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KWONG-WONG-TYPE INTEGRAL EQUATION ON TIME
SCALES

BAOGUO JIA

Abstract. Consider the second-order nonlinear dynamic equation

[r(t)x∆(ρ(t))]∆ + p(t)f(x(t)) = 0,

where p(t) is the backward jump operator. We obtain a Kwong-Wong-type
integral equation, that is: If x(t) is a nonoscillatory solution of the above
equation on [T0,∞), then the integral equation

rσ(t)x∆(t)

f(xσ(t))
= P σ(t) +

Z ∞

σ(t)

rσ(s)[
R 1
0 f ′(xh(s))dh][x∆(s)]2

f(x(s))f(xσ(s))
∆s

is satisfied for t ≥ T0, where P σ(t) =
R∞

σ(t) p(s)∆s, and xh(s) = x(s) +

hµ(s)x∆(s). As an application, we show that the superlinear dynamic equation

[r(t)x∆(ρ(t))]∆ + p(t)f(x(t)) = 0,

is oscillatory, under certain conditions.

1. Introduction

Consider the second order nonlinear dynamic equation

(r(t)x∆(ρ(t)))∆ + p(t)f(x(t)) = 0, (1.1)

where r(t), p(t) ∈ C(T, R), f(x) ∈ C(R,R), r(t) > 0 and
∫∞

T0
[rσ(t)]−1∆t = ∞. We

assume that limt→∞
∫ t

T0
p(s)∆s exists and is finite;

xf(x) > 0, for x 6= 0 and f ′(x) ≥ 0; (1.2)

lim
x→±∞

f(x) = ±∞. (1.3)

When T = R, Equation (1.1) becomes the second-order nonlinear differential
equations

x′′(t) + p(t)f(x(t)) = 0. (1.4)

Kwong and Wong [4] proved the following result.
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Theorem 1.1. Suppose that f satisfies (1.2) and (1.3) and limt→∞
∫ t

T0
p(s)∆s

exists and finite. If x(t) is a nonoscillatory solution of (1.4) on [T0,∞), then the
integral equation

x′(t)
f(x(t))

= P (t) +
∫ ∞

t

f ′(x(s))[x′(s)]2

f2(x(s))
ds

is satisfied for t ≥ T0, where P (t) =
∫∞

t
p(s)∆s.

We note that Theorem 1.1 has been used by Naito [6] in proving results on
asymptotic behavior of nonoscillatory solution of equation (1.4).

In this article, we extend Theorem 1.1 to dynamic equations on time scales. As
an application, we prove that the superlinear dynamic equation

[r(t)x∆(ρ(t))]∆ + p(t)f(x(t)) = 0

is oscillatory, if

lim sup
t→∞

1
rσ(t)

∫ t

T0

Pσ(s)∆s = ∞,

where f(x) satisfies the superlinearity conditions

0 <

∫ ∞

ε

dx

f(x)
,

∫ −ε

−∞

dx

f(x)
< ∞, for all ε > 0. (1.5)

It should be pointed out that our proof of the main theorem is different from the
one in Kwong and Wong for differential equation in [4].

For completeness, we recall some basic results for dynamic equations and the
calculus on time scales; see [1] and [2] for elementary results for the time scale
calculus. Let T be a time scale (i.e., a closed nonempty subset of R) with sup T = ∞.
The forward jump operator is defined by

σ(t) = inf{s ∈ T : s > t},

and the backward jump operator is defined by

ρ(t) = sup{s ∈ T : s < t},

where sup ∅ = inf T, where ∅ denotes the empty set. If σ(t) > t, we say t is
right-scattered, while if ρ(t) < t we say t is left-scattered. If σ(t) = t we say t is
right-dense, while if ρ(t) = t and t 6= inf T we say t is left-dense. Given a time
scale interval [c, d]T := {t ∈ T : c ≤ t ≤ d} in T the notation [c, d]κT denotes the
interval [c, d]T in case ρ(d) = d and denotes the interval [c, d)T in case ρ(d) < d.
The graininess function µ for a time scale T is defined by µ(t) = σ(t) − t, and for
any function f : T → R the notation fσ(t) denotes f(σ(t)). We say that x : T → R
is differentiable at t ∈ T provided

x∆(t) := lim
s→t

x(t)− x(s)
t− s

,

exists when σ(t) = t (here by s → t it is understood that s approaches t in the time
scale) and when x is continuous at t and σ(t) > t

x∆(t) :=
x(σ(t))− x(t)

µ(t)
.

