Electronic Journal of Differential Equations, Vol. 2011 (2011), No. 129, pp. 1-10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

EXISTENCE OF POSITIVE SOLUTIONS FOR A MULTI-POINT FOUR-ORDER BOUNDARY-VALUE PROBLEM

LE XUAN TRUONG, PHAN DINH PHUNG

Abstract

The article shows sufficient conditions for the existence of positive solutions to a multi-point boundary-value problem for a fourth-order differential equation. Our main tools are the Guo-Krasnoselskii fixed point theorem and the monotone iterative technique. We also show that the set of positive solutions is compact.

1. Introduction

Multi-point boundary-value problems for ordinary differential equations arise in a variety of areas in applied mathematics and physics. For this reason the have been investigated by several authors; see for example [2]-4, 2, 3, 6, 7, 8, 2]. In this article, we study the existence of positive solutions for the problem

$$
\begin{gather*}
x^{(4)}(t)=\lambda f(t, x(t)), \quad 0<t<1, \tag{1.1}\\
x^{(2 k+1)}(0)=0, \quad x^{(2 k)}(1)=\sum_{i=1}^{m-2} \alpha_{k i} x^{(2 k)}\left(\eta_{k i}\right), \quad k=0,1, \tag{1.2}
\end{gather*}
$$

where $\lambda>0,0<\eta_{k 1}<\eta_{k 2}<\cdots<\eta_{k, m-2}<1,(k=0,1)$ and $\alpha_{k i}$, with $k=0,1$; $i=1,2, \ldots, m-2$, are given positive constants satisfy the conditions

$$
\begin{align*}
& \sum_{i=1}^{m-2} \alpha_{1 i} \eta_{1 i} \leq 1<\sum_{i=1}^{m-2} \alpha_{1 i}, \tag{1.3}\\
& \sum_{i=1}^{m-2} \alpha_{0 i} \eta_{0 i}^{2}<1<\sum_{i=1}^{m-2} \alpha_{0 i} . \tag{1.4}
\end{align*}
$$

When $m=3 ; \eta_{01}=\eta_{0}, \eta_{11}=\eta_{1} ; \alpha_{01}=\alpha_{0}, \alpha_{11}=\alpha_{1}$; and the inhomogeneous term is $f(u(t))$, the problem (1.1)- (1.2) is studied in 1]. The authors in (1) obtained several existence results of positive solutions basing the computations of the fixed point index of open subsets of a Banach space relative to a cone and follow from a well-known theorem of Krasnosel'skii. One of the assumptions playing an important role in obtaining positive solution is that $1<\alpha_{i}<\frac{1}{\eta_{i}}, i=0,1$.

[^0]The rest of this paper is organized as follows. In section 2, we provide some results which are motivation for obtaining our main results. In section 3 we state and prove several existence results for at least one positive solution. Our main tools are the Guo-Krasnoselskii's fixed point theorem or the monotone iterative technique. Finally, section 4 devoted to the compactness of positive solutions set.

2. Preliminaries

In this article, $C([0,1])$ denotes the space of all continuous functions x from $[0,1]$ into \mathbb{R} endowed with the supremum norm

$$
\|x\|=\sup _{t \in[0,1]}|x(t)|, \quad x \in C([0,1]) .
$$

First we consider the auxiliary linear differential equation

$$
\begin{equation*}
-x^{\prime \prime}(t)=g(t), \quad 0<t<1 \tag{2.1}
\end{equation*}
$$

with the boundary conditions

$$
\begin{equation*}
x^{\prime}(0)=0, \quad x(1)=\sum_{i=1}^{m-2} \alpha_{i} x\left(\eta_{i}\right) \tag{2.2}
\end{equation*}
$$

where $0<\eta_{1}<\eta_{2}<\cdots<\eta_{m-2}<1$ and $\alpha_{i}(i=1,2, \ldots, m-2)$ are given positive constants.

Lemma 2.1. Let $g \in C[0,1]$ be non-negative (non-positive) and $\sum_{i=1}^{m-2} \alpha_{i} \eta_{i} \leq 1<$ $\sum_{i=1}^{m-2} \alpha_{i}$. Then

$$
\begin{align*}
x(t)= & -\int_{0}^{t}(t-s) g(s) d s+\frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i}}\left[\int_{0}^{1}(1-s) g(s) d s\right. \\
& \left.-\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\eta_{i}}\left(\eta_{i}-s\right) g(s) d s\right] \tag{2.3}
\end{align*}
$$

is a unique non-positive (non-negative) solution of (2.1)-2.2).
Proof. It is easy to see that 2.3 is a unique solution of $2.1-2.2$. If $g(t) \geq 0$ on $[0,1]$ then

$$
x^{\prime}(t)=-\int_{0}^{t} g(s) d s \leq 0
$$

and

$$
\begin{equation*}
x(t) \leq x(0)=\frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i}}\left[\int_{0}^{1}(1-s) g(s) d s-\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\eta_{i}}\left(\eta_{i}-s\right) g(s) d s\right] . \tag{2.4}
\end{equation*}
$$

