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COMPUTATION OF RATIONAL SOLUTIONS FOR A
FIRST-ORDER NONLINEAR DIFFERENTIAL EQUATION

DJILALI BEHLOUL, SUI SUN CHENG

Abstract. In this article, we study differential equations of the form y′ =P
Ai(x)yi/

P
Bi(x)yi which can be elliptic, hyperbolic, parabolic, Riccati, or

quasi-linear. We show how rational solutions can be computed in a systematic
manner. Such results are most likely to find applications in the theory of limit
cycles as indicated by Giné et al [4].

1. Introduction

When confronting an unfamiliar differential equation, it is natural to try to find
the simplest type of solutions such as polynomial and rational solutions. Indeed,
exact solutions (such as polynomial and rational solutions) for the nonlinear differ-
ential equation

dy

dx
= P (x, y) (1.1)

are of great interests, in particular understanding the whole set of solutions and their
dynamical properties. In 1936, Rainville [7] determined all the Riccati differential
equations of the form

dy

dx
= y2 + A1(x)y + A0(x)

with A0 and A1 polynomials, which have polynomial solutions. In 1954, Campbell
and Golomb [4] provided an algorithm for finding all the polynomial solutions of
the differential equation

B0(x)
dy

dx
= A2(x)y2 + A1(x)y + A0(x)

with B0, A0, A1 and A2 polynomials. In 2006, Behloul and Cheng [1] (see also [2])
gave another algorithm for looking for the rational solutions of the equation

B0(x)
dy

dx
= An(x)yn + An−1(x)yn−1 + · · ·+ A0(x)
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with B0 and Ai polynomials. In 2011, Giné et al [4] developed new results about
‘periodic’ polynomial solutions for

dy

dx
= An(x)yn + An−1(x)yn−1 + · · ·+ A0(x) (1.2)

with Ai polynomials. Such results give rise to sharp information on the number of
polynomial limit cycles. These conclusions are important since the theory of limit
cycles is an active and difficult research area. For a concise list of references related
to limit cycles of (1.2), including the works by Abel, Briskin, Gasull, Llibre, Neto,
Lloyd, the readers is referred to [4].

Clearly, equations of the form (1.2) are among the easiest of equations of the
form (1.1). The next level of difficulty will come from studying the case when
P (x, y) is a rational function. In this paper, we are concerned with the rational
solutions of the differential equation

y′ =
An(x)yn + An−1(x)yn−1 + · · ·+ A0(x)

Bm(x)ym + Bm−1(x)ym−1 + · · ·+ B0(x)
, (1.3)

where A0, A1, . . . , An and B0, B1, . . . , Bm are (complex valued) polynomials (of one
independent complex variable) such that An and Bm are not identically zero.

By providing a systematic scheme for computing all the rational solutions of
(1.3), we hope that our results lead to estimates of the number of ‘rational limit
cycles’, more general than those in Giné et al [4], and to qualitative results for non-
linear equations of the form (1.3) but with an additional nonlinear perturbations.

As another motivation for our study, we quote a result by Malmquist [6] which
states: If the differential equation (1.3) is not one of the two forms

B0(x)
dy

dx
= A1(x)y + A0(x)

or

B0(x)
dy

dx
= A2(x)y2 + A1(x)y + A0(x)

then all its one-valued solutions must be rational. For example the equation dy
dx = y

admits ex as a one-valued solution which is not rational and the equation dy
dx = 1+y2

admits tanx as a one-valued solution which is not rational.
Clearly, equation (1.3) is only defined at places where the denominator does not

vanish. However, a root of the denominator may also be a root of the numerator
and (1.3) may still be meaningful by assigning proper values to the rational function
on the right-hand side. To avoid such technical details, we will define a polynomial
solution to be a polynomial function y = y(x) such that

y′(x){Bm(x)ym + Bm−1(x)ym−1 + · · ·+ B0(x)}
≡ An(x)yn + An−1(x)yn−1 + · · ·+ A0(x);

(1.4)

and a rational solution to be a pair of polynomials (U(x), V (x)) such that the degree
of V is greater than or equal to 1 and

(V (x)U ′(x)− U(x)V ′(x)){Bm(x)ym + · · ·+ B0(x)t}
≡ V 2(x){An(x)yn + · · ·+ A0(x)}.

(1.5)

Since the right-hand sides and the left-hand sides are polynomials, singularities are
thus avoided.
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To motivate what follows, let us consider the specific example

y′ =
y3 + 2x

2x2y + x
. (1.6)

Suppose we try to find a constant (polynomial) solution of the form y(x) = λ. Then
substituting it into the above equation, we see that

0 = 0 · {2x2λ + x} ≡ λ3 + 2x

for all x, which is impossible. Next, we try polynomial solutions with degree 1.
Then y′′(x) ≡ 0, such that

0 = y′′ =
( y3 + 2x

2x2y + x

)′ =
y′(−4x2 + 4xy3 + 3y2)

x(2xy + 1)2
− 1

x2

y(4x2 + 4xy3 + y2)
(2xy + 1)2

.

