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EXISTENCE OF POSITIVE SOLUTIONS FOR A MULTI-POINT
FOUR-ORDER BOUNDARY-VALUE PROBLEM

LE XUAN TRUONG, PHAN DINH PHUNG

Abstract. The article shows sufficient conditions for the existence of positive
solutions to a multi-point boundary-value problem for a fourth-order differen-
tial equation. Our main tools are the Guo-Krasnoselskii fixed point theorem
and the monotone iterative technique. We also show that the set of positive
solutions is compact.

1. Introduction

Multi-point boundary-value problems for ordinary differential equations arise in
a variety of areas in applied mathematics and physics. For this reason the have
been investigated by several authors; see for example [2]-[4, 2, 3, 6, 7, 8, 9]. In this
article, we study the existence of positive solutions for the problem

x(4)(t) = λf(t, x(t)), 0 < t < 1, (1.1)

x(2k+1)(0) = 0, x(2k)(1) =
m−2∑
i=1

αkix
(2k)(ηki), k = 0, 1, (1.2)

where λ > 0, 0 < ηk1 < ηk2 < · · · < ηk,m−2 < 1, (k = 0, 1) and αki, with k = 0, 1;
i = 1, 2, . . . ,m− 2, are given positive constants satisfy the conditions

m−2∑
i=1

α1iη1i ≤ 1 <

m−2∑
i=1

α1i, (1.3)

m−2∑
i=1

α0iη
2
0i < 1 <

m−2∑
i=1

α0i. (1.4)

When m = 3; η01 = η0, η11 = η1; α01 = α0, α11 = α1; and the inhomogeneous
term is f(u(t)), the problem (1.1)-(1.2) is studied in [1]. The authors in [1] obtained
several existence results of positive solutions basing the computations of the fixed
point index of open subsets of a Banach space relative to a cone and follow from a
well-known theorem of Krasnosel’skii. One of the assumptions playing an important
role in obtaining positive solution is that 1 < αi < 1

ηi
, i = 0, 1.
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The rest of this paper is organized as follows. In section 2, we provide some
results which are motivation for obtaining our main results. In section 3 we state
and prove several existence results for at least one positive solution. Our main
tools are the Guo-Krasnoselskii’s fixed point theorem or the monotone iterative
technique. Finally, section 4 devoted to the compactness of positive solutions set.

2. Preliminaries

In this article, C([0, 1]) denotes the space of all continuous functions x from [0, 1]
into R endowed with the supremum norm

‖x‖ = sup
t∈[0,1]

|x(t)|, x ∈ C([0, 1]).

First we consider the auxiliary linear differential equation

− x′′(t) = g(t), 0 < t < 1, (2.1)

with the boundary conditions

x′(0) = 0, x(1) =
m−2∑
i=1

αix(ηi), (2.2)

where 0 < η1 < η2 < · · · < ηm−2 < 1 and αi (i = 1, 2, . . . ,m− 2) are given positive
constants.

Lemma 2.1. Let g ∈ C[0, 1] be non-negative (non-positive) and
∑m−2

i=1 αiηi ≤ 1 <∑m−2
i=1 αi. Then

x(t) = −
∫ t

0

(t− s)g(s)ds +
1

1−
∑m−2

i=1 αi

[ ∫ 1

0

(1− s)g(s)ds

−
m−2∑
i=1

αi

∫ ηi

0

(ηi − s)g(s)ds
] (2.3)

is a unique non-positive (non-negative) solution of (2.1)–(2.2).

Proof. It is easy to see that (2.3) is a unique solution of (2.1)–(2.2). If g(t) ≥ 0 on
[0, 1] then

x′(t) = −
∫ t

0

g(s)ds ≤ 0

and

x(t) ≤ x(0) =
1

1−
∑m−2

i=1 αi

[ ∫ 1

0

(1− s)g(s)ds−
m−2∑
i=1

αi

∫ ηi

0

(ηi − s)g(s)ds
]
. (2.4)

Let F (η) = 1
η

∫ η

0
(η − s)g(s)ds. We have

F ′(η) =
η

∫ η

0
g(s)ds−

∫ η

0
(η − s)g(s)ds

η2
=

∫ η

0
sg(s)ds

η2
≥ 0.

