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UNIQUENESS OF POSITIVE SOLUTIONS FOR AN ELLIPTIC
SYSTEM

WENSHU ZHOU, XIAODAN WEI

Abstract. We prove the uniqueness of positive solutions for an elliptic system
that appears in the study of solutions for a degenerate predator-prey model in
the strong-predator case.

1. Introduction

This article is devoted to showing the uniqueness of positive solutions for the
elliptic system

−∆u = λu− buv in Ω,

−∆v = µv
(
1− ξ

v

u

)
in Ω,

∂νu = ∂νv = 0 on ∂Ω,

(1.1)

where Ω ⊂ RN is a smooth bounded domain, ν is the outward unit normal vector
on ∂Ω, ∂ν = ∂

∂ν , λ, b, µ and ξ are positive constants.
Problem (1.1) appears in the study of positive solutions of the degenerate preda-

tor-prey model in the strong-predator case

−∆u = λu− a(x)u2 − βuv in Ω,

−∆v = µv
(
1− v

u

)
in Ω,

∂νu = ∂νv = 0 on ∂Ω,

(1.2)

where β is a positive constant, and a(x) is a continuous function satisfying a(x) = 0
on Ω0 and a(x) > 0 in Ω \ Ω0, where Ω0 is a smooth domain with Ω0 ⊂ Ω. Re-
cently, problem (1.2) has been studied in [2, 3]. Under the condition µ > λ ≥ λ1,
where λ1 denotes the first eigenvalue of the Laplace equation on Ω0 with homoge-
nous Dirichlet boundary condition, Du and Wang [3] described spatial patterns
of positive solutions of problem (1.2) by studying asymptotic behavior of positive
solutions as β → 0+ (weak-predator), β → +∞ (strong-predator) and µ → +∞
(small-predator diffusion), respectively. For related work on problem (1.2), please
refer to [8].
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Clearly, problem (1.1) has a positive solution (u, v) = ( ξλ
b , λ

b ). In [3, Remark
3.2], the authors pointed out that when the spatial dimension N = 1, the positive
solution of problem (1.1) is unique for any µ > 0 by a simple variation of the
arguments in [6]. In the present paper, we prove the uniqueness for all sufficiently
large µ in the high dimensional case, which can be stated as follows

Theorem 1.1. Let N ≥ 2. Then there exists a positive constant µ0 depending
only on λ and Ω such that problem (1.1) admits a unique positive solution for any
µ ≥ µ0.

Remark 1.2. The proof to Theorem 1.1 is based on the fact that (û, v̂) is a positive
solution of problem (1.1) if and only if ( b

ξ û, bv̂) is a positive solution of

−∆u = u(λ− v) in Ω,

−∆v = µv
(
1− v

u

)
in Ω,

∂νu = ∂νv = 0 on ∂Ω.

(1.3)

Remark 1.3. As a result of Theorem 1.1 and [3, Remarks 3.1-3.2], one can prove
that if (uβ , vβ) is a solution of problem (1.2), then for any µ ≥ µ0, we have, as
β → +∞, ( uβ

‖uβ‖∞
,

vβ

‖vβ‖∞

)
⇀ (1, 1) in [H1(Ω)]2,( uβ

‖uβ‖∞
,

vβ

‖vβ‖∞

)
→ (1, 1) in [Lp(Ω)]2,∀p > 1.

2. Proof of Theorem 1.1

First recall several preliminary results.

Lemma 2.1 (Harnack Inequality [5]). Let w ∈ C2(Ω)∩C1(Ω) be a positive solution
to ∆w(x) + c(x)w(x) = 0, where c ∈ C(Ω), satisfying the homogeneous Neumann
boundary condition. Then there exists a positive constant C which depends only on
B where ‖c‖∞ ≤ B such that maxΩ w ≤ C minΩ w.

Lemma 2.2 (Maximum Principle [7]). Suppose that g ∈ C1(Ω× R1). Then
(i) if w ∈ C2(Ω) ∩C1(Ω) satisfies ∆w(x) + g(x,w) ≥ 0 in Ω, ∂νw ≤ 0 on ∂Ω,

and w(x0) = maxΩ w, then g(x0, w(x0)) ≥ 0.
(ii) if w ∈ C2(Ω) ∩C1(Ω) satisfies ∆w(x) + g(x,w) ≤ 0 in Ω, ∂νw ≥ 0 on ∂Ω,

and w(x0) = minΩ w, then g(x0, w(x0)) ≤ 0.

The following lemma can be inferred from [2, Lemma 3.7] (see also [8]).

