

It is easy to prove that (X, ‖ · ‖) is a Banach space.

Theorem 2.2 ([1]). Let M ⊂ X. Then M is relatively compact if the following
conditions hold:

(a) M is bounded in X;
(b) the functions belonging to M are equi-continuous on any compact interval

of R+;
(c) the functions from M are equi-convergent at +∞.

Let Y = L1[0,+∞) with the norm ‖y‖1 =
∫ +∞
0

|y(s)|ds. Define Lx = x′′, with
domain

dom L = {x ∈ X : x′′ ∈ L1[0,+∞), x(0) =
m∑

i=1

αix(ξi), lim
t→+∞

x′(t) =
n∑

j=1

βjx
′(ηj)}.

Obviously, kerL = {a + bt : a, b ∈ R}. Now, we will prove that

Im L = {y ∈ Y : Q1y = Q2y = 0}.
In fact, if Lx = y, then y ∈ Y and

x(t) = x(0) + x′(0)t +
∫ t

0

(t− s)y(s)ds.

It follows from (1.2) that Q1y = Q2y = 0.
On the other hand, assume y ∈ Y satisfying Q1y = Q2y = 0. Take

x(t) =
∫ t

0

(t− s)y(s)ds.

Then x ∈ X, x′′(t) = y(t) and x satisfies (1.2). So, x ∈ dom L; i.e., y ∈ Im L.
Define operators T1, T2 : Y → Y as follows:

T1y =
1
∆

(∆11Q1y + ∆12Q2y)e−t, T2y =
1
∆

(∆21Q1y + ∆22Q2y)e−t,

where ∆ij is the algebraic cofactor of aij . Define the operator Q : Y → Y by

Qy = T1y + (T2y) · t.
By a simple calculation, we obtain T1(T1y) = T1y, T1(T2yt) = 0, T2(T1y) = 0,
T2(T2yt) = T2y. So, Q2y = Qy; i.e., Q : Y → Y is a linear projector. Obviously, Q
is continuous.

For y ∈ Y , y = (y − Qy) + Qy, we have Qy ∈ Im Q and Q(y − Qy) = 0. It
follows from Q(y −Qy) = 0, the definitions of Q, T1, T2 and condition (C3), that
Q1(y − Qy) = Q2(y − Qy) = 0; i.e., y − Qy ∈ Im L. So, Y = Im L + Im Q.
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Take y ∈ Im L ∩ Im Q, then y = Qy = 0; i.e., Y = Im L ⊕ Im Q, So, we have
dim kerL = codim Im L = 2, thus L is a Fredholm operator with index zero.

Define the continuous projection P : X → ker L by

(Px)(t) = x(0) + x′(0)t, t ∈ [0,+∞).

Then X = kerL⊕ ker P .
Define the operator KP : Im L → dom L ∩ ker P by

KP y =
∫ t

0

(t− s)y(s)ds.

Then KP is the inverse operator of L|dom L∩ker P and

‖KP y‖ ≤ ‖y‖1. (2.1)

In fact, for x ∈ dom L ∩ ker P , KP L(x) =
∫ t

0
(t − s)x′′(s)ds = x(t). On the other

hand, for y ∈ Im L,LKP (y) = (
∫ t

0
(t− s)y(s)ds)′′ = y(t). By

|KP y|
1 + t

≤
∫ +∞

0

|y(s)|ds = ‖y‖1,

|(KP y)′(t)| = |
∫ t

0

y(s)ds| ≤ ‖y‖1,

we obtain (2.1).
Let the nonlinear operator N : X → Y be defined by

Nx = f(t, x(t), x′(t)) + e(t), t ∈ [0,+∞).

Then problem (1.1)–(1.2) is equivalent to

Lx = Nx, x ∈ dom L.

Lemma 2.3. Suppose that Ω is an open bounded subset of X such that dom L∩Ω 6=
Φ. Then N is L-compact on Ω.

