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EXISTENCE OF POSITIVE SOLUTIONS FOR A MULTI-POINT
FOUR-ORDER BOUNDARY-VALUE PROBLEM

LE XUAN TRUONG, PHAN DINH PHUNG

ABSTRACT. The article shows sufficient conditions for the existence of positive
solutions to a multi-point boundary-value problem for a fourth-order differen-
tial equation. Our main tools are the Guo-Krasnoselskii fixed point theorem
and the monotone iterative technique. We also show that the set of positive
solutions is compact.

1. INTRODUCTION

Multi-point boundary-value problems for ordinary differential equations arise in
a variety of areas in applied mathematics and physics. For this reason the have
been investigated by several authors; see for example [2]-[4, 2, B 6] [7, 8, [@]. In this
article, we study the existence of positive solutions for the problem

aW(t) = Mf(t,x(t), 0<t<l, (1.1)
m—2
2P0 0) =0, 2®H(1) =" apa® (), k=01, (1.2)
i=1
where A > 0, 0 < g1 < M2 < -+ < Meom—2 < 1, (£ =0,1) and oy, with & =0, 1;
1=1,2,...,m — 2, are given positive constants satisfy the conditions
m—2 m—2
Z apny <1< Z oai, (1.3)
i=1 i=1
m—2

m—2
Z aging; < 1< Z ;- (1.4)
=1 =1

When m = 3; ng1 = no, m11 = M1; Qo1 = g, a11 = a1; and the inhomogeneous
term is f(u(t)), the problem (L.1I)-(L.2) is studied in [I]. The authors in [I] obtained
several existence results of positive solutions basing the computations of the fixed
point index of open subsets of a Banach space relative to a cone and follow from a
well-known theorem of Krasnosel’skii. One of the assumptions playing an important
role in obtaining positive solution is that 1 < o; < i, 1 =0,1.
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The rest of this paper is organized as follows. In section 2, we provide some
results which are motivation for obtaining our main results. In section 3 we state
and prove several existence results for at least one positive solution. Our main
tools are the Guo-Krasnoselskii’s fixed point theorem or the monotone iterative
technique. Finally, section 4 devoted to the compactness of positive solutions set.

2. PRELIMINARIES

In this article, C([0, 1]) denotes the space of all continuous functions z from [0, 1]
into R endowed with the supremum norm

[zl = sup |z(@)|, =< C([0,1]).

t€0,1]
First we consider the auxiliary linear differential equation
—2"(t)=g(t), 0<t<1, (2.1)

with the boundary conditions

m—2
2(0)=0, x(1)=Y_ ax(n), (2.2)
where 0 <y <M < - <Mpm—o < land o; (i =1,2,...,m —2) are given positive
constants.

Lemma 2.1. Let g € C|0, 1] be non-negative (non-positive) and > :1_12 ain <1<
m—2
> io1 ;. Then

z(t) = — /Ot(t —5)g(s)ds —|— Zlaz {/1(1 —s)g(s)ds

- mz o [ = )ate)as]

is a unique non-positive (non-negative) solution of (2.1)—(2.2).

Proof. Tt is easy to see that (2.3]) is a unique solution of (2.1)—(2.2). If g(¢) > 0 on
[0,1] then

(2.3)

2 (t) = _/0 g(s)ds <0

and
1 1 m—2 77i
Let F(n) = + fo s)ds. We have
s)ds — s)ds " sqg(s)ds
F/(n) nfO 7{(2) g( ) — fo ig ) > 0.

This implies F'(n;) < F(1), for i = 1,2,...,m — 2; that is,

i 1
/ (n; — s)g(s)ds Sm/ (1—29)g(s)ds, fori=1,2,...,m—2.
0 0
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Hence

m=2 ni m—2 1 .
; Oéi/o (m: = s)g(s)ds < ; amz‘/o (1= s)g(s)ds < /0 (1 —s)g(s)ds. (2.5)

From (2.4) and (2.5)), we conclude that z(t) < 0, for all ¢ € [0,1]. In the case
g(t) <0, by similar arguments, we obtain z(t) > 0, for all ¢ € [0, 1]. This completes
the proof. O