Replacing y′ by y3+2x
2x2y+x in the above equation and rearranging term,

[(−4x)y5 + (8x2 − 3)y4 + 6xy3 + (1− 4x2)y2 + (8x3 − 6x)y + (4x2)]y

≡ −8x3.
(1.7)

Thus y(x) is a factor of the polynomial x3. Hence y = λx for a nonzero number λ.
Then from (1.6),

λ(2x2λ + 1) ≡ λ3x2 + 2,

so that λ = 2. We may easily check that y(x) = 2x is indeed a solution of (1.6).
Next we may try polynomials with higher degrees of course. But we should stop

for a while and consider the existence and uniqueness of all polynomial and rational
solutions as well as schematic methods for computing them. To this end, we first
settle on a convenient notation. We will let N be the set of nonnegative integers,
N∗ the set of positive integers, and C the set of complex numbers. When G = G(x)
is a nontrivial polynomial, its degree is denoted by deg G(x), and when it is the
zero polynomial, its degree is defined to be −∞. When H = H(x, y) is a bivariate
polynomial of the form

H(x, y) = hn(x)yn + hn−1(x)yn−1 + · · ·+ h0(x)

where h0, . . . , hn are polynomials with hn not identically zero, then degy H(x, y)
is taken to be n (e.g., if H(x, y) = 3xy2 + y then degy H(x, y) = 2, although
H(0, y) = y). We will set ai = deg Ai(x) for i = 0, 1, . . . , n and bi = deg Bi(x) for
i = 0, 1, 2, . . . ,m,

P (x, y) = An(x)yn + An−1(x)yn−1 + · · ·+ A0(x), (1.8)

Q(x, y) = Bm(x)ym + Bm−1(x)ym−1 + · · ·+ B0(x). (1.9)

Let us also write An and Bm in the form

An(x) = Axan + . . . ,

Bm(x) = Bxbm + . . .

where A,B 6= 0.
The derivative of a function g(x) of one variable is denoted by g′(x) or g(1)(x) and

the higher order derivatives by g(2)(x), g(3)(x), . . . as usual and partial derivatives
of a function H(x, y) of two variables are denoted respectively by H ′

x(x, y) and
H ′

y(x, y).
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Let G = G(x) be a polynomial. We recall that the multiplicity of G at α is
defined to be 0 if α is not a root of G, and be the positive integer s if α is a
root of G with multiplicity s. Let H = H(x) be another polynomial which is
not identically zero. For the rational function F (x) = G(x)/H(x), if F is not
identically zero, its valuation vα(F ) at α is the difference of the multiplicity of F
at α and the multiplicity of G at α; otherwise, its valuation is +∞. For example,
if F (x) = x(x + 1)/(x3 − 2x2), then v0(F ) = 1 − 2 = −1, v−1(F ) = 1 − 0 = 1,
v2(F ) = 0− 1 = −1 and vα(F ) = 0 if α /∈ {−1, 0, 2}.

In the rest of our discussions, we will assume that P and Q are coprime; i.e.,
gcd(P,Q) = 1. Since n, m ∈ N, we may classify (1.3) into five mutually distinct
and exhaustive cases:

Case I: If n > m + 2, then (1.3) is said to be elliptic.
Case II: If n < m + 2 and m 6= 0, then (1.3) is said to be hyperbolic.
Case III: If n = m + 2 and m 6= 0, then (1.3) is said to be parabolic.
Case IV: If (n, m) = (2, 0), then (1.3) is said to be Riccati.
Case V: If (n, m) = (0, 0) or (1, 0), then (1.3) is said to be quasi-linear.
We intend to show the following results:

• If (1.3) is not quasi-linear, then it has a finite number of polynomial solu-
tions, and they can be computed in a systematic manner.

• If (1.3) is neither quasi-linear nor Riccati, then it has a finite number of
rational solutions.

• If (1.3) is hyperbolic or elliptic, then all its rational solutions can be gen-
erated by polynomial solutions of another differential equation of the same
form.

• If (1.3) is parabolic, we can compute all the rational solutions of (1.3)
provided we have at least one particular rational solution.

• If (1.3) is quasi-linear, then we can compute all its polynomial and rational
solutions in a systematic manner, although the number of polynomial or
rational solutions may be infinite.

• If (1.3) is Riccati, we can compute all its rational solutions provided we have
at least one particular rational solution, although the number of rational
solutions may be infinite.

2. Polynomial solutions

It is easy to determine the set of all constant polynomial solutions of (1.3). We
simply substitute y(z) = λ into (1.3) to obtain

An(x)λn + An−1(x)λn−1 + · · ·+ A0(x) ≡ 0.

By expanding the left-hand side into a polynomial in x, and then comparing coef-
ficients on both sides of the resulting equation, we may then obtain a finite system
of polynomial equations in λ:

Hi(λ) = 0, i = 1, 2, . . . , a = max{a0, a1, . . . , an}.

If an Hi is a nonzero constant polynomial, then λ cannot exist. Else, we may let
H be the greatest common divisor of H0,H1, . . . ,Ha. Then λ equals to one of the
roots of H.

Next, we seek nonconstant polynomial solutions. First note that if y = y(x)
is a polynomial solution of (1.4) with degree d ≥ 1, then deg(Aiy

i) = ai + id for
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i = 0, 1, . . . , n, deg(Biy
iy′) = bi + id + (d − 1) for i = 0, 1, . . . ,m. This motivates

us to define n + m + 1 indices f0(d), f1(d), . . . , fn+m+1(d) by

fi(d) = ai + id, i = 0, . . . , n;

fi+n+1(d) = bi + id + d− 1, i = 0, . . . ,m.

