Electronic Journal of Differential Equations, Vol. 2011 (2011), No. 122, pp. 1-6. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

PICONE'S IDENTITY FOR THE P-BIHARMONIC OPERATOR WITH APPLICATIONS

JAROSLAV JAROŠ

Abstract

In this article, a Picone-type identity for the weighted p-biharmonic operator is established and comparison results for a class of half-linear partial differential equations of fourth order based on this identity are derived.

1. Introduction

The purpose of this article is to present a Picone-type identity for the weighted p-biharmonic operator extending the known formula for a pair of ordinary iterated Laplacians with positive weights a and A which says that if $u, v, a \Delta u$ and $A \Delta v$ are twice continuously differentiable functions with $v(x) \neq 0$, then

$$
\begin{align*}
& \operatorname{div}\left[u \nabla(a \Delta u)-a \Delta u \nabla u-\frac{u^{2}}{v} \nabla(A \Delta v)+A \Delta v \nabla\left(\frac{u^{2}}{v}\right)\right] \\
& =-\frac{u^{2}}{v} \Delta(A \Delta v)+u \Delta(a \Delta u)+(A-a)(\Delta u)^{2} \tag{1.1}\\
& \quad-A\left(\Delta u-u \frac{\Delta v}{v}\right)^{2}+2 A \frac{\Delta v}{v}\left|\nabla u-\frac{u}{v} \nabla v\right|^{2}
\end{align*}
$$

(see [3]). Here $\operatorname{div}, \nabla, \Delta$ are the usual divergence, nabla and Laplace operators and $|\cdot|$ denotes the Euclidean length of a vector in \mathbb{R}^{n}. In [3, the integrated form of 1.1 was used to obtain a variety of qualitative results (including Sturmian comparison theorems, integral inequalities of the Wirtinger type and lower bounds for eigenvalues) for a pair of linear elliptic partial differential equations of the form

$$
\begin{align*}
& \Delta(a(x) \Delta u)-c(x) u=0 \tag{1.2}\\
& \Delta(A(x) \Delta v)-C(x) v=0 \tag{1.3}
\end{align*}
$$

(or for the inequalities $u[\Delta(a(x) \Delta u)-c(x) u] \leq 0$ and $\Delta(A(x) \Delta v)-C(x) v \geq 0$) considered in a bounded domain $G \subset \mathbb{R}^{n}$ with a piecewise smooth boundary ∂G.

We extend the formula $\sqrt{1.1})$ to the case where $\Delta(a \Delta u)$ and $\Delta(A \Delta v)$ are replaced by the more general weighted p-biharmonic operators $\Delta\left(a|\Delta u|^{p-2} \Delta u\right)$ and

[^0]$\Delta\left(A|\Delta v|^{p-2} \Delta v\right), p>1$, respectively, and show that some of results in 3] remain valid for half-linear partial differential equations
\[

$$
\begin{align*}
& \Delta\left(a(x)|\Delta u|^{p-2} \Delta u\right)-c(x)|u|^{p-2} u=0 \tag{1.4}\\
& \Delta\left(A(x)|\Delta v|^{p-2} \Delta v\right)-C(x)|v|^{p-2} v=0 \tag{1.5}
\end{align*}
$$
\]

which reduce to 1.2 and 1.3 when $p=2$.
This article is organized as follows. In Section 2, we establish several forms of the desired generalization of Picone-Dunninger formula. Next, in Section 3, we illustrate applications of the basic identities by deriving Sturmian comparison theorems and other qualitative results concerning differential equations and inequalities involving the weigthed p-bilaplacian.

For related results in the particular case $n=1$ see 4] (general $p>1$) and [5] $(p=2)$. Picone identities for various kinds of half-linear partial differential equations of the second order and their applications can be found in the monographs [1, 6].

2. Picone's Identity

Let G be a bounded domain in \mathbb{R}^{n} with a piecewise smooth boundary ∂G and let $a \in \mathrm{C}^{2}\left(\bar{G}, \mathbb{R}_{+}\right), A \in \mathrm{C}^{2}\left(\bar{G}, \mathbb{R}_{+}\right), c \in \mathrm{C}(\bar{G}, \mathbb{R})$ and $C \in \mathrm{C}(\bar{G}, \mathbb{R})$ where $\mathbb{R}_{+}=(0, \infty)$. For a fixed $p>1$ define the function $\varphi_{p}: \mathbb{R} \rightarrow \mathbb{R}$ by $\varphi_{p}(s)=|s|^{p-2} s$ for $s \neq 0$ and $\varphi_{p}(0)=0$, and consider partial differential operators of the form