Lemma 2.2. Let g be non positive and non-increasing function in C[0,1] and let

2712051771 <1< Zz 1 Ozz Then the unique solution of { . . 18

nonnegative. Further we have

o |
min a(t) = 7l (26)

where

2
_ 1- Z:ﬂ 1 041771
T = m—2

>imy (1 - 771')
Proof. Because g(t) < 0 for all ¢ € [0, 1], the unique solution ) of 21)-(2:2) is

non-decreasing and

2(t) > 2(0) = 1_2104 / (1 9)g(s)ds — mza / " = )g()ds]. (28)

(2.7)

i=1 %
Let Fy(n) = % fo s)ds. Then we have
. nfo s)ds — 2]0 s)g(s)ds fon(2s —n)g(s)ds
O( ) ,'73 - 773

It is easy to check that the function 1+ ['(2s — 1)g(s)ds is non-increasing. Thus

U
/ (2s —n)g(s)ds <0, Vn>0.
0

This implies that F{(n) <0, for all n > 0. Thus
m—2 i m—2 m—2
> [ = 9)a(s)ds = Y an?Foln) = Fo1) Y- o
i=1 0 i=1 i=1

1
2/ (1 —s)g(s)ds.
0
Combining (2.8) and (2.9), we deduce that z(¢) > 0 for all ¢t € [0,1]. Finally, we
need to check inequality (2.6)), or equivalently,
x(0) > yz(1). (2.10)
Indeed, it follows from ([2.3) that (2.10]) is equivalent to
7]7/
Zal/ i — 8)g ds> 712; 1 O‘Z/ (1 —s)g(s)ds. (2.11)

0

(2.9)

By the monotonicity of Fy, we have

m—2

Z_: o /07711( s)g(s)ds = Z ain? Fo(n;) Z a;n; / (1—=29)g(s)ds. (2.12)

=1
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So, it is not difficult to obtain (2.11)) from (2.12]) and (2.7]). The proof is completed.

Remark 2.3. For ¢, s € [0,1], we put

s—t, 0<s<t<1,

0, 0<t<s<l,

L= 20 e + (D ei = 1)s, 0<s <my,
1- 2?52 aimi+ (U0 e — 1)s, m < s <,

G(t7 svaiani) = {

1- Zz k 04”71 + (ZZ}Q a; —1)s, Mme—1 <5 < 1,

1—s, NMm-2 < s <1,
where @ = (1 — Y7 12 a;)~ L. Then (2.3 can be rewrite as

1
u(t) = [ Glt.s.asm) g(5) ds.

0

Now we consider the linearized equation
W (t) = g(t) 0<t<l,
subject to the boundary conditions . We have the following lemma.

Lemma 2.4. Let g € C[0,1] be non-negative and

m—2 m—2 m—2 m—2
Z o $1< Z aqi, Z aoimg; <1< Z ;-
i=1 i=1 i=1 i=1
Then , has a unique non-negative solution
)= [ 0lts)g(s)ds = Aglo),
0
where ®(t, s) is the Green function
D(t,s) = /1 G(t, 7, api,n0i )G (T, 8,14, ;) d7,  fort,s € [0,1].
0

Moreover, we have minsejo 1) z(t) > 7oz, where

2

Yo = 1- Zm 1 aOzT]Oz
= —2

ZZL i (1 — 7702‘)

Proof. It follows from Lemma [2.1] that

1
-2’ (t) :/ G(t,s,014,m13)9(s)ds <0

is non-positive non-increasing for all ¢ € [0, 1]. Thus, by Lemma

/ G t, s, i, Noi / G S T, 051177711) (T) drds

= / / G(t, T, aoi, M0i)G(T, 8, @14, M14) dT)g(S)dS
0 0

O

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)
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1
= / D(t,s)g(s)ds >0, te][0,1],
0
and minge(o,1) 2(t) > yollz||. The proof is complete. O
The following result is straightforward and we will omit its proof.

Lemma 2.5. The operator A : C([0,1]) — C([0,1]), defined by (2.16]), be a com-
pletely continuous linear operator. If g is a nonnegative function in C([0,1]) then
Ag is also nonnegative.

Next we give some properties of the Green function ®(¢, s) which is used in the
sequel.