We will also let

f(d) = max{f0(d), f1(d), . . . , fn+m+2(d)}, d = 1, 2, . . . .

Lemma 2.1. If y = y(x) is a polynomial solution of (1.4) with degree d ≥ 1, then
there exists i, j ∈ {0, 1, . . . , n + m + 1} such that i < j and

fi(d) = fj(d) = f(d).

Proof. Let
y(x) = ydx

d + yd−1x
d−1 + · · ·+ y1x + y0, yd 6= 0, (2.1)

be a polynomial solution of (1.3) with degree d ≥ 1. Then deg(Aiy
i) = fi(d) for

i = 0, 1, . . . , n, and deg(Biy
iy′) = fi+n+1 for i = 0, 1, . . . ,m. Let i be the least

nonnegative integer such that fi(d) = f(d). By substituting y into (1.4), we see
that

Bm(x)y′(x)ym(x) + · · ·+ B0(x)y′(x) ≡ An(x)yn(x) + · · ·+ A0(x).

Suppose fj(d) < fi(d) for all j 6= i. If i ∈ {0, 1, . . . , n}, then by rearranging the
above identity, we see that

Qxfi(d) + W (x) ≡ 0
where W (x) is a polynomial of degree strictly less than fi(d), and Q is the product
of yi

d and the leading coefficient of the polynomial Ai. This is impossible since yd

and the leading coefficient of Ai are nonzero. If i = n+t+1 ∈ {n+1, . . . , n+m+1},
then by rearranging the above identity, we see that

Q̄xfi(d) + W̄ (x) ≡ 0

where W̄ (x) is a polynomial of degree strictly less than fi(d), and Q̄ is the product
of dydy

t
d and the leading coefficient of the polynomial Bt. Again, this is impossible.

The proof is complete. �

In view of Lemma 2.1, we may say that a positive integer d is feasible if f(d) is
attained by two of the indices f0(d), f1(d), . . . , fn+m+1(d). Let us denote the set of
feasible integers by Ω.

Lemma 2.2. The set Ω of feasible integers is bounded from above.

Proof. There are several cases. First suppose n > m + 1. Then for all sufficiently
large d, nd + an > md + bm + d− 1 and

f(d)

= max
{
a0, a1 + d, . . . , an + nd; b0 + d− 1, b1 + d + d− 1, . . . , bm + md + d− 1

}
= max{an + nd, bm + md− 1}
= max{an + nd}
= fn(d)

> max{f0(d), f1(d), . . . , fn−1(d); fn+1(d), . . . , fn+m+1(d)}.



6 D. BEHLOUL, S. S. CHENG EJDE-2011/121

Thus we may let d0 be the first positive integer such that the above chain of
inequalities hold for all d ≥ d0. If t is feasible, then by Lemma 2.1, t < d0.

Suppose n < m + 1. Then for all sufficiently large d, nd + an < md + bm + d− 1
and

f(d) = fn+m+1(d) > max{f0(d), f1(d), . . . , fn+m(d)} (2.2)
for sufficiently large d. Let d0 be the first positive integer such that the above chain
of inequalities hold for all d ≥ d0. If t is feasible, then by Lemma 2.1, t < d0.

Suppose n = m + 1 and an > bm − 1. Then nd + an > md + bm + d − 1 for all
d, and for all sufficiently large d,

f(d) = fn(d) > max{f0(d), f1(d), . . . , fn−1(d); fn+1(d), . . . , fn+m+1(d)}.
As in the first case, we let d0 be the first positive integer such that the above chain
of inequalities hold for all d ≥ d0. If t is feasible, then by Lemma 2.1, t < d0.

Suppose n = m + 1 and an < bm − 1. Then nd + an < md + bm + d − 1 for
all d, and for all sufficiently large d, (2.2) holds. By letting d0 be the first positive
integer such that the above chain of inequalities hold for all d ≥ d0, we see that a
feasible integer t satisfies t < d0.

Finally, suppose n = m+1 and an = bm−1. If y(x) defined by (2.1) is a solution,
then the leading coefficient yd satisfies the equation Bym

d dyd = Ayn
d . Thus yd = 0

or Bd = A. The former case is not possible, and therefore A/B = d. In other
words, d is feasible only if d = A/B. The proof is complete. �

Lemma 2.3. Let y = y(x) be a polynomial solution of (1.3). Then for each k ∈ N∗,
we have

y(k)(x) =
Pk(x, y(x))

(Bmym(x) + · · ·+ B0)rk
,

where each Pk is a bivariate polynomial, P1 = P and rk ∈ N.If (1.3) is not quasi-
linear, then Pk(x, y) is not identically zero for each k.

Proof. There are several cases.
Case 1: Equation (1.3) is quasi-linear. Then either

y′ =
A0(x)
B0(x)

, or y′ =
A1(x)y + A0(x)

B0(x)
.

In either cases, we may easily find y(k) by induction and show that it is not neces-
sarily of the required form, i.e. Pk(x, y(x)) ≡ 0. (For example, from the equation
xy′ = y one has y′ + xy′′ = y′, so that xy′′ = 0.)