Note that if T = R , then the delta derivative is just the standard derivative, and
when T = Z the delta derivative is just the forward difference operator. Hence
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our results contain the discrete and continuous cases as special cases and generalize
these results to arbitrary time scales.

2. Lemmas

The following condition was introduced in [7].
Condition (H): We say that T satisfies Condition (H), provided one of the fol-
lowing holds:

(1) There exists a strictly increasing sequence {tn}∞n=0 ⊂ T with limn→∞ tn =
∞ and for each n ≥ 0 either σ(tn) = tn+1 or the real interval [tn, tn+1] ⊂ T;
or

(2) T
⋂

R = [T0,∞) for some T0 ∈ T.
We say T is a regular time scale provided it is a time scale with inf T = T0,

sup T = ∞ and T is either an isolated time scale (all points in T are isolated) or
T is the real interval [T0,∞). Note that in every regular time scale the backward
jump operator is (delta) differentiable (which is used in the proof of the following
theorem).

Remark 2.1. Time scales that satisfy Condition (H) include most of the important
time scales, such as R, Z, qN0 , harmonic numbers {

∑n
k=1

1
k , n ∈ N}, etc.

We need the following lemmas.

Lemma 2.2. Assume that T satisfies Condition (H) and the function g(t) > 0 for
t ∈ [T0,∞). Then we have for t ∈ [T0,∞)T,∫ t

T0

g∆(s)
g(s)

∆s ≥ ln
g(t)

g(T0)
.

Proof. Assume that t = ti−1 < ti = σ(t). Then∫ σ(t)

t

g∆(s)
g(s)

∆s =
g∆(t)µ(t)

g(t)
=

g(σ(t))− g(t)
g(t)

. (2.1)

We consider the two possible cases: (i) g(t) ≤ g(σ(t)) and (ii) g(t) > g(σ(t)). First,
if g(t) ≤ g(σ(t)) we have

g(σ(t))− g(t)
g(t)

≥
∫ g(σ(t))

g(t)

1
v
dv = ln

g(σ(t))
g(t)

. (2.2)

On the other hand, if g(t) > g(σ(t)), then

g(t)− g(σ(t))
g(t)

≤
∫ g(t)

g(σ(t))

1
v
ds = ln

g(t)
g(σ(t))

,

which implies that
g(σ(t))− g(t)

g(t)
≥ ln

g(σ(t))
g(t)

. (2.3)

Hence, whenever ti−1 = t < σ(t) = ti, we have from (2.1) and (2.2) in the first case
and (2.1) and (2.3) in the second case, that∫ ti

ti−1

g∆(s)
g(s)

∆s ≥ ln
g(σ(t))

g(t)
= ln

g(ti)
g(ti−1)

. (2.4)
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If the real interval [ti−1, ti] ⊂ T, then∫ ti

ti−1

g∆(s)
g(s)

∆s = ln
g(ti)

g(ti−1)
. (2.5)

and so (2.4) also holds in this case.
Note that since T satisfies condition (H), we have from (2.4), (2.5) and the

additivity of the integral that for t ∈ [T0,∞)T∫ t

T0

g∆(s)
g(s)

∆s ≥ ln
g(t)

g(T0)
. (2.6)

�

Lemma 2.3. Suppose that T satisfies Condition (H). x(t) > 0 is a solution of
(1.1). f(x) satisfies the superlinearity conditions

0 <

∫ ∞

ε

dx

f(x)
,

∫ −ε

−∞

dx

f(x)
< ∞, for all ε > 0. (2.7)

Then ∫ t

T

x∆(s)
f(xσ(s))

∆s ≤ F (x(T ))− F (x(t)) ≤ F (x(T )),

where F (x) =
∫∞

x
dv

f(v) .