Lemma 2.6. Let

m—2 m—2 m—2 m—2

2
Z apn <1< Z o, Z aping; <1< Z ;-
i—1 i—1 i—1 i—1

Then we have
(1) ®(t,s) >0, for all s,t €[0,1];
(2) there exists a continuous function x : [0,1] — [0, +00) such that
VOX(S) < (I)(tv 5) < X(S)a V'Svt € [07 1}

Proof. From (2.13)) and the assumptions ZZ":IQ apn <1< ZZ";Q aqj, it is easy to
check that, for each s € [0, 1], 7 — G(7, s, a1;,71;) is & non-positive, non-increasing
and continuous function. So by using (2.17) and the Lemma the function
®(t,s) > 0 for all s,t € [0,1] and

min &(t, ) = 1[0, )| = 01, 5)

te0,1]
Let x(s) = ®(1,s). Obviously we have vyox(s) < ®(¢,s) < x(s). The proof is
complete. [

To study (L.1])-(1.2)), we use the assumption

(A1) f:[0,1] x RT — R™" is continuous

Let K be the cone in C([0,1]), consisting of all nonnegative functions and

P={x e K: min z(t) > vlz|}
t€(0,1]
It is clear that P is also a cone in C([0,1]). For each z € P, denote F(z)(t) =
Af(t,z(t)), t € [0,1]. By the assumption (A1), the operator F : P — K is continu-
ous. Therefore the operator T':= Ao F': P — K is completely continuous. On the
other hand it is not difficult to check that for x € P we have
in Tz(t) > T
Jnin Tx(t) = yo|| T

using the Lemma [2.6] that is TP C P.

We note that the nonzero fixed points of the operator T" are positive solutions of
(1.1)-(1.2). To finish this section we state here the Guo-Krasnoselskii’s fixed point
theorem (see [5])

Theorem 2.7. Let X be a Banach space and P C X be a cone in X. Assume
Q1,Qs are two open bounded subsets of X with 0 € Q1,01 C Qo and T : PN (2a\
Q1) — P be a completely continuous operator such that
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(1) |[Tu]] < |lu|l, w e PNoQ and | Tu| > |Jul], w € PNON,, or
(ii) || Tul| > |lull, w € PN I and ||Tul| < |ul|, v € PN oQs.

Then T has a fized point in PN (Qa \ Q).

3. EXISTENCE OF POSITIVE SOLUTIONS

‘We introduce the notation

t t
fo := liminf min A ’Z), f°° := limsup max A ’Z),
z—0+ te0,l] 2 ztoo tE[0,1] 2
f° :=limsup max f(t,z)7 foo := liminf min I, Z),
»0+ t€[0,1] z z—+00 te(0,1] z
1 1 A
A= (/ @(1,s)ds) , B=2.
0 Yo
Theorem 3.1. Assume that (A1) holds. Then (1.1)-(1.2)) has at least one positive

solution for every \ € (%7%) if fo, f™ € (0,00) satisfy foyo > f; or A €

(7= 45) if [0, foo € (0,00) satisfy fooyo > f°.

Proof. Set
Q, ={zeC(0,1])) : ||z|| < R}, i=1,2.
Then 1, are two open bounded of C([0,1]) and 0 € 21, Q1 C Q.
Case 1: fo, f* € (0,00) and foyo > f*. Let A € (£, A ). Then there exists

for 7=
€ > 0 such that
B <AL A
fo—e fe+e
Since fo € (0,00) there exists Ry > 0 such that f(¢t,z) > (fo —¢)z for all ¢t €
[0,1],z € [0, Ry]. So if z € P such that ||z|| = Ry, we have

ft2(t) = (fo—e)a(t) 2 v0(fo —e)ll=ll, vt e[0,1].

This implies

Tx(t) = )\/0 D(t,8)f(s,2(s))ds > Myo(fo — €)||:c\|/0 O(t,s)ds, Vte0,1].

Hence, for all z € P NNy,

1
73] > Moo = ) gua, ([ @t 5)ds) ol > [

0<t<1

On the other hand, since f* € (0,00), there exists R > 0 such that f(¢,z) <
(f* 4¢)z for all t € [0,1],2 € [R,+o0]. Set Ry = max{R; + 1,Ry;'}. Let us
€ PNoNy. We have

z(t) = yollzll = v Rz, V€ [0,1].
So . )
Tx(t) = )\/O D(t,s)f(s,2(s))ds < ANf> + E)HmH/O (¢, s)ds.