Case 2: Equation (1.3) has the form

B0y
′ = Anyn + · · ·+ A0, n ≥ 2, B0 6= 0

and An 6= 0. Then

Bk
0y(k) = αkAk

nyk(n−1)+1 + Rk(x, y),

where degy Rk < k(n− 1) + 1 and αk =
∏k−1

i=0 (i(n− 1) + 1).
The proof is by induction on k. For k = 1,

B0y
′ = α1Anyn + R1(x, y),

where R1(x, y) = An−1y
n−1 + · · ·+ A0 and α1 = 1. Let us suppose our assertion is

true for k; i.e.,

Bk
0y(k) = αkAk

nyk(n−1)+1 + Rk(x, y), degy Rk < k(n− 1) + 1.



EJDE-2011/121 COMPUTATION OF RATIONAL SOLUTIONS 7

By differentiating the two members with respect to x, we obtain

kB′
0B

k−1
0 y(k) + Bk

0y(k+1) = (kn− k + 1)αky′ykn−k +
d

dx
(Rk(x, y))

while multiplying by B0,

kB′
0B

k
0y(k) + Bk+1

0 y(k+1) = αk+1B0y
′ykn−k + B0

d

dx
(Rk(x, y)).

Using the induction hypothesis and (1.3),

kB′
0αk(Ak

nyk(n−1)+1 + Rk(x, y)) + Bk+1
0 y(k+1)

= αk+1(Anyn + · · ·+ A0)ykn−k + B0
d

dx
(Rk(x, y)).

It follows that

Bk+1
0 y(k+1) = αk+1A

k+1
n ykn+n−k + Rk+1(x, y),

where

Rk+1(x, y) = B0
d

dx
(Rk(x, y)) + αk+1(An−1y

kn+n−k−1 + · · ·+ A0y
kn−k)

− kB′
0(αkykn−k+1 + Rk(x, y)).

We may now conclude that

degy(Rk+1(x, y)) < kn + n− k.

Case 3: Equation (1.3) has the form y′ = P (x, y)/Q(x, y) where gcd(P,Q) =
1and degy Q ≥ 1. We can write y′ = P/RsU , where Q = RsU , R is irreducible,
degy R ≥ 1, gcd(R,U) = 1 and s ∈ N∗. We will prove (by induction) that for all
k ∈ N, one has

y(k) =
Pk

RtkUrk
and gcd(R,Pk) = 1 (2.3)

where tk ∈ N∗ and rk ∈ N∗. Then, since gcd(R,Pk) = 1, Pk(x, y) is not identically
zero for all k.

Now, for k = 0 , since R is irreducible and gcd(P,Q) = 1, we see that gcd(R,P ) =
1. We take P0 = P , t0 = s and r0 = 1. Then the result is true for k = 0.

Let us suppose that our result is true for the order k, i.e.,

y(k) =
Pk

RtkUrk
and gcd(R,Pk) = 1

where tk ∈ N∗ and rk ∈ N∗. By differentiating both sides with respect to x, and
replacing y′ by P/RsU , we have

y(k+1) =
(
((Pk)′yRU − tkPkR′

yU + rkPkRU ′
y)P

+ RsU((Pk)′xRU − tkPkR′
xU + rkPkRU ′

x)
)/

(Rtk+1+sUrk+2)

≡ Pk+1

Rtk+1Urk+1
.
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It remains to prove that gcd(R,Pk+1) = 1. We have

Pk+1 = ((Pk)′yRU − tkPkR′
yU + rkPkRU ′

y)P

+ RsU((Pk)′xRU − tkPkR′
xU + rkPkRU ′

x)

=
{
((Pk)′yU + rkPkU ′

y)P + Rs−1U((Pk)′xRU − tkPkR′
xU + rkPkRU ′

x)
}
R

− tkPkR′
yUP.

Let

T = ((Pk)′yU + rkPkU ′
y)P + Rs−1U((Pk)′xRU − tkPkR′

xU + rkPkRU ′
x)

which is a bivariate polynomial T (x, y), and W = −tkPkR′
yUP which is also a

bivariate polynomial W (x, y). Then we may write

Pk+1 = TR + W.

First gcd(R,W ) = 1, because gcd(R,Pk) = 1 is the induction hypothesis, then
gcd(R,R′

y) = 1 since R is irreducible, and gcd(R,U) = 1, gcd(R,P ) = 1 by defini-
tion of R and U .

Second gcd(R,Pk+1) = 1, for otherwise if gcd(R,Pk+1) 6= 1, then in view of the
fact that R is irreducible, R divides Pk+1. But W = Pk+1 − TR, thus R divides
W , which is a contradiction. We may now conclude that gcd(R,Pk+1) = 1. The
proof is complete. �

We are now able to prove the following fundamental theorem.

Theorem 2.4. If the differential equation (1.3) is not quasi-linear, then it admits
a finite number of polynomial solutions, and they can be computed in a systematic
manner.

