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PERIODIC SOLUTIONS FOR A SECOND-ORDER NONLINEAR
NEUTRAL DIFFERENTIAL EQUATION WITH VARIABLE

DELAY

ABDELOUAHEB ARDJOUNI, AHCENE DJOUDI

Abstract. In this work, the hybrid fixed point theorem of Krasnoselskii is
used to prove the existence of periodic solutions of the second-order nonlinear
neutral differential equation

d2

dt2
x(t) + p(t)

d

dt
x(t) + q(t)x(t) =

d

dt
g(t, x(t− τ(t))) + f(t, x(t), x(t− τ(t))).

We transform the problem into an integral equation and uniqueness of the
periodic solution, by means of the contraction mapping principle.

1. Introduction

Due to their importance in numerous application in physics, population dynam-
ics, industrial robotics, and other areas, many authors have studying the existence,
uniqueness, stability and positivity of solutions for delay differential equations; see
the references in this article and references therein.

The primary motivation for this work is the work by Dib et al. [9] and Wang
et al. [19]. In these papers, the authors used Krasnoselskii’s fixed point theorem
to establish the existence of periodic solutions for the nonlinear neutral differential
equations

d

dt
x(t) = −a(t)x(t) +

d

dt
g(t, x(t− τ(t))) + f(t, x(t), x(t− τ(t))),

and
d2

dt2
x(t) + p(t)

d

dt
x(t) + q(t)x(t) = r(t)

d

dt
x(t− τ(t)) + f(t, x(t), x(t− τ(t))).

Some authors have used the contraction mapping principle to show the uniqueness
of periodic solutions of these equations.

In this work, we show the existence and uniqueness of solutions for the second-
order nonlinear neutral differential equation

d2

dt2
x(t) + p(t)

d

dt
x(t) + q(t)x(t) =

d

dt
g(t, x(t− τ(t))) + f(t, x(t), x(t− τ(t))), (1.1)
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where p and q are positive continuous real-valued functions. The function g :
R× R → R is differentiable and f : R× R× R → R continuous in their respective
arguments. To show the existence of periodic solutions, we transform (1.1) into an
integral equation and then use Krasnoselskii’s fixed point theorem. The obtained
integral equation is the sum of two mappings, one is a contraction and the other
is compact. Also, the transformation of equation (1.1) enables us to show the
uniqueness of the periodic solution by the contraction mapping principle.

Note that in our consideration the neutral term d
dtg(t, x(t− τ(t))) of (1.1) pro-

duces nonlinearity in the derivative term d
dtx(t − τ(t)). While, the neutral term

d
dtx(t− τ(t)) in [19] enters linearly. As a consequence, our analysis is different from
that in [19].

The organization of this article is as follows. In Section 2, we introduce some
notation and state some preliminary results needed in later sections. Then we give
the Green’s function of (1.1), which plays an important role in this paper. Also, we
present the inversion of (1.1) and Krasnoselskii’s fixed point theorem. For details
on Krasnoselskii theorem we refer the reader to [18]. In Section 3, we present our
main results on existence and uniqueness.

2. Preliminaries

For T > 0, let PT be the set of continuous scalar functions x that are periodic
in t, with period T . Then (PT , ‖ · ‖) is a Banach space with the supremum norm

‖x‖ = sup
t∈R

|x(t)| = sup
t∈[0,T ]

|x(t)|.

Since we are searching for periodic solutions for (1.1), it is natural to assume that

p(t+ T ) = p(t), q(t+ T ) = q(t), τ(t+ T ) = τ(t), (2.1)

with τ being scalar function, continuous, and τ(t) ≥ τ∗ > 0. Also, we assume∫ T

0

p(s)ds > 0,
∫ T

0

q(s)ds > 0. (2.2)

Functions g(t, x) and f(t, x, y) are periodic in t with period T . They are also
supposed to be globally Lipschitz continuous in x and in x and y, respectively.
That is,

g(t+ T, x) = g(t, x), f(t+ T, x, y) = f(t, x, y), (2.3)

and there are positive constants k1, k2, k3 such that

|g(t, x)− g(t, y)| ≤ k1‖x− y‖, (2.4)

and

|f(t, x, y)− f(t, z, w)| ≤ k2‖x− z‖+ k3‖y − w‖. (2.5)