Let $F(\eta)=\frac{1}{\eta} \int_{0}^{\eta}(\eta-s) g(s) d s$. We have

$$
F^{\prime}(\eta)=\frac{\eta \int_{0}^{\eta} g(s) d s-\int_{0}^{\eta}(\eta-s) g(s) d s}{\eta^{2}}=\frac{\int_{0}^{\eta} s g(s) d s}{\eta^{2}} \geq 0
$$

This implies $F\left(\eta_{i}\right) \leq F(1)$, for $i=1,2, \ldots, m-2$; that is,

$$
\int_{0}^{\eta_{i}}\left(\eta_{i}-s\right) g(s) d s \leq \eta_{i} \int_{0}^{1}(1-s) g(s) d s, \quad \text { for } i=1,2, \ldots, m-2
$$

Hence

$$
\begin{equation*}
\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\eta_{i}}\left(\eta_{i}-s\right) g(s) d s \leq \sum_{i=1}^{m-2} \alpha_{i} \eta_{i} \int_{0}^{1}(1-s) g(s) d s \leq \int_{0}^{1}(1-s) g(s) d s . \tag{2.5}
\end{equation*}
$$

From (2.4) and 2.5, we conclude that $x(t) \leq 0$, for all $t \in[0,1]$. In the case $g(t) \leq 0$, by similar arguments, we obtain $x(t) \geq 0$, for all $t \in[0,1]$. This completes the proof.

Lemma 2.2. Let g be non-positive and non-increasing function in $C[0,1]$ and let $\sum_{i=1}^{m-2} \alpha_{i} \eta_{i}^{2}<1<\sum_{i=1}^{m-2} \alpha_{i}$. Then the unique solution 2.3) of 2.1)-2.2 is nonnegative. Further we have

$$
\begin{equation*}
\min _{0 \leq t \leq 1} x(t) \geq \gamma\|x\| \tag{2.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma=\frac{1-\sum_{i=1}^{m-2} \alpha_{i} \eta_{i}^{2}}{\sum_{i=1}^{m-2} \alpha_{i}\left(1-\eta_{i}^{2}\right)} . \tag{2.7}
\end{equation*}
$$

Proof. Because $g(t) \leq 0$ for all $t \in[0,1]$, the unique solution 2.3 of $2.1-2.2$ is non-decreasing and

$$
\begin{equation*}
x(t) \geq x(0)=\frac{1}{1-\sum_{i=1}^{m-2} \alpha_{i}}\left[\int_{0}^{1}(1-s) g(s) d s-\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\eta_{i}}\left(\eta_{i}-s\right) g(s) d s\right] . \tag{2.8}
\end{equation*}
$$

Let $F_{0}(\eta)=\frac{1}{\eta^{2}} \int_{0}^{\eta}(\eta-s) g(s) d s$. Then we have

$$
F_{0}^{\prime}(\eta)=\frac{\eta \int_{0}^{\eta} g(s) d s-2 \int_{0}^{\eta}(\eta-s) g(s) d s}{\eta^{3}}=\frac{\int_{0}^{\eta}(2 s-\eta) g(s) d s}{\eta^{3}}
$$

It is easy to check that the function $\eta \mapsto \int_{0}^{\eta}(2 s-\eta) g(s) d s$ is non-increasing. Thus

$$
\int_{0}^{\eta}(2 s-\eta) g(s) d s \leq 0, \quad \forall \eta \geq 0
$$

This implies that $F_{0}^{\prime}(\eta) \leq 0$, for all $\eta \geq 0$. Thus

$$
\begin{align*}
\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\eta_{i}}\left(\eta_{i}-s\right) g(s) d s & =\sum_{i=1}^{m-2} \alpha_{i} \eta_{i}^{2} F_{0}\left(\eta_{i}\right) \geq F_{0}(1) \sum_{i=1}^{m-2} \alpha_{i} \eta_{i}^{2} \tag{2.9}\\
& \geq \int_{0}^{1}(1-s) g(s) d s
\end{align*}
$$

Combining (2.8) and 2.9), we deduce that $x(t) \geq 0$ for all $t \in[0,1]$. Finally, we need to check inequality (2.6), or equivalently,

$$
\begin{equation*}
x(0) \geq \gamma x(1) \tag{2.10}
\end{equation*}
$$

Indeed, it follows from 2.3 that 2.10 is equivalent to

$$
\begin{equation*}
\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\eta_{i}}\left(\eta_{i}-s\right) g(s) d s \geq \frac{1-\gamma \sum_{i=1}^{m-2} \alpha_{i}}{1-\gamma} \int_{0}^{1}(1-s) g(s) d s \tag{2.11}
\end{equation*}
$$

By the monotonicity of F_{0}, we have

$$
\begin{equation*}
\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\eta_{i}}\left(\eta_{i}-s\right) g(s) d s=\sum_{i=1}^{m-2} \alpha_{i} \eta_{i}^{2} F_{0}\left(\eta_{i}\right) \geq \sum_{i=1}^{m-2} \alpha_{i} \eta_{i}^{2} \int_{0}^{1}(1-s) g(s) d s \tag{2.12}
\end{equation*}
$$

So, it is not difficult to obtain 2.11 from 2.12 and 2.7 . The proof is completed.