Proof. As explained before, we may easily determine the constant polynomial solu-
tions of (1.3). Next, by Lemma 2.2, the set of feasible integers is bounded above, say,
by δ. For each polynomial y = y(x) of the form ( 2.1) and of degree d ≤ δ, we calcu-
late Pd+1 in Lemma 2.3. Then we are led to the algebraic identity Pd+1(x, y(x)) ≡ 0.
This algebraic equation can be written as Dσyσ(x) + · · · + D1y(x) ≡ D0, where
each Di is a polynomial in x, σ ∈ N∗, and D0 as well as Dσ are not identically zero.
Thus the polynomial y is a factor of D0. Now we may replace all possible factors
of D0 into (1.3), and apply the method of undetermined coefficients to find y. The
proof is complete. �

An example will illustrate the above proof.

Example 2.5. Consider the equation

y′ =
y3 + 2x

2x2y + x
, (2.4)

where A3(x) = 1, A2(x) = 0, A1(x) = 0, A0(x) = 2x, B1(x) = 2x2 and B0(x) = x.
This equation is not quasi-linear, we can find all its polynomial solutions. First of
all, constant solutions are not possible since substituting y = λ into it yielding

λ3 + 2x ≡ 0,
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which is impossible. Next, we may easily see that

f0(d) = a0 + 0 · d = 1,

f1(d) = a1 + d = 0 + d = d,

f2(d) = a2 + 2d = 0 + 2d = 2d,

f3(d) = a3 + 3d = 0 + 3d = 3d,

f4(d) = b0 + 0 · d + d− 1 = d,

f5(d) = b1 + d + d− 1 = 1 + 2d,

f(d) = max{3d, 1 + 2d} = 3d.

Since 1 + 2d < 3d for d > 1, we see further that Ω = {1}. Let y be a polynomial
solution of degree 1. Then as we have already seen in the Introduction, (1.7) must
hold, and y = 2x is a polynomial solution and hence is also the unique polynomial
solution of (2.4).

3. Rational solutions

We now turn to rational solutions of (1.3).

Theorem 3.1. If (1.3) is elliptic, then any rational solution of (1.3) is of the form
y = u/An where u is a polynomial; and if (1.3) is hyperbolic or (n, m) = (1, 0),
then there exists % ∈ N (which can be determined) such that any rational solution
of (1.3) is of the form y = u/B%

m, where u is a polynomial.

Before we turn to the proof, recall from Taylor’s expansion that

An(x) = An(x0) + · · ·+ A(k)
n (x0)

(x− x0)k

k!
+ · · ·+ A(an)

n (x0)
(x− x0)an

an!
,

Bm(x) = Bm(x0) + · · ·+ B(k)
m (x0)

(x− x0)k

k!
+ · · ·+ B(bm)

m (x0)
(x− x0)bm

bm!
.

Furthermore, if x0 is a root of An or Bm, then we can write

An(x) = A(α)
n (x0)

(x− x0)α

α!
+ · · ·+ A(an)

n (x0)
(x− x0)an

an!
, α = vx0(An),

Bm(x) = B(β)
m (x0)

(x− x0)β

β!
+ · · ·+ B(bm)

m (x0)
(x− x0)bm

bm!
, β = vx0(Bm).

Proof of Theorem 3.1. First note that if u is a rational solution of an elliptic equa-
tion (1.3), then a pole of u is a root of An. Indeed, let α be a pole of u with order
k > 0. If An(α) is not null, then the valuation of P (x, u) (as a function of x) at α
is exactly −nk and the valuation of Q(x, y)y′ (as a function of x) at α is at least
−mk−k− 1. Since n > m+2, the equality Q(x, u)u′ = P (x, u) is then impossible.

Now let y be a rational solution of (1.3). Then it can be written as u/An where
u is rational. From (1.3), we have(

Bm(
u

An
)m + · · ·+ B0

)(u′An − uA′
n

A2
n

)
= An(

u

An
)n + · · ·+ A1

u

An
+ A0.

But n− 1 ≥ m + 2, thus

(An−m−3
n Bmum + · · ·+ An−3

n B0)(u′An − uA′
n) = un + · · ·+ An

nA1
u

An
+ An−1

n A0,



10 D. BEHLOUL, S. S. CHENG EJDE-2011/121

and

(An−m−2
n Bmum + · · ·+ An−2

n B0)u′

= un + · · ·+ (An−m−3
n Bmum+1 + · · ·+ An−3

n B0u)A′
n + · · ·+ An−1

n A0,

so that (1.3) becomes the so called “reduced equation”

(B̃mum + · · ·+ B̃0)u′ = un + Ãn−1u
n−1 + · · ·+ Ã0 (3.1)

where B̃i, Ãi are polynomials and B̃m is not identically zero. Note that (3.1) is
also elliptic. Thus by what we have discussed above, a pole α of u as a solution of
(3.1) must be a root of the leading coefficient of the right hand side. But since this
coefficient is 1, u cannot have any poles. We conclude that u is a polynomial.