$$
\begin{aligned}
l[u] & =\Delta\left(a(x) \varphi_{p}(\Delta u)\right)-c(x) \varphi_{p}(u) \\
L[v] & =\Delta\left(A(x) \varphi_{p}(\Delta v)\right)-C(x) \varphi_{p}(v)
\end{aligned}
$$

with the domains $\mathcal{D}_{l}(G)$ (resp. $\left.\mathcal{D}_{L}(G)\right)$ defined to be the sets of all functions u (resp. v) of class $\mathrm{C}^{2}(\bar{G}, \mathbb{R})$ such that $a(x) \varphi_{p}(u)\left(\right.$ resp. $\left.A(x) \varphi_{p}(v)\right)$ are in $\mathrm{C}^{2}(G, \mathbb{R}) \cap$ $\mathrm{C}(\bar{G}, \mathbb{R})$.

Also, denote by Φ_{p} the form defined for $X, Y \in \mathbb{R}$ and $p>1$ by

$$
\Phi_{p}(X, Y):=X \varphi_{p}(X)+(p-1) Y \varphi_{p}(Y)-p X \varphi_{p}(Y)
$$

From the Young inequality it follows that $\Phi_{p}(X, Y) \geq 0$ for all $X, Y \in \mathbb{R}$ and the equality holds if and only if $X=Y$.

We begin with the following lemma which can be verified by a routine computation. We call it a weaker form of Picone's identity because of the relative weak hypothesis that u is an arbitrary twice continuously differentiable function which does not need to satisfy any differential equation or inequality nor even to be in the domain of the operator l.

Lemma 2.1. If $u \in \mathrm{C}^{2}(\bar{G}, \mathbb{R}), v \in \mathcal{D}_{L}(G)$ and v does not vanish in G, then

$$
\begin{align*}
& \operatorname{div}\left[-\frac{|u|^{p}}{\varphi_{p}(v)} \nabla\left(A \varphi_{p}(\Delta v)\right)+A \varphi_{p}(\Delta v) \nabla\left(\frac{|u|^{p}}{\varphi_{p}(v)}\right)\right] \\
& =-\frac{|u|^{p}}{\varphi_{p}(v)} L[v]+A|\Delta u|^{p}-C|u|^{p}-A \Phi_{p}\left(\Delta u, u \frac{\Delta v}{v}\right) \tag{2.1}\\
& \quad+p(p-1) A|u|^{p-2} \varphi_{p}\left(\frac{\Delta v}{v}\right)\left|\nabla u-\frac{u}{v} \nabla v\right|^{2} .
\end{align*}
$$

An integration of 2.1 with the use of the divergence theorem gives the Picone identity in the integral form

$$
\begin{align*}
& -\int_{\partial G} \frac{|u|^{p}}{\varphi_{p}(v)} \frac{\partial\left(A \varphi_{p}(\Delta v)\right)}{\partial \nu} d s+\int_{\partial G}(p-1) A \varphi_{p}\left(\frac{\Delta v}{v}\right)\left[\frac{\varphi_{p}}{v}\left(v \frac{\partial u}{\partial \nu}-u \frac{\partial v}{\partial \nu}\right)\right] d s \\
& +\int_{\partial G} A \varphi_{p}\left(\frac{\Delta v}{v}\right) \varphi_{p}(u) \frac{\partial u}{\partial \nu} d s \\
& =-\int_{G} \frac{|u|^{p}}{\varphi_{p}(v)} L[v] d x+\int_{G}\left[A|\Delta u|^{p}-C|u|^{p}\right] d x \tag{2.2}\\
& \quad+\int_{G}\left[p(p-1) A|u|^{p-2} \varphi_{p}\left(\frac{\Delta v}{v}\right)\left|\nabla u-\frac{u}{v} \nabla v\right|^{2}-A \Phi_{p}\left(\Delta u, u \frac{\Delta v}{v}\right)\right] d x
\end{align*}
$$

where $\partial / \partial \nu$ denotes the exterior normal derivative, which extends the formula in [3, Theorem 2.1].

Adding to 2.1 the obvious identity

$$
\operatorname{div}\left[u \nabla\left(a \varphi_{p}(\Delta u)\right)-a \varphi_{p}(\Delta u) \nabla u\right]=u l[u]-a|\Delta u|^{p}+c|u|^{p},
$$

which holds for any $u \in \mathcal{D}_{l}(G)$, yields the following stronger form of Picone's formula.