This implies F (ηi) ≤ F (1), for i = 1, 2, . . . ,m− 2; that is,∫ ηi

0

(ηi − s)g(s)ds ≤ ηi

∫ 1

0

(1− s)g(s)ds, for i = 1, 2, . . . ,m− 2.
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Hence
m−2∑
i=1

αi

∫ ηi

0

(ηi − s)g(s)ds ≤
m−2∑
i=1

αiηi

∫ 1

0

(1− s)g(s)ds ≤
∫ 1

0

(1− s)g(s)ds. (2.5)

From (2.4) and (2.5), we conclude that x(t) ≤ 0, for all t ∈ [0, 1]. In the case
g(t) ≤ 0, by similar arguments, we obtain x(t) ≥ 0, for all t ∈ [0, 1]. This completes
the proof. �

Lemma 2.2. Let g be non-positive and non-increasing function in C[0, 1] and let∑m−2
i=1 αiη

2
i < 1 <

∑m−2
i=1 αi. Then the unique solution (2.3) of (2.1)–(2.2) is

nonnegative. Further we have

min
0≤t≤1

x(t) ≥ γ‖x‖, (2.6)

where

γ =
1−

∑m−2
i=1 αiη

2
i∑m−2

i=1 αi(1− η2
i )

. (2.7)

Proof. Because g(t) ≤ 0 for all t ∈ [0, 1], the unique solution (2.3) of (2.1)–(2.2) is
non-decreasing and

x(t) ≥ x(0) =
1

1−
∑m−2

i=1 αi

[ ∫ 1

0

(1− s)g(s)ds−
m−2∑
i=1

αi

∫ ηi

0

(ηi − s)g(s)ds
]
. (2.8)

Let F0(η) = 1
η2

∫ η

0
(η − s)g(s)ds. Then we have

F ′0(η) =
η

∫ η

0
g(s)ds− 2

∫ η

0
(η − s)g(s)ds

η3
=

∫ η

0
(2s− η)g(s)ds

η3

It is easy to check that the function η 7→
∫ η

0
(2s− η)g(s)ds is non-increasing. Thus∫ η

0

(2s− η)g(s)ds ≤ 0, ∀η ≥ 0.

This implies that F ′0(η) ≤ 0, for all η ≥ 0. Thus
m−2∑
i=1

αi

∫ ηi

0

(ηi − s)g(s)ds =
m−2∑
i=1

αiη
2
i F0(ηi) ≥ F0(1)

m−2∑
i=1

αiη
2
i

≥
∫ 1

0

(1− s)g(s)ds.

(2.9)

Combining (2.8) and (2.9), we deduce that x(t) ≥ 0 for all t ∈ [0, 1]. Finally, we
need to check inequality (2.6), or equivalently,

x(0) ≥ γx(1). (2.10)

Indeed, it follows from (2.3) that (2.10) is equivalent to
m−2∑
i=1

αi

∫ ηi

0

(ηi − s)g(s)ds ≥
1− γ

∑m−2
i=1 αi

1− γ

∫ 1

0

(1− s)g(s)ds. (2.11)

By the monotonicity of F0, we have
m−2∑
i=1

αi

∫ ηi

0

(ηi − s)g(s)ds =
m−2∑
i=1

αiη
2
i F0(ηi) ≥

m−2∑
i=1

αiη
2
i

∫ 1

0

(1− s)g(s)ds. (2.12)
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So, it is not difficult to obtain (2.11) from (2.12) and (2.7). The proof is completed.
�

Remark 2.3. For t, s ∈ [0, 1], we put

G(t, s, αi, ηi) =

{
s− t, 0 ≤ s ≤ t ≤ 1,

0, 0 ≤ t ≤ s ≤ 1,

+ α



1−
∑m−2

i=1 αiηi + (
∑m−2

i=1 αi − 1)s, 0 ≤ s ≤ η1,

1−
∑m−2

i=2 αiηi + (
∑m−2

i=2 αi − 1)s, η1 ≤ s ≤ η2,

. . .

1−
∑m−2

i=k αiηi + (
∑m−2

i=k αi − 1)s, ηk−1 ≤ s ≤ ηk,

. . .