Suppose (1.3) is hyperbolic. Let y be a rational function and α a pole of order k
> 0 of y. If Bm(α) is not null, then the valuation of Q(x, y)y′ (as a function of x)
at α is exactly −mk−k−1 and the valuation of P (x, y) (as a function of x) at α is
at least −nk. Since n ≤ m + 1, the equality Q(x, y)y′ = P (x, y) is then impossible,
unless Bm(α) = 0. We may conclude that any rational solution of (1.3) is of the
form u/Br

mwhere u is a polynomial and r ∈ N.
Let x0 a root of Bm of order vx0(Bm) ∈ N∗ , and y a rational solution with the

pole x0:

y =
c

(x− x0)−vx0 (y)
+ R,

where c ∈ C\{0}, R is rational and vx0(R) > vx0(y).
Let us show that there exists k′x0

∈ N (which can be determined) such that

−vx0(y) ≤ k′x0
.

First there exists a least integer kx0 ∈ N∗ which can easily be determined, such
that for any integer k ≥ kx0 , we have

nk − vx0(An) > ik − vx0(Ai)

for i = 0, . . . , n− 1, and

mk − vx0(Bm) + k + 1 > ik − vx0(Bi) + k + 1

for i = 0, . . . ,m− 1. (In practice one uses mk − vx0(Bm) > ik − vx0(Bi).)
Next, if m + 1 > n, then mk − vx0(Bm) + k + 1 > nk − vx0(An) so that (m +

1− n)k + 1 > vx0(Bm)− vx0(An) for sufficiently large k.
If n < m + 1 then −vx0(y) ≤ kx0 , and we may take k′x0

= kx0

If n = m + 1 and vx0(An) 6= vx0(Bm)− 1, then −vx0(y) ≤ kx0 and we may take
k′x0

= kx0

If n = m+1 and vx0(An) = vx0(Bm)−1, then we put vx0(An) = α, vx0(Bm) = β
and vx0(y) = γ, so that replacing y by (c(x− x0)γ + R)in (1.3) and using Taylor’s
expansion of An and Bm at x0, we have (Bmym + . . . )y′ = Anyn + . . . . Hence((

B(β)
m (x0)

(x− x0)β

β!
+ . . .

)
(cm(x− x0)mγ + . . . ) + . . .

)
(cγ(x− x0)γ−1 + R′)

=
(
A(α)

n (x0)
(x− x0)α

α!
+ . . .

)
(cn(x− x0)nγ) + . . . ) + . . .
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and

B(β)
m (x0)

(x− x0)β

β!
cm(x− x0)mγcγ(x− x0)γ−1 + . . .

= A(α)
n (x0)

(x− x0)α

α!
cn(x− x0)nγ + . . . ,

so that

B
(β)
m (x0)

β!
cm+1γ(x− x0)mγ+β+γ−1 + · · · = A

(α)
n (x0)
α!

cn(x− x0)α+nγ + . . . .

But n = m + 1 and α = β − 1, thus

B
(α+1)
m (x0)
(α + 1)!

cnγ(x− x0)α+nγ + · · · = A
(α)
n (x0)
α!

cn(x− x0)α+nγ + . . . .

Comparing coefficients of (x− x0)α+nγ , we see that

B
(α+1)
m (x0)
(α + 1)!

cnγ =
A

(α)
n (x0)
α!

cn,

which, in view of c 6= 0, implies that

γ = (α + 1)
A

(α)
n (x0)

B
(α+1)
m (x0)

.

If −γ is an integer and is greater than kx0 , then we may take k′x0
= −γ, else we

take k′x0
= kx0 . Let us show that % = max{k′xi

: xi is a root of Bm}, where k′xi
are

defined as above.
Let x0, x1, . . . , xh be the roots of Bmand y a rational solution of (1.3). We know

that any pole of y is a root of Bm. Then

y =
p1(x)

(x− x0)−vx0 (y)(x− x1)−vx1 (y) . . . (x− xh)−vxh
(y)

where p1(x) is a polynomial (eventually some vxi(y) can be equal to zero). Since
−vxi(y) ≤ k′xi

for i = 1, . . . , h, multiplying the last fraction by

(x− x0)vx0 (y)+k′
x0 (x− x1)vx1 (y)+k′

x1 . . . (x− xh)vxh
+k′

xh

(x− x0)vx0 (y)+k′
x0 (x− x1)vx1 (y)+k′

x1 . . . (x− xh)vxh
+k′

xh

≡ 1,

we obtain

y =
p2(x)

(x− x0)k′
x0 (x− x1)k′

x1 . . . (x− xh)k′
xh

where p2(x) is a polynomial.
Multiplying the above fraction by

(x− x0)%′−k′
x0 (x− x1)%′−k′

x1 . . . (x− xh)%′−k′
xh

(x− x0)%′−k′
x0 (x− x1)%′−k′

x1 . . . (x− xh)%′−k′
xh

≡ 1

where %′ = max{k′xi
}, we obtain

y =
p3(x)

[(x− x0)(x− x1) . . . (x− xh)]%′ ,

where p3(x) is a polynomial. But

Bm(x) = B(x− x0)vx0 (Bm)(x− x1)vx1 (Bm) . . . (x− xh)vxh
(Bm),



12 D. BEHLOUL, S. S. CHENG EJDE-2011/121

if we multiply the last fraction by

B
%′

(x− x0)(vx0 (Bm)−1)%′
(x− x1)(vx1 (Bm)−1)%′

. . . (x− xh)(vxh
(Bm)−1)%′

B%′
(x− x0)(vx0 (Bm)−1)%′(x− x1)(vx1 (Bm)−1)%′

. . . (x− xh)(vxh
(Bm)−1)%′ ≡ 1,

we obtain

y =
p4(x)

B%′
m

,

where p4(x) is a polynomial. We now take % = %′ = max{k′xi
: xi is a root of Bm}.