Remark 2.3. For $t, s \in[0,1]$, we put

$$
\begin{align*}
G\left(t, s, \alpha_{i}, \eta_{i}\right)= & \begin{cases}s-t, & 0 \leq s \leq t \leq 1 \\
0, & 0 \leq t \leq s \leq 1\end{cases} \\
& +\bar{\alpha} \begin{cases}1-\sum_{i=1}^{m-2} \alpha_{i} \eta_{i}+\left(\sum_{i=1}^{m-2} \alpha_{i}-1\right) s, & 0 \leq s \leq \eta_{1} \\
1-\sum_{i=2}^{m-2} \alpha_{i} \eta_{i}+\left(\sum_{i=2}^{m-2} \alpha_{i}-1\right) s, & \eta_{1} \leq s \leq \eta_{2} \\
\cdots & \eta_{k-1} \leq s \leq \eta_{k} \\
1-\sum_{i=k}^{m-2} \alpha_{i} \eta_{i}+\left(\sum_{i=k}^{m-2} \alpha_{i}-1\right) s, \\
\cdots & \eta_{m-2} \leq s \leq 1 \\
1-s,\end{cases} \tag{2.13}
\end{align*}
$$

where $\bar{\alpha}=\left(1-\sum_{i=1}^{m-2} \alpha_{i}\right)^{-1}$. Then (2.3) can be rewrite as

$$
\begin{equation*}
u(t)=\int_{0}^{1} G\left(t, s, \alpha_{i}, \eta_{i}\right) g(s) d s \tag{2.14}
\end{equation*}
$$

Now we consider the linearized equation

$$
\begin{equation*}
x^{(4)}(t)=g(t), \quad 0<t<1 \tag{2.15}
\end{equation*}
$$

subject to the boundary conditions 1.2 . We have the following lemma.
Lemma 2.4. Let $g \in C[0,1]$ be non-negative and

$$
\sum_{i=1}^{m-2} \alpha_{1 i} \eta_{1 i} \leq 1<\sum_{i=1}^{m-2} \alpha_{1 i}, \quad \sum_{i=1}^{m-2} \alpha_{0 i} \eta_{0 i}^{2}<1<\sum_{i=1}^{m-2} \alpha_{0 i} .
$$

Then (2.15), 1.2 has a unique non-negative solution

$$
\begin{equation*}
x(t)=\int_{0}^{1} \Phi(t, s) g(s) d s:=A g(t) \tag{2.16}
\end{equation*}
$$

where $\Phi(t, s)$ is the Green function

$$
\begin{equation*}
\Phi(t, s)=\int_{0}^{1} G\left(t, \tau, \alpha_{0 i}, \eta_{0 i}\right) G\left(\tau, s, \alpha_{1 i}, \eta_{1 i}\right) d \tau, \quad \text { for } t, s \in[0,1] \tag{2.17}
\end{equation*}
$$

Moreover, we have $\min _{t \in[0,1]} x(t) \geq \gamma_{0}\|x\|$, where

$$
\gamma_{0}=\frac{1-\sum_{i=1}^{m-2} \alpha_{0 i} \eta_{0 i}^{2}}{\sum_{i=1}^{m-2} \alpha_{0 i}\left(1-\eta_{0 i}^{2}\right)}
$$

Proof. It follows from Lemma 2.1 that

$$
-x^{\prime \prime}(t)=\int_{0}^{1} G\left(t, s, \alpha_{1 i}, \eta_{1 i}\right) g(s) d s \leq 0
$$

is non-positive non-increasing for all $t \in[0,1]$. Thus, by Lemma 2.2 ,

$$
\begin{aligned}
x(t) & =\int_{0}^{1} G\left(t, s, \alpha_{0 i}, \eta_{0 i}\right) \int_{0}^{1} G\left(s, \tau, \alpha_{1 i}, \eta_{1 i}\right) g(\tau) d \tau d s \\
& =\int_{0}^{1}\left(\int_{0}^{1} G\left(t, \tau, \alpha_{0 i}, \eta_{0 i}\right) G\left(\tau, s, \alpha_{1 i}, \eta_{1 i}\right) d \tau\right) g(s) d s
\end{aligned}
$$

$$
=\int_{0}^{1} \Phi(t, s) g(s) d s \geq 0, \quad t \in[0,1]
$$

and $\min _{t \in[0,1]} x(t) \geq \gamma_{0}\|x\|$. The proof is complete.
The following result is straightforward and we will omit its proof.
Lemma 2.5. The operator $A: C([0,1]) \rightarrow C([0,1])$, defined by 2.16$)$, be a completely continuous linear operator. If g is a nonnegative function in $C([0,1])$ then Ag is also nonnegative.

Next we give some properties of the Green function $\Phi(t, s)$ which is used in the sequel.