Proof. Assume that t = ti−1 < ti = σ(t). Then∫ σ(t)

t

x∆(s)
f(x(σ(s)))

∆s =
x∆(t)µ(t)
f(x(σ(t)))

=
x(σ(t))− x(t)

f(x(σ(t)))
. (2.8)

We consider the two possible cases: (i) x(t) ≤ x(σ(t)) and (ii) x(t) > x(σ(t)). First,
if x(t) ≤ x(σ(t)) we have

x(σ(t))− x(t)
f(x(σ(t)))

≤
∫ x(σ(t))

x(t)

1
f(v)

dv = F (x(t))− F (x(σ(t))), (2.9)

since f is increasing. On the other hand, if x(t) > x(σ(t)), then

x(t)− x(σ(t))
f(x(σ(t)))

≥
∫ x(t)

x(σ(t))

1
f(v)

ds = F (x(σ(t)))− F (x(t)),

which implies that

x(σ(t))− x(t)
f(x(σ(t)))

≤ F (x(t))− F (x(σ(t))). (2.10)

Hence, whenever ti−1 = t < σ(t) = ti, we have from (2.8) and (2.9) in the first case
and (2.8) and (2.10) in the second case, that∫ ti

ti−1

x∆(s)
f(x(σ(s)))

∆s ≤ F (x(ti−1))− F (x(ti)). (2.11)
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If the real interval [ti−1, ti] ⊂ T, then∫ ti

ti−1

x∆(s)
f(x(σ(s)))

∆ =
∫ ti

ti−1

x∆(s)
f(x(s))

∆s

=
∫ x(ti)

x(ti−1)

1
f(v)

dv

= F (x(ti−1))− F (x(ti)),

(2.12)

and so (2.11) also holds in this case.
Note that since T satisfies condition (H), we have from (2.11), (2.12) and the

additivity of the integral that for t ∈ [T,∞)T,∫ t

T

x∆(s)
f(x(σ(s)))

∆s ≤ F (x(T ))− F (x(t)) ≤ F (x(T )). (2.13)

�

3. Main results

Theorem 3.1. Suppose that T is a regular time scale. f(x) satisfies (1.2) and
(1.3). If x(t) is a nonoscillatory solution of (1.1) on [T0,∞). Then the integral
equation

rσ(t)x∆(t)
f(xσ(t))

= Pσ(t) +
∫ ∞

σ(t)

rσ(s)[
∫ 1

0
f ′(xh(s))dh][x∆(s)]2

f(x(s))f(xσ(s))
∆s (3.1)

is satisfied for t ≥ T0, where Pσ(t) =
∫∞

σ(t)
p(s)∆s, xh(s) = x(s) + hµ(s)x∆(s).

Proof. Suppose that x(t) is a nonoscillatory solution of (1.1) on [T0,∞). Without
loss of generality, assume that x(t) is positive for t ∈ [T0,∞).

In the first place, we will prove∫ ∞

T0

rσ(s)[
∫ 1

0
f ′(xh(s))dh][x∆(s)]2

f(x(s))f(xσ(s))
∆s < ∞, (3.2)

where xh(t) = x(t) + hµ(t)x∆(t) = (1 − h)x(t) + hx(σ(t)) > 0. From (1.1), it is
easy to see that(r(t)x∆(ρ(t))

f(x(t))

)∆

= [r(t)x∆(ρ(t))]∆
1

f(x(t))
+ rσ(t)x∆(t)

( 1
f(x(t))

)∆

= −p(t)−
rσ(t)[

∫ 1

0
f ′(xh(t))dh][x∆(t)]2

f(x(t))f(xσ(t))

Integrating from T0 to t,

r(t)x∆(ρ(t))
f(x(t))

− r(T0)x∆(ρ(T0))
f(x(T0))

= −
∫ t

T0

p(s)∆s−
∫ t

T0

rσ(s)[
∫ 1

0
f ′(xh(s))dh][x∆(s)]2

f(x(s))f(xσ(s))
∆s.

(3.3)

If (3.2) fails to hold; that is,∫ ∞

T0

rσ(s)[
∫ 1

0
f ′(xh(s))dh][x∆(s)]2

f(x(s))f(xσ(s))
∆s = ∞. (3.4)
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From (3.3), we have

lim
t→∞

r(t)x∆(ρ(t))
f(x(t))

= −∞. (3.5)

We can assume that
r(T0)x∆(ρ(T0))

f(x(T0))
−

∫ t

T0

p(s)∆s < −1, (3.6)

for t ≥ T0. Otherwise let L = supt≥T0
|
∫ t

T0
p(s)∆s|. By (3.5), we can take a large

T1 > T0 such that r(T1)x
∆(ρ(T1))

f(x(T1))
< −(2L + 1). So we have

r(T1)x∆(ρ(T1))
f(x(T1))

−
∫ t

T1

p(s)∆s < −(2L + 1)−
[ ∫ t

T0

p(s)∆s−
∫ T1

T0

p(s)∆s
]

≤ −(2L + 1)− [−2L] = −1.