�

We remark that we can also take % = LCM{k′xi
: xi is a root of Bm} or any

integer s greater than %′. When multiplying the last fraction by

Bs−%′

m

Bs−%′
m

≡ 1,

we obtain

y =
p5(x)
Bs

m

,

where p5(x) is a polynomial.

Example 3.2. Equation (2.4) is elliptic. Hence any rational solution is of the form
y(x) = u(x)/A3(x) = u(x) for some polynomial u. By Example 2.5, y(x) = 2x is
the unique rational solution of (2.4).

Example 3.3. Consider the equation

y′ =
xy2 + y

y3 + x
. (3.2)

which is hyperbolic. Since B3 = 1, its rational solutions are equal to its polynomial
solutions. The only constant polynomial solution is y(x) = 0. Furthermore, since
Ω = {1}, then if y(x) is a polynomial solution of degree 1, we obtain from (3.2)
that

y′′ = y
y4 − 1

(y3 + x)2
+

y′

(y3 + x)2
(2x2y − xy4 + x− 2y3). (3.3)

Replacing y′ by xy2+y
y3+x in (3.3), we see that

− y6 + x2y4 + 2xy3 + 3y2 + (−2x3)y + (−3x2) = 0; (3.4)

that is,
[−y5 + x2y3 + 2xy2 + 3y + (−2x3)]y = 3x2.

One concludes that y divides 3x2. Thus y = λx where λ is some nonzero number.
Replacing y by λx in (3.2), we have

λ =
x2λ2 + λ

λ3x2 + 1
.

Thus λ4 = λ2 i.e. λ = 1,−1. In conclusion, 0, x and −x are all the rational
solutions of (3.2).
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Example 3.4. Consider the equation

y′ =
y3 − 1
xy2 − 1

which is a hyperbolic equation, we can then compute all its rational solutions. By
Theorem 3.1, since x0 = 0 is the only root of order 1 of Bm(x) = x, we know that
y = u/x% where u is a polynomial and % is determined as in the proof of Theorem
3.1. More precisely, let

y =
c

x−v0(y)
+ R,

where c ∈ C\{0}, R is rational and v0(R) > v0(y).
Let us find k0 ∈ N such that for any integer k ≥ k0, we have

3k − v0(A3) > ik − v0(Ai)

for i = 0, 1, 2 and
2k − v0(B2) > ik − v0(Bi)

for i = 0, 1.
Since A2 = A1 = B1 ≡ 0, we see that v0(A2) = v0(A1) = v0(B1) = +∞, and

v0(A3) = 0 = α, v0(A0) = 0, v0(B2) = 1 = β, v0(B0) = 0. Therefore, it is clear
that k0 = 1.

Here n = m + 1 = 3 and v0(A3) = v0(B2) − 1 = 0, then put v0(y) = γ, so that
replacing y by (cxγ + R)in (1.3) , as in proof of Theorem 3.1, we obtain

γ = (α + 1)
A

(α)
n (x0)

B
(α+1)
m (x0)

= 1

since α = 0, n = 3, m = 2, x0 = 0, A3(0) = 1 and B
(1)
2 (0) = 1. Since γ > 0, one

takes % = k0 = 1.
The reduced equation satisfied by the polynomial u is

u′ =
2u3 − xu− x3

xu2 − x2
. (3.5)

Here Ω = {1, 2}. Then u(3) = 0. By differentiating both sides of ( 3.5), we obtain

u′′ =
(2u4 − 5u2x + 2ux3 + x2)u′

x(x− u2)2
− (2u5 − 4u3x + 2u2x3 + ux2 − x4)

x2(x− u2)2
.

Replacing u′ by 2u3−xu−x3

xu2−x2 , we see that

u′′ =
2(−u7 + 3u5x− u3x2 − 3u2x4 + ux6 + x5)

x2(x− u2)3
.

By differentiating both sides again, we obtain

u(3) =
(u8 − 4u6x + 12u4x2 − 12u3x4 + 5u2x6 − 3u2x3 + x7)u′

x2(x− u2)4

+
2u(−2u8 + 8u6x− 12u4x2 + 6u3x4 − 4u2x6 + 3u2x3 + x7)

x3(x− u2)4
.

If we replace u′ by 2u3−xu−x3

xu2−x2 and u(3) by 0 in the above equation, we see that

0 = 2u11 − 11xu9 + x3u8 + 12x2u7 + 8x4u6 − (2x6 + 12x3)u5

+ 12x5u4 + (3x4 − 19x7)u3 + (5x9 − 3x6)u2 + 3x8u + x10.
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We may conclude that u divides x10. Thus y is a constant function or u = λx
or u = λx2, where λ ∈ C\{0}. It is clear that (3.5) has non-constant solutions
only, because replacing y by a constant λ in (3.5), we obtain for all x ∈ C that
2λ3 − xλ− x3 = 0 which is impossible. If u = λx then

λ =
2(λx)3 − x(λx)− x3

x(λx)2 − x2
;

i.e., λ3 = 1. One concludes that u = x, xe
2iπ
3 , xe

4iπ
3 . If u = λx2 then

2λx =
2(λx2)3 − x(λx2)− x3

x(λx2)2 − x2
;

i.e., λ = 1. One concludes that u = x2. Finally y = 1, e
2iπ
3 , e

4iπ
3 or x.