Lemma 2.3. Let {un} ⊂ H1(Ω) satisfy, in the weak sense,

−∆un ≤ Aun, un ≥ 0, ∂νun|∂Ω = 0, ‖un‖∞ ≤ B, ∀n ≥ 1,

where A and B are positive constants. Then there exists a subsequence of {un},
still denoted by {un}, and a nonnegative function u ∈ H1(Ω)∩Lp(Ω) for all p > 1,
such that

un ⇀ u in H1(Ω), un → u in LpΩ).
If we further assume that ‖un‖∞ ≥ δ > 0 for all n ≥ 1, then u 6= 0.

The following lemma gives the uniform bounds of the positive solutions for prob-
lem (1.3).
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Lemma 2.4. Let (uµ, vµ) be a positive solution of problem (1.3). Then there exist
a positive constant µ0 = µ0(λ, Ω) and two positive constants C2, C1 independent of
µ such that for all µ ≥ µ0,

C1 ≤ uµ, vµ ≤ C2 on Ω. (2.1)

Moreover, as µ → +∞,
uµ → λ in C1(Ω). (2.2)

Proof. By Lemma 2.2 and the definition of vµ, it follows that

max
Ω

uµ ≥ max
Ω

vµ, min
Ω

vµ ≥ min
Ω

uµ. (2.3)

Hence, to prove (2.1), it suffices to show that there exist a positive constant µ0 =
µ0(λ, Ω) and two positive constants C2, C1 independent of µ such that

C1 ≤ min
Ω

uµ, max
Ω

uµ ≤ C2, ∀µ ≥ µ0. (2.4)

We first prove the second inequality of (2.4). Assume on the contrary that there
exist a sequence {µn} converging to +∞ and the corresponding solution (uµn , vµn),
such that

‖uµn‖∞ → +∞ as n → +∞.

Denote
ûµn =

uµn

‖uµn‖∞ + ‖vµn‖∞
, v̂µn

=
vµn

‖uµn‖∞ + ‖vµn‖∞
.

Then ûµn and v̂µn satisfy ‖ûµn‖∞ + ‖v̂µn‖∞ = 1, ‖ûµn‖∞ ≥ 1
2 by (2.3), and

−∆ûµn
= ûµn

(λ− vµn
) in Ω,

−∆v̂µn = µnv̂µn

(
1− v̂µn

ûµn

)
in Ω,

∂ν ûµn
= ∂ν v̂µn

= 0 on ∂Ω.

(2.5)

In particular, we have

−∆ûµn ≤ λûµn in Ω, ∂ν ûµn = 0 on ∂Ω. (2.6)

By Lemma 2.3 and ‖v̂µn
‖∞ ≤ 1, there exist a subsequence of {(ûµn

, v̂µn
)}, still

denoted by itself, and a pair of non-negative functions (û, v̂) ∈
(
H1(Ω) ∩ Lp(Ω)

)
×

L∞(Ω) for all p > 1, û 6= 0, such that

ûµn ⇀ û in H1(Ω), ûµn → û in Lp(Ω), v̂µn ⇀ v̂ in L2(Ω).

Integrating the first equation of (2.5) over Ω yields

λ

∫
Ω

ûµndx =
∫

Ω

vµn ûµndx = (‖uµn‖∞ + ‖vµn‖∞)
∫

Ω

ûµn v̂µndx.

From ‖uµn‖∞ → +∞ (n → +∞), we have∫
Ω

ûv̂dx = lim
n→+∞

∫
Ω

ûµn
v̂µn

dx = lim
n→+∞

λ

‖uµn‖∞ + ‖vµn‖∞

∫
Ω

ûµn
dx = 0. (2.7)

By the second equation in (2.5), v̂µn is a positive solution of

−∆w + µn
v̂µn

ûµn

w = µnw in Ω, ∂νw = 0 on ∂Ω. (2.8)
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From the variational characterization of the first eigenvalue it follows that∫
Ω

|∇φ|2dx + µn

∫
Ω

v̂µn

ûµn

φ2dx ≥ µn

∫
Ω

φ2dx

for any φ ∈ {w ∈ H2(Ω); ∂νw = 0 on ∂Ω} (cf. [1]). Taking φ = ûµn yields

1
µn

∫
Ω

|∇ûµn
|2dx +

∫
Ω

v̂µn ûµndx ≥
∫

Ω

û2
µn

dx.

Passing to the limit and using (2.7), we obtain
∫
Ω

û2dx = 0, so û = 0, which is a
contradiction. Thus there exist a positive constant µ0 = µ0(λ, Ω) and a positive
constant C2 independent of µ such that

max
Ω

uµ ≤ C2, ∀µ ≥ µ0. (2.9)

Next we prove the first inequality in (2.4). Suppose that this is not so. Then
there exist {µn} converging to +∞ and the corresponding solution (uµn

, vµn
) such

that
lim

n→+∞
min

Ω
uµn = 0. (2.10)

Now rewrite the equation of uµn as

∆uµn
+ f(x)uµn

= 0 in Ω, ∂νuµn
= 0 on ∂Ω,

where f(x) = λ − vµn . By the first estimate of (2.3) and (2.9), we have, for all
sufficiently large n,

‖f‖∞ ≤ λ + ‖vµn‖∞ ≤ λ + C2,

by Lemma 2.1, there exists a positive constant C3 independent of n such that for
all sufficiently large n,

max
Ω

uµn
≤ C3 min

Ω
uµn

.