Lemma 2.2. If $u \in \mathcal{D}_{l}(G), v \in \mathcal{D}_{L}(G)$ and $v(x) \neq 0$ in G, then

$$
\begin{align*}
& \operatorname{div}\left[u \nabla\left(a \varphi_{p}(\Delta u)\right)-a \varphi_{p}(\Delta u) \nabla u-\frac{|u|^{p}}{\varphi_{p}(v)} \nabla\left(A \varphi_{p}(\Delta v)\right)\right. \\
& \left.\quad+A \varphi_{p}(\Delta v) \nabla\left(\frac{|u|^{p}}{\varphi_{p}(v)}\right)\right] \tag{2.3}\\
& =-\frac{|u|^{p}}{\varphi_{p}(v)} L[v]+u l[u]+(A-a)|\Delta u|^{p}+(c-C)|u|^{p}-A \Phi_{p}\left(\Delta u, u \frac{\Delta v}{v}\right) \\
& \quad+p(p-1) A|u|^{p-2} \varphi_{p}\left(\frac{\Delta v}{v}\right)\left|\nabla u-\frac{u}{v} \nabla v\right|^{2} .
\end{align*}
$$

Again, integrating 2.3 and using the divergence theorem we easily obtain the following integral version of the formula which generalizes the result from Dunninger [3, Theorem 2.2]:

$$
\begin{align*}
& \int_{\partial G} \frac{u}{\varphi_{p}(v)}\left[\varphi_{p}(v) \frac{\partial\left(a \varphi_{p}(\Delta u)\right)}{\partial \nu}-\varphi_{p}(u) \frac{\partial\left(A \varphi_{p}(\Delta v)\right)}{\partial \nu}\right] d s \\
& \quad+\int_{\partial G}(p-1) A \varphi_{p}\left(\frac{\Delta v}{v}\right)\left[\frac{\varphi_{p}(u)}{v}\left(v \frac{\partial u}{\partial \nu}-u \frac{\partial v}{\partial \nu}\right)\right] d s \\
& \quad+\int_{\partial G} \frac{1}{\varphi_{p}(v)} \frac{\partial u}{\partial \nu}\left[A \varphi_{p}(u) \varphi_{p}(\Delta v)-a \varphi_{p}(v) \varphi_{p}(\Delta u)\right] d s \tag{2.4}\\
& =\int_{G} \frac{u}{\varphi_{p}(v)}\left\{\varphi_{p}(v) l[u]-\varphi_{p}(u) L[v]\right\} d x \\
& \quad+\int_{G}\left[(A-a)|\Delta u|^{p}+(c-C)|u|^{p}\right] d x \\
& \quad+\int_{G}\left[p(p-1) A|u|^{p-2} \varphi_{p}\left(\frac{\Delta v}{v}\right)\left|\nabla u-\frac{u}{v} \nabla v\right|^{2}-A \Phi_{p}\left(\Delta u, u \frac{\Delta v}{v}\right)\right] d x
\end{align*}
$$

3. Applications

As a first application of identity 2.2 we prove the following result.
Theorem 3.1. If there exists a nontrivial function $u \in C^{2}(\bar{G}, \mathbb{R})$ such that

$$
\begin{gather*}
u=0 \quad \text { on } \partial G \tag{3.1}\\
M_{p}[u] \equiv \int_{G}\left[A(x)|\Delta u|^{p}-C(x)|u|^{p}\right] d x \leq 0 \tag{3.2}
\end{gather*}
$$

then there does not exist a $v \in \mathcal{D}_{L}(G)$ which satisfies

$$
\begin{gather*}
L[v] \geq 0 \quad \text { in } G \tag{3.3}\\
v>0 \quad \text { on } \partial G \tag{3.4}\\
\Delta v<0 \quad \text { in } G \tag{3.5}
\end{gather*}
$$

Proof. Suppose to the contrary that there exists a $v \in \mathcal{D}_{L}(G)$ satisfying (3.3)-(3.5). Since $v>0$ on ∂G and $\Delta u<0$ in G, the maximum principle implies that $v>0$ on \bar{G}. Thus, the integral identity (2.2) is valid and it implies, in view of the hypotheses (3.1)-(3.5), that

$$
\begin{aligned}
0 & \geq M_{p}[u]-\int_{G} \frac{|u|^{p}}{\varphi_{p}(v)} L[v] d x \\
& =-\int_{G}\left[p(p-1) A|u|^{p-2} \varphi_{p}\left(\frac{\Delta v}{v}\right)\left|\nabla u-\frac{u}{v} \nabla v\right|^{2}-A \Phi_{p}\left(\Delta u, u \frac{\Delta v}{v}\right)\right] d x \\
& \geq-\int_{G} p(p-1) A|u|^{p-2} \varphi_{p}\left(\frac{\Delta v}{v}\right)\left|\nabla u-\frac{u}{v} \nabla v\right|^{2} d x \geq 0
\end{aligned}
$$