Lemma 2.6. Let

$$
\sum_{i=1}^{m-2} \alpha_{1 i} \eta_{1 i} \leq 1<\sum_{i=1}^{m-2} \alpha_{1 i}, \quad \sum_{i=1}^{m-2} \alpha_{0 i} \eta_{0 i}^{2}<1<\sum_{i=1}^{m-2} \alpha_{0 i}
$$

Then we have
(1) $\Phi(t, s) \geq 0$, for all $s, t \in[0,1]$;
(2) there exists a continuous function $\chi:[0,1] \rightarrow[0,+\infty)$ such that

$$
\gamma_{0} \chi(s) \leq \Phi(t, s) \leq \chi(s), \quad \forall s, t \in[0,1]
$$

Proof. From 2.13) and the assumptions $\sum_{i=1}^{m-2} \alpha_{1 i} \eta_{1 i} \leq 1<\sum_{i=1}^{m-2} \alpha_{1 i}$, it is easy to check that, for each $s \in[0,1], \tau \mapsto G\left(\tau, s, \alpha_{1 i}, \eta_{1 i}\right)$ is a non-positive, non-increasing and continuous function. So by using (2.17) and the Lemma 2.2 the function $\Phi(t, s) \geq 0$ for all $s, t \in[0,1]$ and

$$
\min _{t \in[0,1]} \Phi(t, s) \geq \gamma_{0}\|\Phi(\cdot, s)\|=\gamma_{0} \Phi(1, s)
$$

Let $\chi(s)=\Phi(1, s)$. Obviously we have $\gamma_{0} \chi(s) \leq \Phi(t, s) \leq \chi(s)$. The proof is complete.

To study $\sqrt{1.1}-(\sqrt{1.2})$, we use the assumption
(A1) $f:[0,1] \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is continuous
Let K be the cone in $C([0,1])$, consisting of all nonnegative functions and

$$
P=\left\{x \in K: \min _{t \in[0,1]} x(t) \geq \gamma_{0}\|x\|\right\}
$$

It is clear that P is also a cone in $C([0,1])$. For each $x \in P$, denote $F(x)(t)=$ $\lambda f(t, x(t)), t \in[0,1]$. By the assumption (A1), the operator $F: P \rightarrow K$ is continuous. Therefore the operator $T:=A \circ F: P \rightarrow K$ is completely continuous. On the other hand it is not difficult to check that for $x \in P$ we have

$$
\min _{0 \leq t \leq 1} T x(t) \geq \gamma_{0}\|T x\|
$$

using the Lemma 2.6, that is $T P \subset P$.
We note that the nonzero fixed points of the operator T are positive solutions of (1.1)- 1.2). To finish this section we state here the Guo-Krasnoselskii's fixed point theorem (see [5])

Theorem 2.7. Let X be a Banach space and $P \subset X$ be a cone in X. Assume Ω_{1}, Ω_{2} are two open bounded subsets of X with $0 \in \Omega_{1}, \bar{\Omega}_{1} \subset \Omega_{2}$ and $T: P \cap\left(\bar{\Omega}_{2} \backslash\right.$ $\left.\Omega_{1}\right) \rightarrow P$ be a completely continuous operator such that
(i) $\|T u\| \leq\|u\|, u \in P \cap \partial \Omega_{1}$ and $\|T u\| \geq\|u\|, u \in P \cap \partial \Omega_{2}$, or
(ii) $\|T u\| \geq\|u\|, u \in P \cap \partial \Omega_{1}$ and $\|T u\| \leq\|u\|, u \in P \cap \partial \Omega_{2}$.

Then T has a fixed point in $P \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.

3. Existence of positive solutions

We introduce the notation

$$
\begin{gathered}
f_{0}:=\liminf _{z \rightarrow 0^{+}} \min _{t \in[0,1]} \frac{f(t, z)}{z}, \quad f^{\infty}:=\limsup _{z \rightarrow+\infty} \max _{t \in[0,1]} \frac{f(t, z)}{z}, \\
f^{0}:=\limsup _{z \rightarrow 0^{+}} \max _{t \in[0,1]} \frac{f(t, z)}{z}, \quad f_{\infty}:=\liminf _{z \rightarrow+\infty} \min _{t \in[0,1]} \frac{f(t, z)}{z} \\
A=\left(\int_{0}^{1} \Phi(1, s) d s\right)^{-1}, \quad B=\frac{A}{\gamma_{0}}
\end{gathered}
$$

Theorem 3.1. Assume that (A1) holds. Then (1.1)-(1.2) has at least one positive solution for every $\lambda \in\left(\frac{B}{f_{0}}, \frac{A}{f^{\infty}}\right)$ if $f_{0}, f^{\infty} \in(0, \infty)$ satisfy $f_{0} \gamma_{0}>f^{\infty}$; or $\lambda \in$ $\left(\frac{B}{f_{\infty}}, \frac{A}{f^{0}}\right)$ if $f^{0}, f_{\infty} \in(0, \infty)$ satisfy $f_{\infty} \gamma_{0}>f^{0}$.
Proof. Set

$$
\Omega_{i}=\left\{x \in C([0,1]):\|x\|<R_{i}\right\}, \quad i=1,2
$$

Then Ω_{1}, Ω_{2} are two open bounded of $C([0,1])$ and $0 \in \Omega_{1}, \bar{\Omega}_{1} \subset \Omega_{2}$.
Case 1: $f_{0}, f^{\infty} \in(0, \infty)$ and $f_{0} \gamma_{0}>f^{\infty}$. Let $\lambda \in\left(\frac{B}{f_{0}}, \frac{A}{f^{\infty}}\right)$. Then there exists $\varepsilon>0$ such that

$$
\frac{B}{f_{0}-\varepsilon}<\lambda<\frac{A}{f^{\infty}+\varepsilon}
$$

Since $f_{0} \in(0, \infty)$ there exists $R_{1}>0$ such that $f(t, z) \geq\left(f_{0}-\varepsilon\right) z$ for all $t \in$ $[0,1], z \in\left[0, R_{1}\right]$. So if $x \in P$ such that $\|x\|=R_{1}$, we have

$$
f(t, x(t)) \geq\left(f_{0}-\varepsilon\right) x(t) \geq \gamma_{0}\left(f_{0}-\varepsilon\right)\|x\|, \quad \forall t \in[0,1] .
$$