Lemma 2.1 ([14]). Suppose that (2.1) and (2.2) hold and

R1[exp(
∫ T

0
p(u)du)− 1]

Q1T
≥ 1, (2.6)
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where

R1 = max
t∈[0,T ]

∣∣ ∫ t+T

t

exp(
∫ s

t
p(u)du)

exp(
∫ T

0
p(u)du)− 1

q(s)ds
∣∣,

Q1 =
(
1 + exp

( ∫ T

0

p(u)du
))2

R2
1.

Then there are continuous and T -periodic functions a and b such that b(t) > 0,∫ T

0
a(u)du > 0, and

a(t) + b(t) = p(t),
d

dt
b(t) + a(t)b(t) = q(t), for t ∈ R.

Lemma 2.2 ([19]). Suppose the conditions of Lemma 2.1 hold and φ ∈ PT . Then
the equation

d2

dt2
x(t) + p(t)

d

dt
x(t) + q(t)x(t) = φ(t),

has a T -periodic solution. Moreover, the periodic solution can be expressed as

x(t) =
∫ t+T

t

G(t, s)φ(s)ds,

where

G(t, s) =

∫ s

t
exp[

∫ u

t
b(v)dv +

∫ s

u
a(v)dv]du+

∫ t+T

s
exp[

∫ u

t
b(v)dv +

∫ s+T

u
a(v)dv]du

[exp
( ∫ T

0
a(u)du

)
− 1][exp

( ∫ T

0
b(u)du

)
− 1]

.

Corollary 2.3. [19] Green’s function G satisfies the following properties

G(t, t+ T ) = G(t, t), G(t+ T, s+ T ) = G(t, s),

∂

∂s
G(t, s) = a(s)G(t, s)−

exp
( ∫ s

t
b(v)dv

)
exp

( ∫ T

0
b(v)dv

)
− 1

,

∂

∂t
G(t, s) = −b(t)G(t, s) +

exp
( ∫ s

t
a(v)dv

)
exp

( ∫ T

0
a(v)dv

)
− 1

.

The following lemma is essential for our results.

Lemma 2.4. Suppose (2.1)-(2.3) and (2.6) hold. If x ∈ PT , then x is a solution
of (1.1) if and only if

x(t) =
∫ t+T

t

E(t, s)g(s, x(s− τ(s)))ds

+
∫ t+T

t

G(t, s)[−a(s)g(s, x(s− τ(s))) + f(s, x(s), x(s− τ(s)))]ds,

(2.7)

where

E(t, s) =
exp(

∫ s

t
b(v)dv)

exp(
∫ T

0
b(v)dv)− 1

. (2.8)

Proof. Let x ∈ PT be a solution of (1.1). From Lemma 2.2, we have

x(t) =
∫ t+T

t

G(t, s)[
∂

∂s
g(s, x(s− τ(s))) + f(s, x(s), x(s− τ(s)))]ds. (2.9)
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Integrating by parts, we have∫ t+T

t

G(t, s)
∂

∂s
g(s, x(s− τ(s)))ds

= −
∫ t+T

t

[
∂

∂s
G(t, s)]g(s, x(s− τ(s)))ds

=
∫ t+T

t

g(s, x(s− τ(s)))[E(t, s)− a(s)G(t, s)]ds,

(2.10)

where E is given by (2.8). Then substituting (2.10) in (2.9) completes the proof. �

Lemma 2.5. [19] Let A =
∫ T

0
p(u)du, B = T 2 exp

(
1
T

∫ T

0
ln(q(u))du

)
. If

A2 ≥ 4B, (2.11)

then

min
{ ∫ T

0

a(u)du,
∫ T

0

b(u)du
}
≥ 1

2
(A−

√
A2 − 4B) := l,

max
{ ∫ T

0

a(u)du,
∫ T

0

b(u)du
}
≤ 1

2
(A+

√
A2 − 4B) := m.