So we can replace T0 by T1 > T0 such that (3.6) still holds. From (3.3) and (3.6),
we obtain, for t ≥ T0,

r(t)x∆(ρ(t))
f(x(t))

+
∫ t

T0

rσ(s)[
∫ 1

0
f ′(xh(s))dh][x∆(s)]2

f(x(s))f(xσ(s))
∆s < −1. (3.7)

In particular,
x∆(t) < 0, for t ≥ T0. (3.8)

Therefore, x(t) is strictly decreasing.
First assume that T is an isolated time scale; that is,

T = {t0, t1, t2, . . . }, t0 < t1 < t2 . . . , lim
k→∞

tk = ∞.

If t = ti−1 < ti = σ(t), then x(σ(t)) < x(t), so∫ 1

0

f ′(xh(s))dh =
∫ 1

0

f ′((1− h)x(s) + h(x(σ(s))))dh

=
f((1− h)x(s) + h(x(σ(s))))|10

x(σ(s))− x(s)

=
f(x(σ(s)))− f(x(s))

x(σ(s))− x(s)
.

(3.9)

On the other hand if the T is the real interval [T0,∞), then∫ 1

0

f ′(xh(s))dh = f ′(x(s)). (3.10)

Let

y(t) := 1 +
∫ t

T0

rσ(s)
∫ 1

0
f ′(xh(s))dh[x∆(s)]2

f(x(s))f(xσ(s))
∆s. (3.11)

Hence from (3.7), we obtain

− r(t)x∆(ρ(t))
f(x(t))

> y(t). (3.12)

Replacing t by σ(t) in (3.12) and using [1, Theorem1.75], we obtain

− rσ(t)x∆(t)
f(xσ(t))

> yσ(t) = y(t) +
rσ(t)

∫ 1

0
f ′(xh(t))dh[x∆(t)]2µ(t)
f(x(t))f(xσ(t))

. (3.13)
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Noting that
1

f(xσ(t))
=

1
f(x(t))

+
( 1

f(x(t))

)∆

µ(t). (3.14)

Using (3.14) in the left side of (3.13) and noticing that

(
1

f(x(t))
)∆ = −

∫ 1

0
f ′(xh(t))dhx∆(t)
f(x(t))f(xσ(t))

,

from (3.13), it is easy to see that

− rσ(t)x∆(t)
f(x(t))

> y(t). (3.15)

From (3.11) and (3.15), we obtain

y∆(t) =
rσ(t)

∫ 1

0
f ′(xh(t))dh[x∆(t)]2

f(x(t))f(xσ(t))

> y(t)

∫ 1

0
f ′(xh(t))dh[−x∆(t)]

f(xσ(t))
.

(3.16)

In the isolated time scale case from (3.16) and (3.9), we obtain

y(σ(t))− y(t)
y(t)(σ(t)− t)

>
f(x(σ(t)))− f(x(t))

x(σ(t))− x(t)
· x(t)− x(σ(t))
f(x(σ(t)))[σ(t)− t]

.

So
y(σ(t))

y(t)
>

f(x(t))
f(x(σ(t)))

;

that is,
y(ti)

y(ti−1)
>

f(x(ti−1))
f(x(ti))

. (3.17)

Let T0 = tn0 and t = tn, n > n0, then using (3.17) we have that

y(tn)
y(tn0)

=
n−n0−1∏

k=0

y(tn0+k+1)
y(tn0+k)

>

n−n0−1∏
k=0

f(x(tn0+k))
f(x(tn0+k+1))

=
f(x(tn0))
f(x(tn))

;

that is,
y(t)

y(tn0)
>

f(x(tn0))
f(x(t))

, (3.18)

for t > T0. To obtain (3.18) in the case where T is the real interval [T0,∞), from
(3.10) and (3.16) we have

y′(t)
y(t)

>
f ′(x(t))[−x′(t)]

f(x(t))
;

that is,
(ln y(t))′ > −(ln f(x(t)))′.