This implies

$$
T x(t)=\lambda \int_{0}^{1} \Phi(t, s) f(s, x(s)) d s \geq \lambda \gamma_{0}\left(f_{0}-\varepsilon\right)\|x\| \int_{0}^{1} \Phi(t, s) d s, \quad \forall t \in[0,1] .
$$

Hence, for all $x \in P \cap \partial \Omega_{1}$,

$$
\|T x\| \geq \lambda \gamma_{0}\left(f_{0}-\varepsilon\right) \max _{0 \leq t \leq 1}\left(\int_{0}^{1} \Phi(t, s) d s\right)\|x\| \geq\|x\|
$$

On the other hand, since $f^{\infty} \in(0, \infty)$, there exists $R>0$ such that $f(t, z) \leq$ $\left(f^{\infty}+\varepsilon\right) z$ for all $t \in[0,1], z \in[R,+\infty]$. Set $R_{2}=\max \left\{R_{1}+1, R \gamma_{0}^{-1}\right\}$. Let us $x \in P \cap \partial \Omega_{2}$. We have

$$
x(t) \geq \gamma_{0}\|x\|=\gamma_{0} R_{2}, \quad \forall t \in[0,1] .
$$

So

$$
T x(t)=\lambda \int_{0}^{1} \Phi(t, s) f(s, x(s)) d s \leq \lambda\left(f^{\infty}+\varepsilon\right)\|x\| \int_{0}^{1} \Phi(t, s) d s
$$

Consequently, $\|T x\| \leq\|x\|$ for all $x \in P \cap \partial \Omega_{2}$. Therefore, using the second part of Theorem 2.7, we conclude that T has a fixed point in $P \cap \bar{\Omega}_{2} \backslash \Omega_{1}$.

Case 2: $f^{0}, f_{\infty} \in(0, \infty)$ and $f_{\infty} \gamma_{0}>f^{0}$. Let $\lambda \in\left(\frac{B}{f_{\infty}}, \frac{A}{f^{0}}\right)$. Then there exists $\varepsilon>0$ such that

$$
\frac{B}{f_{\infty}-\varepsilon}<\lambda<\frac{A}{f^{0}+\varepsilon}
$$

Using the arguments as in Case 1 , we can find $R_{2}>R_{1}>0$ such that $\|T x\| \leq\|x\|$, for all $x \in P \cap \partial \Omega_{1}$ and $\|T x\| \geq\|x\|$, for all $x \in P \cap \partial \Omega_{2}$. So T has a fixed point in $P \cap \bar{\Omega}_{2} \backslash \Omega_{1}$ which is a positive solution of $\sqrt{1.1}-(\sqrt{1.2}$, using the Theorem 2.7 ,

Next, we add the following assumption
(A2) The function $f(t, x)$ is nondecreasing about x.
Using the monotone iterative technique, we get the following result.
Theorem 3.2. Let (A1) and (A2) hold. Assume that there exist two positive numbers $R_{1}<R_{2}$ such that

$$
0<R_{1} \sup _{t \in[0,1]} f\left(t, R_{2}\right)<\gamma_{0} R_{2} \inf _{t \in[0,1]} f\left(t, \gamma_{0} R_{1}\right)
$$

Then if

$$
\lambda \in\left[\frac{B R_{1}}{\inf _{t \in[0,1]} f\left(t, \gamma_{0} R_{1}\right)}, \frac{A R_{2}}{\sup _{t \in[0,1]} f\left(t, R_{2}\right)}\right]
$$

then (1.1)-1.2 has positive solutions $x_{1}^{*}, x_{2}^{*}\left(x_{1}^{*}\right.$ and x_{2}^{*} may coincide) with

$$
R_{1} \leq\left\|x_{1}^{*}\right\| \leq R_{2} \quad \text { and } \quad \lim _{n \rightarrow \infty} T^{n} x_{0}=x_{1}^{*}, \quad \text { where } x_{0}(t)=R_{2}, \quad \forall t \in[0,1]
$$

and

$$
R_{1} \leq\left\|x_{2}^{*}\right\| \leq R_{2} \quad \text { and } \quad \lim _{n \rightarrow \infty} T^{n} \bar{x}_{0}=x_{2}^{*}, \quad \text { where } \bar{x}_{0}(t)=R_{1}, \quad \forall t \in[0,1]
$$

Proof. Set

$$
P_{\left[R_{1}, R_{2}\right]}=\left\{x \in P: R_{1} \leq\|x\| \leq R_{2}\right\} .
$$