4. The parabolic case

Theorem 4.1. Let us consider the differential equation

y′ =
Am+2y

m+2 + · · ·+ A0

Bmym + · · ·+ B0
, (4.1)

where m ∈ N∗, Ai, Bi are polynomials such that Am+2 and Bm are not identically
zero, and Am+2y

m+2 + · · · + A0 and Bmym + · · · + B0 are coprime. Then (4.1)
admits a finite number of rational solutions.

Proof. There are two cases.
Case 1: Suppose A0 = 0, (i.e. y = 0 is a solution). Then B0 6= 0. Let z = 1/y,

equation (4.1) becomes

z′ = −Am+2 + · · ·+ A1z
m+1

Bm + · · ·+ B0zm
, (4.2)

which is hyperbolic. Thus equation (4.1) admits a finite number of rational solu-
tions.

Case 2: Suppose A0 6= 0. If (4.1) admits a rational solution f . If z = y − f ,
equation (4.1) becomes

z′ =
Cm+2z

m+2 + · · ·+ C1z

Dmzm + · · ·+ D0
, (4.3)

where Ci, Di are polynomials, C0 = 0 and D0 is not identically zero. This is
exactly the first case; i.e., z = 0 is a solution. Let ϕ = 1

z then (4.1) becomes
hyperbolic which has a finite number of rational solutions ϕ. But ϕ = 1

z = 1
y−f ,

thus y = 1
ϕ + f . �

As a corollary, we can compute all the rational solutions of (4.1) if we have at
least one particular rational solution of (4.1).

Example 4.2. Consider the equation

y′ =
y4 − y

−y2 + x
. (4.4)

This equation is parabolic, we can compute all its polynomial solutions. Further-
more, if we find a polynomial solution of (4.4), we can compute all its rational
solutions. Since Ω = ∅, we only look for constant solutions. This leads us to y′ = 0,
and y4 − y = 0. Thus y = 0, 1, e2iπ/3, e4iπ/3. We have four constant solutions of
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(4.4). Let z = 1/y (as in the proof of Theorem 4.1, z = 1/(y − f) with f = 0).
From (4.4), we have

z′ =
z3 − 1
xz2 − 1

, (4.5)

which is the same equation in Example 3.4. In conclusion, 0, 1, e2iπ/3, e4iπ/3 and
1/x are the rational solutions of (4.4).

5. The quasi-linear and Riccati cases

Suppose first that (1.3) is quasi-linear. It suffices to consider the equation

B0y
′ = A1y + A0. (5.1)

We may first determine δ (the upper bound of deg y) by Lemma 2.1. Replacing y
by yδx

δ + · · ·+ y0 in (5.1), we obtain

B0(δyδx
δ−1 + · · ·+ y1) = A1(yδx

δ + · · ·+ y0) + A0.

Then rearranging terms in the resulting equation, we obtain

Klx
l + Kl−1x

l−1 + · · ·+ K0 = 0,

where each Ki may depend on y0, y1, . . . , yδ, which is equivalent to following linear
system: Kl = Kl−1 = · · · = K0 = 0. After solving this system, we obtain yi.

Next let us compute rational solutions of (5.1). If A1 ≡ 0, by means of the
(classical) partial fraction decomposition, we see that

y′ =
A0

B0
= p(x) +

∑
d,α

c(d, α)
(x− α)d

,

where p(x) is a polynomial, c(d, α) ∈ C and the sum is over the set of roots α of B0

with multiplicity d. Using direct integration, we see that a solution y is rational if
and only if c(1, α) = 0 for all α.

If A1 6= 0, by Theorem 3.1, there exits % ∈ N such that y = u/B%
0 , where u is a

polynomial. Replacing y by u/B%
0 in (5.1), we obtain

B0u
′ = (A1 + %B′

0)u + B%
0A0.

We may then determine u.
Note that the number of polynomial or rational solutions of (5.1) may not be

finite. As an example, the equation

xy′ = y + x2,

has polynomial solutions of the form x2 + λx where λ is an arbitrary complex
number. As another example, the equation

y′ =
1
x2

has rational solutions of the form − 1
x +λ where λ is an arbitrary complex number.

We now suppose (1.3) is Riccati. It suffices to consider the equation

B0y
′ = A2y

2 + A1y + A0 (5.2)

By Theorem 2.4, we can compute all its polynomial solutions (finite number). If
we have a rational solution f of (5.2), then by letting z = 1/(y − f), we obtain

−B0z
′ = (2fA2 + A1)z + A2,
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which is a quasi-linear equation. Again, we remark that the number of rational
solutions of (5.2) may not be finite. For example, all solutions of the Riccati
equation y′ = −y2 are of the form

y =
1

x + λ

where λ is an arbitrary complex number.
As our final remark. we can find in [5, Chapter I] elementary methods of in-

tegration of classical ODE which can be used to find the desired solutions in this
section.
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