1− s, ηm−2 ≤ s ≤ 1,

(2.13)

where α = (1−
∑m−2

i=1 αi)−1. Then (2.3) can be rewrite as

u(t) =
∫ 1

0

G(t, s, αi, ηi) g(s) ds. (2.14)

Now we consider the linearized equation

x(4)(t) = g(t), 0 < t < 1, (2.15)

subject to the boundary conditions (1.2). We have the following lemma.

Lemma 2.4. Let g ∈ C[0, 1] be non-negative and
m−2∑
i=1

α1iη1i ≤ 1 <

m−2∑
i=1

α1i,

m−2∑
i=1

α0iη
2
0i < 1 <

m−2∑
i=1

α0i.

Then (2.15), (1.2) has a unique non-negative solution

x(t) =
∫ 1

0

Φ(t, s)g(s)ds := Ag(t), (2.16)

where Φ(t, s) is the Green function

Φ(t, s) =
∫ 1

0

G(t, τ, α0i, η0i)G(τ, s, α1i, η1i) dτ, for t, s ∈ [0, 1]. (2.17)

Moreover, we have mint∈[0,1] x(t) ≥ γ0‖x‖, where

γ0 =
1−

∑m−2
i=1 α0iη

2
0i∑m−2

i=1 α0i(1− η2
0i)

.

Proof. It follows from Lemma 2.1 that

−x′′(t) =
∫ 1

0

G(t, s, α1i, η1i)g(s) ds ≤ 0

is non-positive non-increasing for all t ∈ [0, 1]. Thus, by Lemma 2.2,

x(t) =
∫ 1

0

G(t, s, α0i, η0i)
∫ 1

0

G(s, τ, α1i, η1i)g(τ) dτ ds

=
∫ 1

0

( ∫ 1

0

G(t, τ, α0i, η0i)G(τ, s, α1i, η1i) dτ
)
g(s)ds
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=
∫ 1

0

Φ(t, s)g(s)ds ≥ 0, t ∈ [0, 1],

and mint∈[0,1] x(t) ≥ γ0‖x‖. The proof is complete. �

The following result is straightforward and we will omit its proof.

Lemma 2.5. The operator A : C([0, 1]) → C([0, 1]), defined by (2.16), be a com-
pletely continuous linear operator. If g is a nonnegative function in C([0, 1]) then
Ag is also nonnegative.

Next we give some properties of the Green function Φ(t, s) which is used in the
sequel.

Lemma 2.6. Let
m−2∑
i=1

α1iη1i ≤ 1 <

m−2∑
i=1

α1i,

m−2∑
i=1

α0iη
2
0i < 1 <

m−2∑
i=1

α0i.

Then we have
(1) Φ(t, s) ≥ 0, for all s, t ∈ [0, 1];
(2) there exists a continuous function χ : [0, 1] → [0,+∞) such that

γ0χ(s) ≤ Φ(t, s) ≤ χ(s), ∀s, t ∈ [0, 1].

Proof. From (2.13) and the assumptions
∑m−2

i=1 α1iη1i ≤ 1 <
∑m−2

i=1 α1i, it is easy to
check that, for each s ∈ [0, 1], τ 7→ G(τ, s, α1i, η1i) is a non-positive, non-increasing
and continuous function. So by using (2.17) and the Lemma 2.2, the function
Φ(t, s) ≥ 0 for all s, t ∈ [0, 1] and

min
t∈[0,1]

Φ(t, s) ≥ γ0‖Φ(·, s)‖ = γ0Φ(1, s).

Let χ(s) = Φ(1, s). Obviously we have γ0χ(s) ≤ Φ(t, s) ≤ χ(s). The proof is
complete. �

To study (1.1)-(1.2), we use the assumption
(A1) f : [0, 1]× R+ → R+ is continuous
Let K be the cone in C([0, 1]), consisting of all nonnegative functions and

P = {x ∈ K : min
t∈[0,1]

x(t) ≥ γ0‖x‖}

It is clear that P is also a cone in C([0, 1]). For each x ∈ P , denote F (x)(t) =
λf(t, x(t)), t ∈ [0, 1]. By the assumption (A1), the operator F : P → K is continu-
ous. Therefore the operator T := A ◦F : P → K is completely continuous. On the
other hand it is not difficult to check that for x ∈ P we have

min
0≤t≤1

Tx(t) ≥ γ0‖Tx‖

using the Lemma 2.6, that is TP ⊂ P .
We note that the nonzero fixed points of the operator T are positive solutions of

(1.1)-(1.2). To finish this section we state here the Guo-Krasnoselskii’s fixed point
theorem (see [5])

Theorem 2.7. Let X be a Banach space and P ⊂ X be a cone in X. Assume
Ω1,Ω2 are two open bounded subsets of X with 0 ∈ Ω1,Ω1 ⊂ Ω2 and T : P ∩ (Ω2 \
Ω1) → P be a completely continuous operator such that
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(i) ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2, or
(ii) ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2.