Let $x \in P_{\left[R_{1}, R_{2}\right]}$. It's clear that $\gamma_{0} R_{1} \leq \gamma_{0}\|x\| \leq x(t) \leq\|x\| \leq R_{2}$, for all $t \in[0,1]$. So

$$
T x(t)=\lambda \int_{0}^{1} \Phi(t, s) f(s, x(s)) d s \leq \lambda \int_{0}^{1} \Phi(t, s) f\left(s, R_{2}\right) d s \leq R_{2}
$$

and

$$
T x(t) \geq \lambda \int_{0}^{1} \Phi(t, s) f\left(s, \gamma_{0} R_{1}\right) d s \geq \frac{A R_{1}}{\gamma_{0}} \int_{0}^{1} \Phi(t, s) d s \geq A R_{1} \int_{0}^{1} \Phi(1, s) d s=R_{1}
$$

This implies that $T P_{\left[R_{1}, R_{2}\right]} \subset P_{\left[R_{1}, R_{2}\right]}$.
Let $x_{0}(t)=R_{2}$ for all $t \in[0,1]$. It is evident that $x_{0} \in P_{\left[R_{1}, R_{2}\right]}$. We consider the sequence in $P_{\left[R_{1}, R_{2}\right]},\left\{x_{n}\right\}_{n \in \mathbb{N}}$, defined by

$$
\begin{equation*}
x_{n}=T x_{n-1}=T^{n} x_{0}, \quad n=1,2, \ldots \tag{3.1}
\end{equation*}
$$

Because T is the completely continuous operator, there exists a subseqence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ which uniformly converges to $x_{1}^{*} \in C([0,1])$. On the other hand we can see that $T: P_{\left[R_{1}, R_{2}\right]} \rightarrow P_{\left[R_{1}, R_{2}\right]}$ is a nondecreasing operator using the assumption (A2). Therefore, since

$$
0 \leq x_{1}(t) \leq\left\|x_{1}\right\| \leq R_{2}=x_{0}(t), \quad \forall t \in[0,1]
$$

we have $T x_{1} \leq T x_{0}$, that is $x_{2} \leq x_{1}$. Similarly by induction we deduce that $x_{n+1} \leq x_{n}$ for all $n \in \mathbb{N}$. Therefore, we can conclude that the sequence $\left\{x_{n}\right\}$ uniformly converges to x^{*}. Letting $n \rightarrow+\infty$ in (3.1) yields $T x_{1}^{*}=x_{1}^{*}$.

Let $\bar{x}_{0}(t)=R_{1}$ for all $t \in[0,1]$ and $\bar{x}_{n}=T \bar{x}_{n-1}$ for $n=1,2, \ldots$ It is clear that $x_{n} \in P_{\left[R_{1}, R_{2}\right]}$ for all $n \in \mathbb{N}$. Moreover, by definition of the operator T, we have

$$
\begin{aligned}
\bar{x}_{1}(t) & =T \bar{x}_{0}(t)=\lambda \int_{0}^{1} \Phi(t, s) f\left(s, \bar{x}_{0}(s)\right) d s \\
& \geq \lambda \int_{0}^{1} \Phi(t, s) f\left(s, \gamma_{0} R_{1}\right) d s \geq R_{1} \equiv \bar{x}_{0}(t)
\end{aligned}
$$

for $t \in[0,1]$. Therefore, by using the arguments as above, we deduce that $\left\{\bar{x}_{n}\right\}$ converges uniformly to $x_{2}^{*} \in P_{\left[R_{1}, R_{2}\right]}$ and $T x_{2}^{*}=x_{2}^{*}$. The proof is complete.

Example 3.3. Let a, b, c, d be positive numbers such that $5 b c>42 a d$. We consider the boundary-value problem

$$
\begin{gathered}
x^{(4)}(t)=\left(t^{2}+1\right) \frac{a x^{2}(t)+b x(t)}{c x(t)+d}, \quad 0<t<1, \\
x^{\prime}(0)=x^{(3)}(0)=0, \\
x(1)=\frac{3}{2} x\left(\frac{3}{4}\right), x^{\prime \prime}(1)=\frac{4}{3} x^{\prime \prime}\left(\frac{1}{2}\right) .
\end{gathered}
$$

We have $\gamma_{0}=\frac{5}{21}$,

$$
G\left(t, \tau, \alpha_{01}, \eta_{01}\right)=\left\{\begin{array}{ll}
\tau-t & \text { if } 0 \leq \tau \leq t \leq 1 \\
0 & \text { if } 0 \leq t \leq \tau \leq 1
\end{array}+ \begin{cases}\frac{1}{4}-\tau & \text { if } 0 \leq \tau \leq \frac{3}{4} \\
2 \tau-2 & \text { if } \frac{3}{4} \leq \tau \leq 1\end{cases}\right.
$$

and

$$
G_{1}\left(\tau, s, \alpha_{11}, \eta_{11}\right)=\left\{\begin{array}{ll}
s-\tau & \text { if } 0 \leq s \leq \tau \leq 1 \\
0 & \text { if } 0 \leq \tau \leq s \leq 1
\end{array}- \begin{cases}1+s & \text { if } 0 \leq s \leq \frac{1}{2} \\
3(1-s) & \text { if } \frac{1}{2} \leq s \leq 1\end{cases}\right.
$$