Proof. Since Ω is bounded, there exists a constant r > 0 such that ‖x‖ ≤ r for any
x ∈ Ω. For x ∈ Ω, by (C1), we obtain

|Q1Nx| = |
m∑

i=1

αi

∫ ξi

0

(ξi − s)[f(s, x(s), x′(s)) + e(s)]ds|

≤
m∑

i=1

|αiξi|
∫ +∞

0

ϕr(s) + |e(s)|ds := l1

and

|Q2Nx| = |
n∑

j=1

βj

∫ +∞

ηj

f(s, x(s), x′(s)) + e(s)ds|

≤
n∑

j=1

|βj | ·
∫ +∞

0

ϕr(s) + |e(s)|ds := l2.
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Thus,

‖QNx‖1 =
∫ +∞

0

|QNx(s)|ds

≤
∫ +∞

0

|T1Nx(s)|ds +
∫ +∞

0

|T2Nx(s)|sds

≤ 1
|∆|

[|∆11| · |Q1Nx|+ |∆12| · |Q2Nx|]

+
1
|∆|

[|∆21| · |Q1Nx|+ |∆22| · |Q2Nx|]

≤ 1
|∆|

[(|∆11|+ |∆21|)l1 + (|∆12|+ |∆22|)l2].

(2.2)

So, QN(Ω) is bounded. Now, we will prove that KP (I −Q)N(Ω) is compact.
(a). Obviously, KP (I −Q)N : Ω → Y is continuous. For x ∈ Ω, since

‖Nx‖1 =
∫ +∞

0

|f(s, x(s), x′(s)) + e(s)|ds ≤
∫ +∞

0

ϕr(s) + |e(s)|ds := l3, (2.3)

|KP (I −Q)Nx(t)|
1 + t

=
1

1 + t
|
∫ t

0

(t− s)(I −Q)Nx(s)ds|

≤
∫ +∞

0

|Nx(s)|+ |QNx(s)|ds

= ‖Nx‖1 + ‖QNx‖1,
and

|[KP (I −Q)Nx]′(t)| = |
∫ t

0

(I −Q)Nx(s)ds|

≤
∫ +∞

0

|Nx(s)|+ |QNx(s)|ds

= ‖Nx‖1 + ‖QNx‖1,

by (2.2) and (2.3), we obtain that KP (I −Q)N(Ω) is bounded.
(b). For any T ∈ [0,+∞), we will prove that functions belonging to KP (I −

Q)N(Ω) are equi-continuous on [0, T ]. In fact, for x ∈ Ω, we have

|Nx(s)| ≤ ϕr(s) + |e(s)|. s ∈ [0,∞), (2.4)

|QNx(s)| ≤ 1
|∆|

[(|∆11|l1 + |∆12|l2) + (|∆21|l1 + |∆22|l2)s]e−s. (2.5)

For any t1, t2 ∈ [0, T ], t1 < t2, we have∣∣KP (I −Q)Nx(t1)
1 + t1

− KP (I −Q)Nx(t2)
1 + t2

∣∣
= |

∫ t1
0

(t1 − s)(I −Q)Nx(s)ds

1 + t1
−

∫ t2
0

(t2 − s)(I −Q)Nx(s)ds

1 + t2
|

≤ | t1
1 + t1

∫ t1

0

(I −Q)Nx(s)ds− t2
1 + t2

∫ t2

0

(I −Q)Nx(s)ds|

+ | 1
1 + t1

∫ t1

0

s(I −Q)Nx(s)ds− 1
1 + t2

∫ t2

0

s(I −Q)Nx(s)ds|
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≤ | t1
1 + t1