Then T has a fixed point in P ∩ (Ω2 \ Ω1).

3. Existence of positive solutions

We introduce the notation

f0 := lim inf
z→0+

min
t∈[0,1]

f(t, z)
z

, f∞ := lim sup
z→+∞

max
t∈[0,1]

f(t, z)
z

,

f0 := lim sup
z→0+

max
t∈[0,1]

f(t, z)
z

, f∞ := lim inf
z→+∞

min
t∈[0,1]

f(t, z)
z

,

A =
( ∫ 1

0

Φ(1, s)ds
)−1

, B =
A

γ0
.

Theorem 3.1. Assume that (A1) holds. Then (1.1)-(1.2) has at least one positive
solution for every λ ∈

(
B
f0

, A
f∞

)
if f0, f

∞ ∈ (0,∞) satisfy f0γ0 > f∞; or λ ∈(
B

f∞
, A

f0

)
if f0, f∞ ∈ (0,∞) satisfy f∞γ0 > f0.

Proof. Set
Ωi = {x ∈ C([0, 1]) : ‖x‖ < Ri}, i = 1, 2.

Then Ω1,Ω2 are two open bounded of C([0, 1]) and 0 ∈ Ω1, Ω1 ⊂ Ω2.
Case 1: f0, f

∞ ∈ (0,∞) and f0γ0 > f∞. Let λ ∈ ( B
f0

, A
f∞ ). Then there exists

ε > 0 such that
B

f0 − ε
< λ <

A

f∞ + ε
.

Since f0 ∈ (0,∞) there exists R1 > 0 such that f(t, z) ≥ (f0 − ε)z for all t ∈
[0, 1], z ∈ [0, R1]. So if x ∈ P such that ‖x‖ = R1, we have

f(t, x(t)) ≥ (f0 − ε)x(t) ≥ γ0(f0 − ε)‖x‖, ∀t ∈ [0, 1].

This implies

Tx(t) = λ

∫ 1

0

Φ(t, s)f(s, x(s))ds ≥ λγ0(f0 − ε)‖x‖
∫ 1

0

Φ(t, s)ds, ∀t ∈ [0, 1].

Hence, for all x ∈ P ∩ ∂Ω1,

‖Tx‖ ≥ λγ0(f0 − ε) max
0≤t≤1

( ∫ 1

0

Φ(t, s)ds
)
‖x‖ ≥ ‖x‖.

On the other hand, since f∞ ∈ (0,∞), there exists R > 0 such that f(t, z) ≤
(f∞ + ε)z for all t ∈ [0, 1], z ∈ [R,+∞]. Set R2 = max{R1 + 1, Rγ−1

0 }. Let us
x ∈ P ∩ ∂Ω2. We have

x(t) ≥ γ0‖x‖ = γ0R2, ∀t ∈ [0, 1].

So

Tx(t) = λ

∫ 1

0

Φ(t, s)f(s, x(s))ds ≤ λ(f∞ + ε)‖x‖
∫ 1

0

Φ(t, s)ds.

Consequently, ‖Tx‖ ≤ ‖x‖ for all x ∈ P ∩ ∂Ω2. Therefore, using the second part
of Theorem 2.7, we conclude that T has a fixed point in P ∩ Ω2 \ Ω1.
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Case 2: f0, f∞ ∈ (0,∞) and f∞γ0 > f0. Let λ ∈ ( B
f∞

, A
f0 ). Then there exists

ε > 0 such that
B

f∞ − ε
< λ <

A

f0 + ε
.