Corollary 2.6. [19] Functions G and E satisfy

T

(em − 1)2
≤ G(t, s) ≤

T exp
( ∫ T

0
p(u)du

)
(el − 1)2

, |E(t, s)| ≤ em

el − 1
.

Lastly in this section, we state Krasnoselskii’s fixed point theorem which enables
us to prove the existence of periodic solutions to (1.1). For its proof we refer the
reader to [18].

Theorem 2.7 (Krasnoselskii). Let M be a closed convex nonempty subset of a
Banach space (B, ‖ · ‖). Suppose that A and B map M into B such that

(i) x, y ∈ M, implies Ax+ By ∈ M,
(ii) A is compact and continuous,
(iii) B is a contraction mapping.

Then there exists z ∈ M with z = Az + Bz.

3. Main results

We present our existence results in this section. To this end, we first define the
operator H : PT → PT by

(Hϕ)(t) =
∫ t+T

t

G(t, s)[−a(s)g(s, ϕ(s− τ(s))) + f(s, ϕ(s), ϕ(s− τ(s)))]ds

+
∫ t+T

t

E(t, s)g(s, ϕ(s− τ(s)))ds.

(3.1)

From Lemma 2.4, we see that fixed points of H are solutions of (1.1) and vice
versa. To use Theorem 2.7 we need to express the operator H as the sum of two
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operators, one of which is compact and the other of which is a contraction. Let
(Hϕ)(t) = (Aϕ)(t) + (Bϕ)(t) where

(Aϕ)(t) =
∫ t+T

t

G(t, s)[−a(s)g(s, ϕ(s− τ(s))) + f(s, ϕ(s), ϕ(s− τ(s)))]ds, (3.2)

(Bϕ)(t) =
∫ t+T

t

E(t, s)g(s, ϕ(s− τ(s)))ds. (3.3)

To simplify notation, we introduce the constants

α =
T exp

( ∫ T

0
p(u)du

)
(el − 1)2

, β =
em

el − 1
, γ = max

t∈[0,T ]
|a(t)|, λ = max

t∈[0,T ]
|b(t)|.

(3.4)

Lemma 3.1. Suppose that conditions (2.1)-(2.6) and (2.11) hold. Then A : PT →
PT is compact.

Proof. Let A be defined by (3.2). Obviously, Aϕ is continuous and it is easy to
show that (Aϕ)(t + T ) = (Aϕ)(t). To see that A is continuous, we let ϕ,ψ ∈ PT .
Given ε > 0, take η = ε/N with N = αT (γk1 + k2 + k3) where k1, k2 and k3 are
given by (2.4) and (2.5). Now, for ‖ϕ− ψ‖ < η, we obtain

‖Aϕ−Aψ‖ ≤ α

∫ t+T

t

[γk1‖ϕ− ψ‖+ (k2 + k3)‖ϕ− ψ‖]ds ≤ N‖ϕ− ψ‖ < ε.

This proves that A is continuous. To show that the image of A is contained in a
compact set, we consider D = {ϕ ∈ PT : ‖ϕ‖ ≤ L}, where L is a fixed positive
constant. Let ϕn ∈ D, where n is a positive integer. Observe that in view of (2.4)
and (2.5), we have

|g(t, x)| = |g(t, x)− g(t, 0) + g(t, 0)|
≤ |g(t, x)− g(t, 0)|+ |g(t, 0)|
≤ k1‖x‖+ ρ1.

Similarly,

|f(t, x, y)| = |f(t, x, y)− f(t, 0, 0) + f(t, 0, 0)|
≤ |f(t, x, y)− f(t, 0, 0)|+ |f(t, 0, 0)|
≤ k2‖x‖+ k3‖y‖+ ρ2,

where ρ1 = maxt∈[0,T ] |g(t, 0)| and ρ2 = maxt∈[0,T ] |f(t, 0, 0)|. Hence, if A is given
by (3.2) we obtain

‖Aϕn‖ ≤ D,

for some positive constant D. Next we calculate d
dt (Aϕn)(t) and show that it is

uniformly bounded. By making use of (2.1), (2.2) and (2.3) we obtain by taking
the derivative in (3.2) that

d

dt
(Aϕn)(t) =

∫ t+T

t

[−b(t)G(t, s) +
exp

( ∫ s

t
a(v)dv

)
exp

( ∫ T

0
a(v)dv

)
− 1

]

× [−a(s)g(s, ϕn(s− τ(s))) + f(s, ϕn(s), ϕn(s− τ(s)))]ds.