Consequently, || Tz|| < ||z| for all z € P N 9Qy. Therefore, using the second part
of Theorem [2.7, we conclude that T has a fixed point in P N Qs \ Q.
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Case 2: fY fo € (0,00) and fooyo > fY. Let X € (
€ > 0 such that

f%, 4). Then there exists

~,

<AL 5/

foo —€ fO+e
Using the arguments as in Case 1, we can find Ry > Ry > 0 such that ||Tz|| < ||zl
for all z € PNOQy and ||[Tz|| > ||z||, for all z € PN dQs. So T has a fixed point in

PN Qy\ Q which is a positive solution of (1.1))-(1.2)), using the Theorem O
Next, we add the following assumption
(A2) The function f(¢,x) is nondecreasing about x.
Using the monotone iterative technique, we get the following result.

Theorem 3.2. Let (Al) and (A2) hold. Assume that there exist two positive
numbers R1 < Ry such that

0< Ry sup f(t,Rz) < ’YQRQ inf f(t,"yoRl).
tel0,1] te[0,1]

Then if
BR1 AR2

[infte[o,u ft,v0R1)" supyepo ) f(t, Rz)]
then (1.1)-(1.2) has positive solutions x7,x5 (x7 and x5 may coincide) with

AE

Ry <||zi]| £ Ry and lim T"zy =z}, where zo(t) = Ry, Vt€[0,1];
and

Ry <||z3]| < Ry and lim T"my = x5, whereTo(t) =Ry, Vte|0,1].
Proof. Set

P[Rth] = {iE eP R < ||£L'|| < RQ}
Let © € Pg, g,)- It’s clear that yoRy < yol|z|| < x(t) < [|z|| < Ry, for all ¢t € [0, 1].
So . .
Ta(t) = )\/ B(t, ) f (s, 2(5))ds < )\/ B(t, ) (s, Ra)ds < Ro,
0 0

and
1 AR, [ 1
Ta(t) > )\/ B(t, ) (5.0 R )ds > / B(t, 5)ds > ARl/ (1, 5)ds = Ry.
0 0 0
This implies that T'Pr, r,)] C PR, R.]-
Let x(t) = Ry for all ¢ € [0, 1]. It is evident that zo € P, r,). We consider the
sequence in Pig, g,], {%n}nen, defined by

Ty =Tz, 1=T"29, n=12,.... (3.1)

Because T is the completely continuous operator, there exists a subsegence {z,, }
of {x,} which uniformly converges to z} € C(]0,1]). On the other hand we can
see that T': Pig, r,] — F|r,,r.] 18 @ nondecreasing operator using the assumption
(A2). Therefore, since

0<a1(t) < [lzaf| £ Ry = wo(t), Vtel0,1],

we have Txy < Txg, that is zo < xp. Similarly by induction we deduce that
Tnt1 < my for all n € N. Therefore, we can conclude that the sequence {z,}
uniformly converges to z*. Letting n — +o0 in (3.1)) yields Tz} = z7.
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Let Top(t) = Ry for all t € [0,1] and T, = TT,,—1 for n =1,2,.... Tt is clear that
T, € PR, R, for all n € N. Moreover, by definition of the operator 7', we have

1
71(6) = Tro(t) = X [ (t,5)(s.70(5))ds

1
> /\/ B(t, ) (5,70 Ry )ds > Ry = Folt),
0

for ¢ € [0,1]. Therefore, by using the arguments as above, we deduce that {Z,}
converges uniformly to x5 € P, r,) and Tw3 = 3. The proof is complete. [

Example 3.3. Let a, b, ¢, d be positive numbers such that 5bc > 42ad. We consider
the boundary-value problem

33(4)(75) — (t2 + 1) axQ(t) + bl‘(t)

cx(t)+d 0<t<l,
2’ (0) = 23(0) = 0,
o) = 22(3), 2 (1) = 52(3).