Integrating from T0 to t, we obtain
y(t)

y(T0)
>

f(x(T0))
f(x(t))

, t > T0. (3.19)

Using (3.15) again, from (3.18) and (3.19), we obtain

−rσ(t)x∆(t)
f(x(t))

> y(t) >
y(T0)f(x(T0))

f(x(t))
.
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If we set L1 := y(T0)f(x(T0)), we obtain

x∆(t) < − L1

rσ(t)
.

Integrating from T0 to t, we obtain

x(t)− x(T0) < −
∫ t

T0

L1

rσ(s)
∆s → −∞, as t →∞.

which contradicts x(t) > 0.
In (3.3), letting t →∞ and replacing T0 by σ(τ), denoting

α = lim
t→∞

r(t)x∆(ρ(t))
f(x(t))

= lim
t→∞

rσ(t)x∆(t)
f(xσ(t))

, (3.20)

we obtain

α +
∫ ∞

σ(τ)

p(s)∆s +
∫ ∞

σ(τ)

rσ(s)[
∫ 1

0
f ′(xh(s))dh][x∆(s)]2

f(x(s))f(xσ(s))
∆s =

rσ(τ)x∆(τ)
f(xσ(τ))

. (3.21)

We claim that α = 0. In the right side of (3.21), using

1
f(xσ(τ))

=
1

f(x(τ))
−

∫ 1

0
f ′(xh(τ))dhx∆(τ)
f(x(τ))f(xσ(τ))

µ(t)

and in the second integral term of left side of (3.21), noticing that∫ ∞

σ(τ)

rσ(s)[
∫ 1

0
f ′(xh(s))dh][x∆(s)]2

f(x(s))f(xσ(s))
∆s

=
∫ ∞

τ

rσ(s)[
∫ 1

0
f ′(xh(s))dh][x∆(s)]2

f(x(s))f(xσ(s))
∆s−

∫ σ(τ)

τ

rσ(s)[
∫ 1

0
f ′(xh(s))dh][x∆(s)]2

f(x(s))f(xσ(s))
∆s

=
∫ ∞

τ

rσ(s)[
∫ 1

0
f ′(xh(s))dh][x∆(s)]2

f(x(s))f(xσ(s))
∆s−

rσ(τ)[
∫ 1

0
f ′(xh(τ))dh][x∆(τ)]2

f(x(τ))f(xσ(τ))
µ(τ),

we obtain

α +
∫ ∞

σ(τ)

p(s)∆s +
∫ ∞

τ

rσ(s)[
∫ 1

0
f ′(xh(s))dh][x∆(s)]2

f(x(s))f(xσ(s))
∆s =

rσ(τ)x∆(τ)
f(x(τ))

. (3.22)

From (3.22), we have

lim
t→∞

rσ(t)x∆(t)
f(x(t))

= α. (3.23)

Suppose that α < 0. Then from (3.23) there exists a large T1 such that for
t > T1, we have

rσ(t)x∆(t)
f(x(t))

≤ α

2
.

So

x∆(t) ≤ α

2
· f(x(t))

rσ(t)
< 0. (3.24)
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Thus

M(T1) =:
∫ ∞

T1

rσ(s)[
∫ 1

0
f ′(xh(s))dh][x∆(s)]2

f(x(s))f(xσ(s))
∆s

≥ −α

2

∫ ∞

T1

[
∫ 1

0
f ′(xh(s))dh][−x∆(s)]

f(xσ(s))
∆s.

(3.25)

Assume that t = ti−1 < ti = σ(t). From [1, Theorem 1.75], (3.9) and x∆(t) < 0,
we have∫ σ(t)

t

[
∫ 1

0
f ′(xh(s))dh][−x∆(s)]

f(xσ(s))
∆s =

[
∫ 1

0
f ′(xh(t))dh][−x∆(t)](σ(t)− t)

f(xσ(t))

=
f(x(t))− f(xσ(t))

f(xσ(t))

≥
∫ f(x(t))

f(xσ(t))

1
v
dv

= ln
f(x(t))
f(xσ(t))

= ln
f(x(ti−1))
f(x(ti))

.