It follows that $\nabla u-\frac{u}{v} \nabla v=0$ in G and therefore $u / v=k$ in \bar{G} for some nonzero constant k. Since $u=0$ on ∂G and $v>0$ on ∂G, we have a contradiction. Hence no v satisfying (3.3)-(3.5) can exist.

Theorem 3.2. If there exists a nontrivial $u \in \mathrm{C}^{2}(\bar{G}, \mathbb{R})$ which satisfies (3.1) and (3.2), then every solution $v \in \mathcal{D}_{L}(G)$ of the inequality (3.3) satisfying (3.5) and

$$
\begin{equation*}
v(x)>0 \quad \text { for some } x \in G \tag{3.6}
\end{equation*}
$$

has a zero in \bar{G}.
Proof. If the function v satisfies (3.3), (3.5) and (3.6), then either $v(x)<0$ for some $x \in \partial G$, and so v must vanish somewhere in G, or $v \geq 0$ on ∂G. In the latter case, however, Theorem 3.1 implies that $v(x)=0$ for some $x \in \partial G$, and the proof is complete.

As an immediate consequence of Theorem 3.2 we obtain the following integral inequality of the Wirtinger type.
Corollary 3.3. If there exists a $v \in \mathcal{D}_{L}(G)$ such that $L[v]=0, v>0$ and $\Delta v<0$ in G, then for any nontrivial function $u \in \mathrm{C}^{2}(\bar{G}, \mathbb{R})$ satisfying $u=0$ on ∂G, we have

$$
\int_{G} A(x)|\Delta u|^{p} d x \geq \int_{G} C(x)|u|^{p} d x
$$

As a further application of Picone's identities established in Section 2 we derive the Sturmian comparison theorem. It belongs to weak comparison results in the sense that the conclusion with respect to v applies (similarly as in Theorem 3.2 to \bar{G} rather than G.

Theorem 3.4. If there exists a nontrivial $u \in \mathcal{D}_{l}(G)$ such that

$$
\begin{gather*}
\int_{G} u l[u] d x \leq 0 \tag{3.7}\\
u=\frac{\partial u}{\partial \nu}=0 \quad \text { on } \partial G \tag{3.8}\\
V_{p}[u] \equiv \int_{G}\left[(a-A)|\Delta u|^{p}+(C-c)|u|^{p}\right] d x \geq 0, \tag{3.9}
\end{gather*}
$$

then every $v \in \mathcal{D}_{L}(G)$ which satisfies (3.3), (3.5), (3.6) has a zero in \bar{G}.
Proof. Suppose that $v(x) \neq 0$ in \bar{G}. Then, condition (3.6) implies that $v(x)>0$ for all $x \in \bar{G}$ and from the integral Picone's identity (2.4) we obtain, in view of $(3.3),(3.5)$ and $(3.7)-(3.9)$, that

$$
\begin{aligned}
0= & V_{p}[u]+\int_{G} u l[u] d x-\int_{G} \frac{|u|^{p}}{v^{p-1}} L[v] d x \\
& -\int_{G}\left[p(p-1) A|u|^{p-2} \frac{|\Delta v|^{p-1}}{v^{p-1}}\left|\nabla u-\frac{u}{v} \nabla v\right|^{2}-A \Phi_{p}\left(\Delta u, u \frac{\Delta v}{v}\right)\right] d x \\
\leq & -\int_{G} p(p-1) A|u|^{p-2} \frac{|\Delta v|^{p-1}}{v^{p-1}}\left|\nabla u-\frac{u}{v} \nabla v\right|^{2} d x \leq 0 .
\end{aligned}
$$

Consequently, $\nabla(u / v)=0$ in G; that is, $u / v=k$ in G, and hence on \bar{G} by continuity, for some nonzero constant k. However, this cannot happen since $u=0$ on ∂G whereas $v>0$ on ∂G. This contradiction shows that v must vanish somewhere in \bar{G}.