− t2
1 + t2

| ·
∫ +∞

0

|Nx(s)|+ |QNx(s)|ds +
∫ t2

t1

|Nx(s)|+ |QNx(s)|ds

+ | 1
1 + t1

− 1
1 + t2

| · T
∫ +∞

0

|Nx(s)|+ |QNx(s)|ds

+ T ·
∫ t2

t1

|Nx(s)|+ |QNx(s)|ds

= (| t1
1 + t1

− t2
1 + t2

|+ | 1
1 + t1

− 1
1 + t2

| · T )(‖Nx‖1 + ‖QNx‖1)

+ (1 + T )
∫ t2

t1

|Nx(s)|+ |QNx(s)|ds.

and

|[KP (I −Q)Nx]′(t1)− [KP (I −Q)Nx]′(t2)| = |
∫ t2

t1

(I −Q)Nx(s)ds|

≤
∫ t2

t1

|Nx(s)|+ |QNx(s)|ds.

By (2.2)–(2.5), the continuity of t
1+t and 1

1+t and the absolute continuity of integral,
we obtain that functions from KP (I −Q)N(Ω) are equi-continuous on [0, T ].

(c). Now, we will show that functions in KP (I −Q)N(Ω) are equi-convergent at
+∞. For x ∈ Ω, we have

lim
t→+∞

KP (I −Q)Nx(t)
1 + t

=
∫ +∞

0

(I −Q)Nx(s)ds.

lim
t→+∞

[KP (I −Q)Nx]′(t) =
∫ +∞

0

(I −Q)Nx(s)ds.

By ∣∣KP (I −Q)Nx(t)
1 + t

−
∫ +∞

0

(I −Q)Nx(s)ds
∣∣

≤ | t

1 + t

∫ t

0

(I −Q)Nx(s)ds−
∫ +∞

0

(I −Q)Nx(s)ds
∣∣

+
1

1 + t

∫ t

0

|s(I −Q)Nx(s)|ds

≤
∫ +∞

t

|(I −Q)Nx(s)|ds

+
1

1 + t

[ ∫ +∞

0

|(I −Q)Nx(s)|ds +
∫ +∞

0

|s(I −Q)Nx(s)|ds
]

≤
∫ +∞

t

|Nx(s)|+ |QNx(s)|ds +
1

1 + t

∫ +∞

0

(1 + s)[|Nx(s)|+ |QNx(s)|]ds,

and

|[KP (I −Q)Nx]′(t)−
∫ +∞

0

(I −Q)Nx(s)ds| ≤
∫ +∞

t

|Nx(s)|+ |QNx(s)|ds,
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From (2.4) and (2.5), we can get that functions from KP (I − Q)N(Ω) are equi-
continuous at +∞. By Theorem 2.2, we obtain that KP (I −Q)N(Ω) is compact.
Therefore, N is L−compact on Ω. �

3. Main results

The following theorem is our main result.

Theorem 3.1. Assume that (C1)–(C3) and the following conditions hold:
(H1) There exist functions α(t), β(t), γ(t), δ(t) ∈ L1[0,+∞), and θ ∈ [0, 1) such

that either

|f(t, u, v)| ≤ α(t) + β(t)
|u|

1 + t
+ γ(t)|v|+ δ(t)(

|u|
1 + t

)θ

or

|f(t, u, v)| ≤ α(t) + β(t)
|u|

1 + t
+ γ(t)|v|+ δ(t)|v|θ;

(H2) There exist constants A > 0, B > 0 such that, if |x(t)| > A for every
t ∈ [0, B] or |x′(t)| > A for every t ∈ [0,+∞), then either Q1Nx 6= 0 or
Q2Nx 6= 0, where ‖β‖1 + ‖γ‖1 < 1

2+B ;
(H3) There exists a constant C > 0 such that, if |a| > C or |b| > C, then either

(1) aQ1N(a + bt) + bQ2N(a + bt) < 0, or
(2) aQ1N(a + bt) + bQ2N(a + bt) > 0.

Then the boundary-value problem (1.1)–(1.2) has at least one solution in X.