=4
We have v = 57,

G ) T—t ifo<r<t<l1 i-r ifo<r<3
7T7a7 = . .
ot ot 0 fo<t<r<1 ' |2r—2 if3<r<1
and
s—17 if0<s<7<1 1+s ifOSSS%
Gi(7, 8, a11,m1) = . - 1
0 Hfo<r<s<l1 3(1—s) if53<s<1

By doing some calculating, ®(

t,s) is defined as follows: For s < ¢,
1
q)(t7 S) = _6(5 - t)3

3528+(1 +2)(s+1)— P+ i3+ 40 if0<sAs< 3
+ —(Bs=3)(3t*+ ) — s+ iS4+ a4 fi<sns<?
(35—3)( W 3)—L(s—1)? ifs<1A3<s;

and for t <'s,

—2s+ (3P + ) (s+1) — £+ £ —1—384 if0<sAs<

s—(3s—3)(% t2+§)775+ ol i <sAs<
~(8s=3) (32 + &) — 5(s —1)® ifs<1A3<s
So A= (fol (1, s)als)f1 =103/128. Now we set

O(t,s) =+

o NI=

9 az? + bx
ft,z) =@+ 1)]:7”
Then f:[0,1] x Rt — RT is continuous and
o= lim min 108 oy, 0@t b b
o—0t 0<t<1l T e—ot cx?+dx  d’
2
c

¢ 4+b
f = lim maxM:2lim ar +0r
00 0<t<1 @

z—o00 cx? + dx ’
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that is, vofo > f°°. Thus, by Theorem [3.I] we conclude that for each A\ €

2163d 103c o ;
(510t > 2562 ) our problem has at least one positive solution.

4. COMPACTNESS OF THE SET OF POSITIVE SOLUTIONS

Theorem 4.1. Let (Al) hold. Assume that we have
B A

fo, [ €(0,00), foyo>f> and A€ (T7f?)
0
Then the set of positive solutions of (1.1)-(1.2)) is nonempty and compact.

Proof. Put S = {xz € P:x =Txz}. By Theorem S is nonempty. We shall show
that S is compact in C([0, 1]).

First we claim that S is a closed subset of C([0, 1]). Indeed, assume that {z, }nen
be a sequence in S and lim,,_, ||z, — || = 0. Then for each ¢ € [0, 1], we have

| (t) — )\/0 ®(t,s)f(s,2(s))ds|

(4.1)

1
< z(t) — zn ()] + |walt) — )\/0 ®(t,5)f(s,xn(s))ds|

+)\’/0 @(t,s)f(s,x(s))ds—/o D(t,s)f(s,2n(s))ds|.

This implies

1
|:c(t) - )\/0 D(t, s)f(s,a:(s))ds’

< la(t) — zn(t)] + /\/0 O(t,5)|f(s,2(s)) = f(s,2n(s))lds,

because z,, = Tz, for all n € N. Let n — oo in the last inequality we can deduce
that

x(t):)\/o B(t, ) (s, 2(s))ds, vt € [0,1],

using the continuity of the function f and the dominated convergence theorem. So
x € S and S is closed in C([0, 1]). It remains to check that S is relatively compact
in C(]0,1]). Let holds. Choosing * > 0 such that
B < 2
fO —c* foo + e*
Clearly there exists a constant R > 0 such that f(t, z) < (f*+e*)z, for allt € [0, 1]
and z € [R, 00). Hence
ftx(t) < (% +e%)a(t) + 8, ¢ €[0,1],

where 8 = max{f(t, z) : (t,2) € [0,1] x [0, R]}. So, for z € S and for every ¢ € [0, 1],
we have

D(t,s)f(s,z(s))ds

D(t,8)[(f +e%)x(s) + PBlds

AB
I.

z(t) = A

IN
>

S— 5—

< ST +eD)llell +

| >
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We can deduce from this inequality that ||z] < %; that is, S is bounded
in C(]0,1]). By the compactness of the operator T' : P — P we conclude that

S =T(S) is relatively compact. The proof is complete. a
Remark 4.2. Assume that O, foo € (0,00), fooyo > f°, £ < f° and
B A
re(—,—=).
(foo f 0)

Thanks to Theorem 2.7} the set of positive solutions S of the problem (1.1]) (T1.2)) is
nonempty. Moreover by the similar arguments we can show that S is compact in

c([0,1]).
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