(3.26)

In the isolated time scale, from (3.26), we obtain∫ t

T1

[
∫ 1

0
f ′(xh(s))dh][−x∆(s)]

f(xσ(s))
∆s ≥ ln

f(x(T1))
f(x(t))

. (3.27)

In the case where T is the real interval [T0,∞), from (3.10), we have∫ t

T1

[
∫ 1

0
f ′(xh(s))dh][−x∆(s)]

f(xσ(s))
∆s =

∫ t

T1

[
∫ 1

0
f ′(xh(s))dh][−x′(s)]

f(x(s))
ds

= ln
f(x(T1))
f(x(t))

.

(3.28)

From (3.25), (3.27), (3.28) and the additivity of the integral, it is easy to see that

M(T1) ≥ −α

2
lim

t→∞

∫ t

T1

[
∫ 1

0
f ′(xh(s))dh][−x∆(s)]

f(xσ(s))
∆s ≥ −α

2
lim

t→∞
ln

f(x(T1))
f(x(t))

.

So there exists a large T2 such that for t ≥ T2, we have that

ln
f(x(T1))
f(x(t))

≤ −2M(T1)
α

+ 1.

Thus for t ≥ T2,

f(x(t)) ≥ f(x(T1)) exp
(2M(T1)

α
− 1

)
.

By (3.24) and noticing that α < 0, we have that for t ≥ T2

x∆(t) ≤ α

2
· 1
rσ(t)

· f(x(T1)) exp
(2M(T1)

α
− 1

)
. (3.29)

Integrating (3.29) from T2 to t, we obtain x(t) → −∞ as t → ∞, which is a
contradiction.
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If α > 0, from (3.20), we have that there exists T3 such that for t ≥ T3,

rσ(t)x∆(t)
f(xσ(t))

≥ α

2
. (3.30)

Therefore, from Lemma 2.2, we have∫ ∞

T3

rσ(s)[
∫ 1

0
f ′(xh(s))dh][x∆(s)]2

f(x(s))f(xσ(s))
∆s ≥ α

2

∫ ∞

T3

[
∫ 1

0
f ′(xh(s))dh][x∆(s)]

f(x(s))
∆s

=
α

2
lim

t→∞

∫ t

T3

[f(x(s))]∆

f(x(s))
∆s

≥ α

2
lim

t→∞
ln

f(x(t))
f(x(T3))

.

Due to condition (1.2) and (1.3), it is easy to know that x(t) is bounded.
On the other hand, from (3.30) and the monotonicity of f , we obtain that in the

isolated time scale case

rσ(T3)x∆(T3) ≥
α

2
f(xσ(T3)),

rσ2
(T3)x∆(σ(T3)) ≥

α

2
f(xσ2

(T3)) ≥
α

2
f(xσ(T3)).

By induction, it is easy to get that for t ≥ T3,

rσ(t)x∆(t) ≥ α

2
f(xσ(T3));

that is,
x∆(t) ≥ α

2rσ(t)
f(xσ(T3)). (3.31)

Integrating (3.31) from T3 to t, we obtain x(t) → +∞ as t →∞, which contradicts
the boundedness of x(t).

If T is the real interval [T3,∞), then from (3.30) and the monotonicity of f , we
have that for t ≥ T3,

x′(t) ≥ α

2r(t)
f(x(t)) ≥ α

2r(t)
f(x(T2)). (3.32)

Integrating (3.32) from T3 to t, we obtain x(t) → +∞ as t → ∞, which also
contradicts the boundedness of x(t). Therefore α = 0.

From (3.21), we obtain (3.1). The proof is complete. �

Theorem 3.2. Suppose T is a regular time scale, r(t) > 0 with
∫∞

T0
[rσ(t)]−1∆t = ∞

and suppose that limt→∞
∫ t

T0
p(s)∆s exists and finite. Let P (t) =

∫∞
t

p(s)∆s. f(x)
satisfies the superlinearity conditions

0 <

∫ ∞

ε

dx

f(x)
,

∫ −ε

−∞

dx

f(x)
< ∞, for all ε > 0. (3.33)

Then the superlinear dynamic equation

[r(t)x∆(ρ(t))]∆ + p(t)f(x(t)) = 0, (3.34)

is oscillatory, if

lim sup
t→∞

1
rσ(t)