Proof. We divide the proof into four steps.
Step1. Let

Ω1 = {x ∈ dom L \ ker L : Lx = λNx, for some λ ∈ [0, 1]}.
We will prove that Ω1 is bounded. In fact, x ∈ Ω1 means λ 6= 0 and Nx ∈ Im L.
Thus

Q1Nx = Q2Nx = 0.

By (H2), there exist t0 ∈ [0, B], t1 ∈ [0,+∞) such that

|x(t0)| ≤ A, |x′(t1)| ≤ A.

So,

|x′(t)| = |x′(t1)−
∫ t1

t

x′′(s)ds| ≤ A +
∫ t1

t

|Nx(s)|ds ≤ A + ‖Nx‖1;

i.e., ‖x′‖∞ ≤ A + ‖Nx‖1. Considering

|x(0)| = |x(t0)−
∫ t0

0

x′(s)ds| ≤ A + |
∫ t0

0

x′(s)ds|

≤ A + ‖x′‖∞ ·B ≤ A(1 + B) + B · ‖Nx‖1,
we have

‖Px‖ ≤ |x(0)|+ |x′(0)| ≤ A(2 + B) + (1 + B)‖Nx‖1.
By LPx = 0, (2.1) and (H1), we obtain

‖x‖ = ‖Px + (I − P )x‖ ≤ ‖Px‖+ ‖KP L(I − P )x‖
≤ ‖Px‖+ ‖Lx‖1 ≤ ‖Px‖+ ‖Nx‖1
≤ (2 + B)(A + ‖Nx‖1)

≤ (2 + B)(A + ‖α‖1 + ‖β‖1 · ‖x‖+ ‖γ‖1 · ‖x‖+ ‖δ‖1 · ‖x‖θ + ‖e‖1).
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So,

‖x‖ ≤ 2 + B

1− (2 + B)(‖β‖1 + ‖γ‖1)
(A + ‖α‖1 + ‖e‖1 + ‖δ‖1 · ‖x‖θ).

It follows from θ ∈ [0, 1) that Ω1 is bounded.
Step2. Set Ω2 = {x ∈ ker L : Nx ∈ Im L}. Then Ω2 is bounded. In fact,

x ∈ Ω2 implies x = a+ bt and Q1N(a+ bt) = Q2N(a+ bt) = 0. By (H3), we obtain
|a| ≤ C, |b| ≤ C. So, Ω2 is bounded.

Step3. Define the isomorphism J : kerL → Im Q by

J(a + bt) =
1
∆

[∆11a + ∆12b + (∆21a + ∆22b)t]e−t.

Assume (H3)(1) holds. Let

Ω3 = {x ∈ ker L : −λJx + (1− λ)QNx = 0, for some λ ∈ [0, 1]}.

Then Ω3 is bounded.
In fact, x ∈ Ω3 means that there exist constants a, b ∈ R, λ ∈ [0, 1] such that

x = a + bt and λJx = (1− λ)QNx. If λ = 0, then QNx = 0. So,

∆11Q1Nx + ∆12Q2Nx = 0,

∆21Q1Nx + ∆22Q2Nx = 0.

It follows from ∆ 6= 0 that Q1Nx = Q2Nx = 0. By (H3), we obtain |a| ≤ C,
|b| ≤ C.

If λ = 1, we can similarly get a = b = 0. For λ ∈ (0, 1), by λJx = (1− λ)QNx,
we obtain

λ∆11a + λ∆12b = (1− λ)∆11Q1N(a + bt) + (1− λ)∆12Q2N(a + bt),

λ∆21a + λ∆22b = (1− λ)∆21Q1N(a + bt) + (1− λ)∆22Q2N(a + bt).

It follows from ∆ 6= 0 that

λa = (1− λ)Q1N(a + bt),

λb = (1− λ)Q2N(a + bt).