By doing some calculating, $\Phi(t, s)$ is defined as follows: For $s \leq t$,

$$
\begin{aligned}
\Phi(t, s)= & -\frac{1}{6}(s-t)^{3} \\
& + \begin{cases}-\frac{5}{32} s+\left(\frac{1}{2} t^{2}+\frac{5}{32}\right)(s+1)-\frac{1}{8} s^{2}+\frac{1}{6} s^{3}+\frac{47}{384} & \text { if } 0 \leq s \wedge s \leq \frac{1}{2} \\
-\frac{5}{32} s-(3 s-3)\left(\frac{1}{2} t^{2}+\frac{5}{32}\right)-\frac{1}{8} s^{2}+\frac{1}{6} s^{3}+\frac{47}{384} & \text { if } \frac{1}{2} \leq s \wedge s \leq \frac{3}{4} \\
-(3 s-3)\left(\frac{1}{2} t^{2}+\frac{5}{32}\right)-\frac{1}{3}(s-1)^{3} & \text { if } s \leq 1 \wedge \frac{3}{4} \leq s\end{cases}
\end{aligned}
$$

and for $t \leq s$,

$$
\Phi(t, s)=+ \begin{cases}-\frac{5}{32} s+\left(\frac{1}{2} t^{2}+\frac{5}{32}\right)(s+1)-\frac{1}{8} s^{2}+\frac{1}{6} s^{3}+\frac{47}{384} & \text { if } 0 \leq s \wedge s \leq \frac{1}{2} \\ -\frac{5}{32} s-(3 s-3)\left(\frac{1}{2} t^{2}+\frac{5}{32}\right)-\frac{1}{8} s^{2}+\frac{1}{6} s^{3}+\frac{47}{384} & \text { if } \frac{1}{2} \leq s \wedge s \leq \frac{3}{4} \\ -(3 s-3)\left(\frac{1}{2} t^{2}+\frac{5}{32}\right)-\frac{1}{3}(s-1)^{3} & \text { if } s \leq 1 \wedge \frac{3}{4} \leq s\end{cases}
$$

So $A=\left(\int_{0}^{1} \Phi(1, s) d s\right)^{-1}=103 / 128$. Now we set

$$
f(t, x)=\left(t^{2}+1\right) \frac{a x^{2}+b x}{c x+d}
$$

Then $f:[0,1] \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is continuous and

$$
\begin{aligned}
f_{0} & =\lim _{x \rightarrow 0^{+}} \min _{0 \leq t \leq 1} \frac{f(t, x)}{x}=\lim _{x \rightarrow 0^{+}} \frac{a x^{2}+b x}{c x^{2}+d x}=\frac{b}{d} \\
f^{\infty} & =\lim _{x \rightarrow \infty} \max _{0 \leq t \leq 1} \frac{f(t, x)}{x}=2 \lim _{x \rightarrow \infty} \frac{a x^{2}+b x}{c x^{2}+d x}=\frac{2 a}{c}
\end{aligned}
$$

that is, $\gamma_{0} f_{0}>f^{\infty}$. Thus, by Theorem 3.1, we conclude that for each $\lambda \in$ $\left(\frac{2163 d}{640 b}, \frac{103 c}{256 a}\right)$ our problem has at least one positive solution.

4. Compactness of the set of positive solutions

Theorem 4.1. Let (A1) hold. Assume that we have

$$
\begin{equation*}
f_{0}, f^{\infty} \in(0, \infty), \quad f_{0} \gamma_{0}>f^{\infty} \quad \text { and } \quad \lambda \in\left(\frac{B}{f_{0}}, \frac{A}{f^{\infty}}\right) \tag{4.1}
\end{equation*}
$$

Then the set of positive solutions of (1.1)-(1.2) is nonempty and compact.
Proof. Put $S=\{x \in P: x=T x\}$. By Theorem $3.1 S$ is nonempty. We shall show that S is compact in $C([0,1])$.

First we claim that S is a closed subset of $C([0,1])$. Indeed, assume that $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be a sequence in S and $\lim _{n \rightarrow \infty}\left\|x_{n}-x\right\|=0$. Then for each $t \in[0,1]$, we have

$$
\begin{aligned}
& \left|x(t)-\lambda \int_{0}^{1} \Phi(t, s) f(s, x(s)) d s\right| \\
& \leq\left|x(t)-x_{n}(t)\right|+\left|x_{n}(t)-\lambda \int_{0}^{1} \Phi(t, s) f\left(s, x_{n}(s)\right) d s\right| \\
& \quad+\lambda\left|\int_{0}^{1} \Phi(t, s) f(s, x(s)) d s-\int_{0}^{1} \Phi(t, s) f\left(s, x_{n}(s)\right) d s\right|
\end{aligned}
$$