Consequently, by invoking (2.4), (2.5) and (3.4), we obtain

| d
dt

(Aϕn)(t)| ≤ T (λα+ β)[γ(k1L+ ρ1) + (k2 + k3)L+ ρ2] ≤M,
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for some positive constant M . Hence the sequence (Aϕn) is uniformly bounded and
equicontinuous. The Ascoli-Arzela theorem implies that a subsequence (Aϕnk

)
of (Aϕn) converges uniformly to a continuous T -periodic function. Thus A is
continuous and A(D) is a compact set. �

Lemma 3.2. If B is given by (3.3) with

k1βT < 1, (3.5)

then B : PT → PT is a contraction.

Proof. Let B be defined by (3.3). It is easy to show that (Bϕ)(t + T ) = (Bϕ)(t).
To see that B is a contraction. Let ϕ,ψ ∈ PT we have

‖Bϕ− Bψ‖ = sup
t∈[0,T ]

|(Bϕ)(t)− (Bψ)(t)| ≤ k1βT‖ϕ− ψ‖.

Hence B : PT → PT is a contraction. �

Theorem 3.3. Let α, β and γ be given by (3.4). Suppose that conditions (2.1)-
(2.6), (2.11) and (3.5) hold. Suppose there exists a positive constant J satisfying
the inequality

[(αγ + β)ρ1 + αρ2]T + [α(γk1 + k2 + k3) + k1β]TJ ≤ J.

Then (1.1) has a solution x ∈ PT such that ‖x‖ ≤ J .

Proof. Define M = {ϕ ∈ PT : ‖ϕ‖ ≤ J}. By Lemma 3.1, the operator A : M → PT

is compact and continuous. Also, from Lemma 3.2, the operator B : M → PT is a
contraction. Conditions (i) and (ii) of Theorem 2.7 are satisfied. We need to show
that condition (iii) is fulfilled. To this end, let ϕ,ψ ∈ M. Then

|(Aϕ)(t) + (Bψ)(t)|

≤ α

∫ t+T

t

[γ(k1‖ϕ‖+ ρ1) + (k2 + k3)‖ϕ‖+ ρ2]ds+ β

∫ t+T

t

(k1‖ψ‖+ ρ1)ds

≤ [(αγ + β)ρ1 + αρ2]T + [α(γk1 + k2 + k3) + k1β]TJ ≤ J.

Thus ‖Aϕ+Bψ‖ ≤ J and so Aϕ+Bψ ∈ M. All the conditions of Theorem 2.7 are
satisfied and consequently the operator H defined in (3.1) has a fixed point in M.
By Lemma 2.4 this fixed point is a solution of (1.1) and the proof is complete. �

Theorem 3.4. Let α, β and γ be given by (3.4). Suppose that conditions (2.1)-
(2.6), (2.11) and (3.5) hold. If

[α(γk1 + k2 + k3) + k1β]T < 1,

then (1.1) has a unique T -periodic solution.

Proof. Let the mapping H be given by (3.1). For ϕ,ψ ∈ PT , we have

|(Hϕ)(t)− (Hψ)(t)|

≤ α

∫ t+T

t

[γ(k1‖ϕ− ψ‖) + (k2 + k3)‖ϕ− ψ‖]ds+ β

∫ t+T

t

k1‖ϕ− ψ‖ds.

Hence, ‖Hϕ − Hψ‖ ≤ [α(γk1 + k2 + k3) + k1β]T‖ϕ − ψ‖. By the contraction
mapping principle, H has a fixed point in PT and by Lemma 2.4, this fixed point
is a solution of (1.1). The proof is complete. �
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