If |a| > C, |b| > C, by (H3)(1), we obtain

λ(a2 + b2) = (1− λ)[aQ1N(a + bt) + bQ2N(a + bt)] < 0,

a contradiction. So, Ω3 is bounded.

Remark 3.2. If (H3)(2) holds, take

Ω3 = {x ∈ ker L : λJx + (1− λ)QNx = 0, for some λ ∈ [0, 1]}.

We can similarly prove that Ω3 is bounded.

Step4. Take an open bounded set Ω ⊃
⋃3

i=1 Ωi

⋃
{0}. We will prove that

(1.1)–(1.2) has at least one solution in dom L ∩ Ω.
By Step1 and Step2, we obtain
(1) Lx 6= λNx, for every (x, λ) ∈ [(dom L \ ker L) ∩ ∂Ω]× (0, 1);
(2) Nx 6∈ Im L, for every x ∈ ker L ∩ ∂Ω.

Now we will show that
(3) deg(QN |ker L,Ω ∩ ker L, 0) 6= 0.
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Let H(x, λ) = ±λJx+(1−λ)QNx. By step 3, we know that H(x, λ) 6= 0, for every
(x, λ) ∈ (ker L∩ ∂Ω)× [0, 1]. Thus, by the homotopy property of degree, we obtain

deg(QN |ker L,Ω ∩ ker L, 0) = deg(H(·, 0),Ω ∩ ker L, 0)

= deg(H(·, 1),Ω ∩ ker L, 0)

= deg(±J, Ω ∩ ker L, 0) = ±1 6= 0.

By Theorem 2.1, we can get that Lx = Nx has at least one solution in dom L∩Ω;
i.e. , (1.1)–(1.2) has at least one solution in X. The prove is completed. �

4. Example

Let’s consider the boundary-value problem

x′′(t) = f(t, x(t), x′(t)) + e(t), t ∈ [0,∞), (4.1)

x(0) = 2x(1)− x(2), x′(∞) = x′(2), (4.2)

where

f(t, x(t), x′(t)) =

{
−e−10tx(0), 0 ≤ t ≤ 2,

e−10tsinx′(t) + e−t 3
√

x′(t), t > 2.

e(t) =

{
0, 0 ≤ t ≤ 2,

te−t, t > 2.

Corresponding to problem (1.1)-(1.2), we have that m = 2, n = 1, α1 = 2, α2 = −1,
ξ1 = 1, ξ2 = 2, β1 = 1, η1 = 2. Obviously, (C1) and (C2) are satisfied. By simple
calculation, we obtain a11 = −(1 − e−1)2, a21 = 6e−1 − 2 − 4e−2, a12 = e−2,
a22 = 3e−2.

∆ =
∣∣∣∣a11 a12

a21 a22

∣∣∣∣ = e−4 − e−2 6= 0 .

So, (C3) is satisfied. Take α(t) = 0, θ = 1
3 ,

β(t) =

{
(1 + t)e−10t, 0 ≤ t ≤ 2,

0, t > 2,
γ(t) =

{
0, 0 ≤ t ≤ 2,

e−10t, t > 2,

δ(t) =

{
0, 0 ≤ t ≤ 2,

e−t, t > 2.

Then f satisfies (H1). We can easily get that ‖β‖1 = 1
10 [ 1110 −

31
10e−20], ‖γ‖1 =

1
10e−20. So, we have ‖β‖1 + ‖γ‖1 < 1/5.

Let B = 2, A = e−54/1000. We get that Q1Nx 6= 0 if |x(t)| > A, for any
t ∈ [0, 2] and Q2Nx 6= 0 if |x′(t)| > A, for any t ∈ [0,∞). This means that (H2) is
satisfied.

Set C = 100. We can easily get that

aQ1N(a + bt) + bQ2N(a + bt) > 0

if |a| > C or |b| > C. So, (H3) is satisfied.
By theorem 3.1, we obtain that problem (4.1)–(4.2) has at least one solution.
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