As a final application of the Picone identity we obtain a lower bound for the first eigenvalue of the nonlinear eigenvalue problem

$$
\begin{gather*}
\Delta\left(|\Delta u|^{p-2} \Delta u\right)=\lambda|u|^{p-2} u \quad \text { in } G, \tag{3.10}\\
u=\Delta u=0 \quad \text { on } \partial G \tag{3.11}
\end{gather*}
$$

investigated by Drábek and Ôtani [2]. They proved that for any $p>1$ the Navier eigenvalue problem (3.10)-(3.11) considered on a bounded domain $G \in \mathbb{R}^{n}$ with a smooth boundary ∂G, has a principal eigenvalue λ_{1} which is simple and isolated and that there exists strictly positive eigenfunction u_{1} in G associated with λ_{1} and satisfying $\partial u_{1} / \partial \nu<0$ on ∂G.

Actually, our technique based on the identity (2.4) allows to consider more general nonlinear eigenvalue problem

$$
\begin{gather*}
l[u]=\lambda|u|^{p-2} u \quad \text { in } G \tag{3.12}\\
u=0, \quad \Delta u+\sigma \frac{\partial u}{\partial \nu}=0 \quad \text { on } \quad \partial G \tag{3.13}
\end{gather*}
$$

where $0 \leq \sigma \leq+\infty$ (the case $\sigma=+\infty$ corresponds to the boundary condition $\partial u / \partial \nu=0)$ and $l u \equiv \Delta\left(a \varphi_{p}(\Delta u)\right)-c \varphi_{p}(u)$ as before.
Theorem 3.5. Let λ_{1} be the first eigenvalue of (3.12-3.13) and $u_{1} \in \mathcal{D}_{l}(G)$ be the corresponding eigenfunction. If there exists a function $v \in \mathcal{D}_{L}(G)$ such that

$$
\begin{gather*}
v>0 \quad \text { in } \bar{G} \tag{3.14}\\
\Delta v \leq 0 \quad \text { in } G \tag{3.15}
\end{gather*}
$$

and if $V_{p}\left[u_{1}\right] \geq 0$, then

$$
\lambda_{1} \geq \inf _{x \in G}\left[\frac{L[v]}{v^{p-1}}\right]
$$

Proof. The identity (2.4), in view of the above hypotheses, implies that

$$
\begin{aligned}
& \lambda_{1} \int_{G}\left|u_{1}\right|^{p} d x-\int_{G}\left|u_{1}\right|^{p} \frac{L[v]}{v^{p-1}} d x \\
& =V_{p}\left[u_{1}\right]+\int_{G}\left[p(p-1) A\left|u_{1}\right|^{p-2} \frac{|\Delta v|^{p-1}}{v^{p-1}}\left|\nabla u_{1}-\frac{u_{1}}{v} \nabla v\right|^{2}+A \Phi_{p}\left(\Delta u_{1}, u_{1} \Delta v / v\right)\right] d x \\
& \quad+\int_{\partial G} \sigma^{p-1} a\left|\frac{\partial u_{1}}{\partial \nu}\right|^{p} d s \geq 0
\end{aligned}
$$

from which the conclusion readily follows.

References

[1] O. Došlý, P. Řehák; Half-linear Differential Equations, North-Holland Ma-thematics Studies 202, Elsevier Science, Amsterdam, 2005.
[2] P. Drábek, M. Ôtani; Global bifurcation result for the p-biharmonic operator, Electron. J. Differential Equations, 2001 (2001), no. 48. 1-19.
[3] D. R. Dunninger; A Picone integral identity for a class of fourth order elliptic differential inequalities, Atti Accad. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 50(1971), 630-641.
[4] J. Jaroš; Comparison theorems for half-linear differential equations of the fourth order, Acta Math. Univ. Comenianae 80(2011), 271-276.
[5] T. Tanigawa, N. Yoshida; Picone identities for ordinary differential equations of fourth order, Math. J. Toyama Univ. 27(2004), 91-99.
[6] N. Yoshida; Oscillation Theory of Partial Differential Equations, World Scientific, Singapore, Hackensack, London, 2008.

Jaroslav Jaroš
Department of Mathematical Analysis and Numerical Mathematics, Faculty of Mathe-
matics, Physics and Informatics, Comenius University, 84248 Bratislava, Slovakia
E-mail address: jaros@fmph.uniba.sk

[^0]: 2000 Mathematics Subject Classification. 35B05, 35J70.
 Key words and phrases. p-biharmonic operator; Picone's identity.
 (C) 2011 Texas State University - San Marcos.

 Submitted July 17, 2011. Published September 27, 2011.
 Supported by grant 1/0481/08 from the Slovak agency VEGA.