Using the arguments as in Case 1, we can find R2 > R1 > 0 such that ‖Tx‖ ≤ ‖x‖,
for all x ∈ P ∩ ∂Ω1 and ‖Tx‖ ≥ ‖x‖, for all x ∈ P ∩ ∂Ω2. So T has a fixed point in
P ∩ Ω2 \ Ω1 which is a positive solution of (1.1)-(1.2), using the Theorem 2.7. �

Next, we add the following assumption
(A2) The function f(t, x) is nondecreasing about x.
Using the monotone iterative technique, we get the following result.

Theorem 3.2. Let (A1) and (A2) hold. Assume that there exist two positive
numbers R1 < R2 such that

0 < R1 sup
t∈[0,1]

f(t, R2) < γ0R2 inf
t∈[0,1]

f(t, γ0R1).

Then if

λ ∈
[ BR1

inft∈[0,1] f(t, γ0R1)
,

AR2

supt∈[0,1] f(t, R2)
]

then (1.1)-(1.2) has positive solutions x∗1, x
∗
2 (x∗1 and x∗2 may coincide) with

R1 ≤ ‖x∗1‖ ≤ R2 and lim
n→∞

Tnx0 = x∗1, where x0(t) = R2, ∀t ∈ [0, 1];

and

R1 ≤ ‖x∗2‖ ≤ R2 and lim
n→∞

Tnx0 = x∗2, where x0(t) = R1, ∀t ∈ [0, 1].

Proof. Set
P[R1,R2] = {x ∈ P : R1 ≤ ‖x‖ ≤ R2}.

Let x ∈ P[R1,R2]. It’s clear that γ0R1 ≤ γ0‖x‖ ≤ x(t) ≤ ‖x‖ ≤ R2, for all t ∈ [0, 1].
So

Tx(t) = λ

∫ 1

0

Φ(t, s)f(s, x(s))ds ≤ λ

∫ 1

0

Φ(t, s)f(s,R2)ds ≤ R2,

and

Tx(t) ≥ λ

∫ 1

0

Φ(t, s)f(s, γ0R1)ds ≥ AR1

γ0

∫ 1

0

Φ(t, s)ds ≥ AR1

∫ 1

0

Φ(1, s)ds = R1.

This implies that TP[R1,R2] ⊂ P[R1,R2].
Let x0(t) = R2 for all t ∈ [0, 1]. It is evident that x0 ∈ P[R1,R2]. We consider the

sequence in P[R1,R2], {xn}n∈N, defined by

xn = Txn−1 = Tnx0, n = 1, 2, . . . . (3.1)

Because T is the completely continuous operator, there exists a subseqence {xnk
}

of {xn} which uniformly converges to x∗1 ∈ C([0, 1]). On the other hand we can
see that T : P[R1,R2] → P[R1,R2] is a nondecreasing operator using the assumption
(A2). Therefore, since

0 ≤ x1(t) ≤ ‖x1‖ ≤ R2 = x0(t), ∀t ∈ [0, 1],

we have Tx1 ≤ Tx0, that is x2 ≤ x1. Similarly by induction we deduce that
xn+1 ≤ xn for all n ∈ N. Therefore, we can conclude that the sequence {xn}
uniformly converges to x∗. Letting n → +∞ in (3.1) yields Tx∗1 = x∗1.
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Let x0(t) = R1 for all t ∈ [0, 1] and xn = Txn−1 for n = 1, 2, . . . . It is clear that
xn ∈ P[R1,R2] for all n ∈ N. Moreover, by definition of the operator T , we have

x1(t) = Tx0(t) = λ

∫ 1

0

Φ(t, s)f(s, x0(s))ds

≥ λ

∫ 1

0

Φ(t, s)f(s, γ0R1)ds ≥ R1 ≡ x0(t),

for t ∈ [0, 1]. Therefore, by using the arguments as above, we deduce that {xn}
converges uniformly to x∗2 ∈ P[R1,R2] and Tx∗2 = x∗2. The proof is complete. �

Example 3.3. Let a, b, c, d be positive numbers such that 5bc > 42ad. We consider
the boundary-value problem

x(4)(t) = (t2 + 1)
ax2(t) + bx(t)

cx(t) + d
, 0 < t < 1,

x′(0) = x(3)(0) = 0,

x(1) =
3
2
x(

3
4
), x′′(1) =

4
3
x′′(

1
2
).