∫ t

T0

Pσ(s)∆s = ∞. (3.35)
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Proof. Suppose that x(t) is a nonoscillatory solution of (1.1) on [T0,∞). Without
loss of generality, assume that x(t) is positive for t ∈ [T0,∞). From Theorem 3.1,
x(t) satisfies the integral equation (3.1). Dropping the last integral term in (3.1),
we have the inequality

rσ(t)x∆(t)
f(xσ(t))

≥ Pσ(t). (3.36)

Dividing (3.36) by rσ(t) and integrating from T0 to t and using Lemma 2.3, we find

F (x(T0)) ≥
∫ t

T0

x∆(s)
f(xσ(s))

∆s ≥ 1
rσ(t)

∫ t

T0

Pσ(s)∆s.

This contradicts (3.35), so equation (3.34) is oscillatory. �

4. Examples

Example 4.1. Consider the superlinear difference equation

∆2x(n− 1) + p(n)xγ(n) = 0, γ > 1, (4.1)

where P (n) = 1
n + 2(−1)n

√
n

,

p(n) = P (n)− P (n + 1) =
1

n(n + 1)
+

2(−1)n(
√

n + 1 +
√

n)√
n(n + 1)

. (4.2)

It is to see that
∑∞

n=1 P (n + 1) = ∞. So from Theorem 3.2, (4.1) is oscillatory.

In [8, Theorem 2.5], we proved that the equation ∆2x(n − 1) + q(n)xγ(n) =
0, γ > 1, is oscillatory, if

∑∞
n=1 nq(n) = ∞. In the following, we will prove that

2k+1∑
n=1

np(n) → −∞ as k →∞. (4.3)

So [8, Theorem 2.5] would not apply in (4.1).
We need the following lemmas. The first lemma may be regarded as a discrete

version of L’Hopital’s rule and can be found in [1, page 48].

Lemma 4.2 (Stolz-Cesáro Theorem). Let {an}n≥1 and {bn}n≥1 be two sequences
of real number. Assume bn is positive, strictly increasing and unbounded and the
following limit exists:

lim
n→∞

an+1 − an

bn+1 − bn
= l.

Then

lim
n→∞

an

bn
= l.

We will use Lemma 4.2 to prove the following result.

Lemma 4.3. For each real number d > 0, we have

lim
m→∞

∑m
i=1 id − md+1

d+1

md
=

1
2
. (4.4)
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Proof. By Taylor’s formula, we have(
1 +

1
m

)d = 1 +
d

m
+

d(d− 1)
2m2

+ o
( 1
m2

)
. (4.5)

By (4.5) and the Stolz-Cesáro Theorem (Lemma 4.2), it is easy to see that

lim
m→∞

∑m
i=1 id − md+1

d+1

md
= lim

m→∞

(m + 1)d − (m+1)d+1

d+1 + md+1

d+1

(m + 1)d −md

= lim
m→∞

(1 + 1
m )d − m+1

d+1 (1 + 1
m )d + m

d+1

(1 + 1
m )d − 1

.

(4.6)

Using (4.5) in (4.6), it follows that (4.4) holds. �

So given 0 < ε < 1, for large m, we have the inequality

md+1

d + 1
+

md

2
− εmd <

m∑
i=1

id <
md+1

d + 1
+

md

2
+ εmd. (4.7)

Set d = 1/2. we have

2
3
m3/2 +

1
2
m1/2 − εm1/2 <

m∑
i=1

i1/2 <
2
3
m3/2 +

1
2
m1/2 + εm1/2. (4.8)

From (4.2) and using Taylor’s expansion, we have

np(n) =
1

n + 1
+ 2(−1)n

√
n
[
1 +

(
1 +

1
n

)−1/2]
=

1
n + 1

+ 2(−1)n
√

n
[
2− 1

2n
+ O

( 1
n2

)]
=

1
n + 1

+ 4(−1)n
√

n− (−1)n

√
n

+ O
( 1
n3/2

)
.