This implies

$$
\begin{aligned}
& \left|x(t)-\lambda \int_{0}^{1} \Phi(t, s) f(s, x(s)) d s\right| \\
& \quad \leq\left|x(t)-x_{n}(t)\right|+\lambda \int_{0}^{1} \Phi(t, s)\left|f(s, x(s))-f\left(s, x_{n}(s)\right)\right| d s
\end{aligned}
$$

because $x_{n}=T x_{n}$ for all $n \in \mathbb{N}$. Let $n \rightarrow \infty$ in the last inequality we can deduce that

$$
x(t)=\lambda \int_{0}^{1} \Phi(t, s) f(s, x(s)) d s, \quad \forall t \in[0,1]
$$

using the continuity of the function f and the dominated convergence theorem. So $x \in S$ and S is closed in $C([0,1])$. It remains to check that S is relatively compact in $C([0,1])$. Let (4.1) holds. Choosing $\varepsilon^{*}>0$ such that

$$
\frac{B}{f_{0}-\varepsilon^{*}}<\lambda<\frac{A}{f^{\infty}+\varepsilon^{*}}
$$

Clearly there exists a constant $R>0$ such that $f(t, z) \leq\left(f^{\infty}+\varepsilon^{*}\right) z$, for all $t \in[0,1]$ and $z \in[R, \infty)$. Hence

$$
f(t, x(t)) \leq\left(f^{\infty}+\varepsilon^{*}\right) x(t)+\beta, t \in[0,1]
$$

where $\beta=\max \{f(t, z):(t, z) \in[0,1] \times[0, R]\}$. So, for $x \in S$ and for every $t \in[0,1]$, we have

$$
\begin{aligned}
x(t) & =\lambda \int_{0}^{1} \Phi(t, s) f(s, x(s)) d s \\
& \leq \lambda \int_{0}^{1} \Phi(t, s)\left[\left(f^{\infty}+\varepsilon^{*}\right) x(s)+\beta\right] d s \\
& \leq \frac{\lambda}{A}\left(f^{\infty}+\varepsilon^{*}\right)\|x\|+\frac{\lambda \beta}{A} .
\end{aligned}
$$

We can deduce from this inequality that $\|x\| \leq \frac{\lambda \beta}{A-\lambda\left(f f^{\infty}+\varepsilon^{*}\right)}$; that is, S is bounded in $C([0,1])$. By the compactness of the operator $T: P \rightarrow P$ we conclude that $S=T(S)$ is relatively compact. The proof is complete.

Remark 4.2. Assume that $f^{0}, f_{\infty} \in(0, \infty), f_{\infty} \gamma_{0}>f^{0}, f^{\infty} \leq f^{0}$ and

$$
\lambda \in\left(\frac{B}{f_{\infty}}, \frac{A}{f^{0}}\right) .
$$

Thanks to Theorem 2.7 the set of positive solutions S of the problem (1.1) 1.2) is nonempty. Moreover by the similar arguments we can show that S is compact in $C([0,1])$.
Acknowledgements. The authors wish to express their gratitude to the anonymous referee for his/her helpful comments and remarks.

References

[1] M. Eggensperger, N. Kosmatov; Positive solutions of a fourth-order multi-point boundary value problem, Comm. Math. Anal. 6 (2009), pp. 22-30.
[2] J. Henderson, N. Kosmatov; The existence and muliplicity of constant sign solution to a three-point boundary value problem, Comm. Appl. Nonlinear Anal. 14 (2007), pp 63-78.
[3] V. A. Il'in, E. I. Moiseev; Nonlocal boundary value problem of the first kind for the SturmLiouville operator in the differential and difference treatment, Differ. Equations 23 (1987), pp 1198-1207.
[4] V. A. Il'in, E. I. Moiseev; Nonlocal boundary value problem of the first kind for a SturmLiouville operator, Differ. Equations 23 (1987), pp 979-987.
[5] M. A. Krasnosel'skii; Positive solution of Operator Equations, Noordhoff, Groningen, 1964.
[6] X. Liu, W. Jiang, Y. Guo; Multi-point boundary value problems for higher order differential equations, Appl. Math. E-notes 4 (2004), pp 106-113.
[7] R. Ma; Existence results of a m-point boundary-value problems at resonance, J. Math. Anal. Appl. 294 (2004), pp. 147-5157.
[8] L. X.Truong, L. T. P. Ngoc, N. T. Long; Positive solutions for an m-point boundary value problem, Electron. J. Differential Eqns. 1998 (1998), pp. 1-11.
[9] Y. Sun; Positive solutions of nonlinear second-order m-point boundary-value problem, Nonlinear Anal. 61 (2005), pp. 1283-1294.

Le Xuan Truong
Department of Mathematics and Statistics, University of Economics, HoChiMinh city,
59C, Nguyen Dinh Chieu Str, District 3, HoChiMinh city, Vietnam
E-mail address: lxuantruong@gmail.com
Phan Dinh Phung
Nguyen Tat Thanh University, 300A, Nguyen Tat Thanh Str, District 4, HoChiMinh city, Vietnam

E-mail address: pdphung@ntt.edu.vn

[^0]: 2000 Mathematics Subject Classification. 34B07, 34B10, 34B18, 34B27.
 Key words and phrases. Multi point; boundary value problem; Green function;
 positive solution; Guo-Krasnoselskii fixed point theorem.
 (C) 2011 Texas State University - San Marcos.

 Submitted April 4, 2011. Published October 11, 2011.