Therefore, it follows from (2.10) and the first estimate of (2.3) that

lim
n→+∞

max
Ω

uµn
= 0, lim

n→+∞
max

Ω
vµn

= 0. (2.11)

Denote ũµn = uµn/‖uµn‖∞. Then ũµn satisfies ‖ũµn‖∞ = 1, and

−∆ũµn = ũµn(λ− vµn) in Ω, ∂ν ũµn = 0 on ∂Ω.

By (2.3), (2.9) and the definition of ũµn , both {−∆ũµn} and {ũµn} are bounded
sets in L∞(Ω). By the standard elliptic theory (cf. [4, Theorem 9.9]), {ũµn} is
bounded in W 2,p(Ω) for any p > 1. Therefore, there exist a subsequence of {ũµn},
still denoted by itself, and a nonnegative function ũ ∈ C1(Ω) with ‖ũ‖∞ = 1, such
that

ũµn → ũ in C1(Ω),
by (2.11) and the definition of ũµn

, we derive that

−∆ũ = λũ in Ω, ∂ν ũ = 0 on ∂Ω.

This implies ũ = 0, which is a contradiction. This proves (2.1).
Next we show (2.2). By (2.1) and the equation of uµ, {−∆uµ}µ≥µ0 , {uµ}µ≥µ0

and {vµ}µ≥µ0 are bounded sets in L∞(Ω). By the standard elliptic theory, there
exist a sequence {µn} converging to +∞, the corresponding solution (uµn , vµn) of
problem (1.1) and a pair of functions (u, v) ∈ C1(Ω)×L∞(Ω) with C1 ≤ u, v ≤ C2,
such that

uµn → u in C1(Ω), vµn ⇀ v in L2(Ω).
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Clearly, (u, v) satisfies, in the weak sense,

−∆u = u(λ− v) in Ω, ∂νu = 0 on ∂Ω.

Multiplying the equation of vµn by φ ∈ C∞0 (Ω) and integrating over Ω, we get

− 1
µn

∫
Ω

vµn∆φdx =
∫

Ω

vµn

(
1− vµn

uµn

)
φdx.

Passing to the limit yields ∫
Ω

v
(
1− v

u

)
φdx = 0,

which implies that v
(
1 − v

u

)
= 0. Since v 6= 0, we must have v = u. By the

regularity theory of elliptic equation, u ∈ C2(Ω) and satisfies

−∆u = u(λ− u) in Ω, ∂νu = 0 on ∂Ω.

Then u = λ. The proof is complete. �

Proof of Theorem 1.1. Let (uµ, vµ) be a positive solution of problem (1.3). By
(2.2), there exists a constant µ0 = µ0(λ, Ω) such that for all µ ≥ µ0,

uµ ≤ 2λ on Ω. (2.12)

Multiplying the equations of uµ and vµ by λ−uµ

u2
µ

and 1
µ

λ−vµ

vµ
, respectively, we obtain

−2λ

∫
Ω

|∇uµ|2

u3
µ

dx +
∫

Ω

|∇uµ|2

u2
µ

dx =
∫

Ω

(λ− uµ)(λ− vµ)
uµ

dx,

and

−λ

µ

∫
Ω

|∇vµ|2

v2
µ

dx =
∫

Ω

(uµ − vµ)(λ− vµ)
uµ

dx

=
∫

Ω

(uµ − λ)(λ− vµ)
uµ

dx +
∫

Ω

(λ− vµ)2

uµ
dx.

Adding these two equalities yields

− 2λ

∫
Ω

|∇uµ|2

u3
µ

dx +
∫

Ω

|∇uµ|2

u2
µ

dx− λ

µ

∫
Ω

|∇vµ|2

v2
µ

dx =
∫

Ω

(λ− vµ)2

uµ
dx. (2.13)

Noting (2.12), for all µ ≥ µ0, we obtain

−2λ

∫
Ω

|∇uµ|2

u3
µ

dx +
∫

Ω

|∇uµ|2

u2
µ

dx =
∫

Ω

(uµ − 2λ)
|∇uµ|2

u3
µ

dx ≤ 0,

which and (2.13) implies that
∫
Ω

(λ−vµ)2

uµ
dx ≤ 0, hence vµ = λ for all µ ≥ µ0, so

uµ = λ for all µ ≥ µ0. Combining this and Remark 1.2 completes the proof. �
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