(4.9)

Using the Euler formula [5, page 205],

C = lim
n→∞

( n∑
k=1

1
k
− lnn

)
,

where C is called Euler constant, we obtain
2k+1∑
n=1

1
n + 1

= o(1) + C − 1 + ln(2k + 2). (4.10)

From (4.8) and using Taylor’s expansion, we have
2k+1∑
n=1

(−1)n
√

n

= −
2k+1∑
n=1

√
n + 2

√
2

k∑
n=1

√
n

< −
[2
3
(2k + 1)3/2 + (

1
2
− ε)(2k + 1)1/2

]
+ 2

√
2
[2
3
k3/2 + (

1
2

+ ε)k1/2
]

=
4
√

2
3

k3/2
[
1−

(
1 +

1
2k

)3/2] +
√

2k1/2
[
1− 1

2
(
1 +

1
2k

)1/2]
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+ ε
√

2k1/2
[
2 +

(
1 +

1
2k

)1/2]
=

4
√

2
3

k3/2
[
− 3

4k
+ O

( 1
k2

)]
+
√

2k1/2
[1
2

+ O(
1
k

)
]

+ ε
√

2k1/2[3 + O(
1
k

)] (4.11)

= −(
1
2
− 3ε)

√
2k1/2 + O

( 1
k1/2

)
.

Take ε < 1/6. From (4.9), (4.10), (4.11) and noticing that
∑∞

n=1
(−1)n

√
n

and∑∞
n=1 O

(
1

n3/2

)
are convergent, we obtain that

2k+1∑
n=1

np(n) → −∞, as k →∞.

So we complete the proof of (4.3).

Example 4.4. Consider the differential equation

x′′(t) + p(t)xγ(t) = 0, γ > 1, (4.12)

where P (t) = (t1/4 sin
√

t)′. So we have
∫ t

1
P (s)ds = t1/4 sin

√
t− sin 1 and

lim sup
t→∞

∫ t

1

P (s)ds = ∞. (4.13)

It is easy to see that

p(t) = −(P (t))′ =
3
16

t−7/4 sin
√

t− 1
8
t−5/4 cos

√
t

+
1
8
t−5/4 cos

√
t− 1

4
t−3/4 sin

√
t.

When β < − 1
2 ,

∫∞
1

tβ sin
√

tdt and
∫∞
1

tβ cos
√

tdt are convergent, we have that
limt→∞

∫ t

1
p(s)ds exists and finite. From (4.13) and Theorem 3.2, (4.12) is oscilla-

tory.

Example 4.5. Consider the q-difference equation

(x(q−1t))∆∆ + p(t)xγ(t) = 0, γ > 1, (4.14)

where t = qn, n ∈ N0, P (t) = 1+2(−1)n

t . It is easy to see that

p(t) = −P∆(t) =
[
1 +

2(−1)n(1 + q)
q − 1

] 1
qt2

.

We have that
∫∞
1

p(t)∆t is convergent and
∫∞
1

Pσ(t)∆t = ∞. From Theorem 3.2,
(4.14) is oscillatory.
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Birkhäuser, Boston, 2003.

[3] L. Erbe, B. G. Jia and A. Peterson; Nonoscillation for second order sublinear dynamic
equations on time scales, J. Computational and Applied Mathematics, 232(2009), 594-599.

[4] M. K. Kwong and J. S. W. Wong; An application of integral inequality to second order
nonlinear oscillation, J. Differential Equation 46 (1982), 63-77.



14 B. JIA EJDE-2011/125

[5] W. Kelly and A. Peterson; Difference Equation: An Introduction with Applications, 2nd ed.,
Harcourt/Academic Press, 2001.

[6] M. Naito; Asymptotic behavior of solutions of second order differential equation with inte-
grable coefficients, Trans. Amer. Maths. Soc. 282 (1984), 577-588.

[7] Baoguo Jia, Lynn Erbe, Allan Peterson; An Oscillation theorem for second order superlinear
dynamic equations on time scales, Applied Math and Applications, in press.

[8] Baoguo Jia, Lynn Erbe, Allan Peterson; Kiguradze-type oscillation theorems for second order
superlinear dynamic equations on time scales, Canad. Math. Bulletin, doi:10.4153/CMB-
2011-034-4.

Baoguo Jia
School of Mathematics and Computer Science, Zhongshan University
Guangzhou, 510275, China

E-mail address: mcsjbg@mail.sysu.edu.cn


	1. Introduction
	2. Lemmas
	3. Main results
	4. Examples
	References