We have γ0 = 5
21 ,

G(t, τ, α01, η01) =

{
τ − t if 0 ≤ τ ≤ t ≤ 1
0 if 0 ≤ t ≤ τ ≤ 1

+

{
1
4 − τ if 0 ≤ τ ≤ 3

4

2τ − 2 if 3
4 ≤ τ ≤ 1

and

G1(τ, s, α11, η11) =

{
s− τ if 0 ≤ s ≤ τ ≤ 1
0 if 0 ≤ τ ≤ s ≤ 1

−

{
1 + s if 0 ≤ s ≤ 1

2

3(1− s) if 1
2 ≤ s ≤ 1 .

By doing some calculating, Φ(t, s) is defined as follows: For s ≤ t,

Φ(t, s) = −1
6
(s− t)3

+


− 5

32s + ( 1
2 t2 + 5

32 )(s + 1)− 1
8s2 + 1

6s3 + 47
384 if 0 ≤ s ∧ s ≤ 1

2

− 5
32s− (3s− 3)( 1

2 t2 + 5
32 )− 1

8s2 + 1
6s3 + 47

384 if 1
2 ≤ s ∧ s ≤ 3

4

−(3s− 3)( 1
2 t2 + 5

32 )− 1
3 (s− 1)3 if s ≤ 1 ∧ 3

4 ≤ s;

and for t ≤ s,

Φ(t, s) = +


− 5

32s + ( 1
2 t2 + 5

32 )(s + 1)− 1
8s2 + 1

6s3 + 47
384 if 0 ≤ s ∧ s ≤ 1

2

− 5
32s− (3s− 3)( 1

2 t2 + 5
32 )− 1

8s2 + 1
6s3 + 47

384 if 1
2 ≤ s ∧ s ≤ 3

4

−(3s− 3)( 1
2 t2 + 5

32 )− 1
3 (s− 1)3 if s ≤ 1 ∧ 3

4 ≤ s

So A =
( ∫ 1

0
Φ(1, s)ds

)−1 = 103/128. Now we set

f(t, x) = (t2 + 1)
ax2 + bx

cx + d
.

Then f : [0, 1]× R+ → R+ is continuous and

f0 = lim
x→0+

min
0≤t≤1

f(t, x)
x

= lim
x→0+

ax2 + bx

cx2 + dx
=

b

d
,

f∞ = lim
x→∞

max
0≤t≤1

f(t, x)
x

= 2 lim
x→∞

ax2 + bx

cx2 + dx
=

2a

c
;
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that is, γ0f0 > f∞. Thus, by Theorem 3.1, we conclude that for each λ ∈
( 2163d

640b , 103c
256a ) our problem has at least one positive solution.

4. Compactness of the set of positive solutions

Theorem 4.1. Let (A1) hold. Assume that we have

f0, f
∞ ∈ (0,∞), f0γ0 > f∞ and λ ∈

( B

f0
,

A

f∞
)
. (4.1)

Then the set of positive solutions of (1.1)-(1.2) is nonempty and compact.

Proof. Put S = {x ∈ P : x = Tx}. By Theorem 3.1 S is nonempty. We shall show
that S is compact in C([0, 1]).

First we claim that S is a closed subset of C([0, 1]). Indeed, assume that {xn}n∈N
be a sequence in S and limn→∞ ‖xn − x‖ = 0. Then for each t ∈ [0, 1], we have∣∣x(t)− λ

∫ 1

0

Φ(t, s)f(s, x(s))ds
∣∣

≤ |x(t)− xn(t)|+
∣∣xn(t)− λ

∫ 1

0

Φ(t, s)f(s, xn(s))ds
∣∣

+ λ
∣∣ ∫ 1

0

Φ(t, s)f(s, x(s))ds−
∫ 1

0

Φ(t, s)f(s, xn(s))ds
∣∣.

This implies∣∣x(t)− λ

∫ 1

0

Φ(t, s)f(s, x(s))ds
∣∣

≤ |x(t)− xn(t)|+ λ

∫ 1

0

Φ(t, s)|f(s, x(s))− f(s, xn(s))|ds,

because xn = Txn for all n ∈ N. Let n → ∞ in the last inequality we can deduce
that

x(t) = λ

∫ 1

0

Φ(t, s)f(s, x(s))ds, ∀t ∈ [0, 1],

using the continuity of the function f and the dominated convergence theorem. So
x ∈ S and S is closed in C([0, 1]). It remains to check that S is relatively compact
in C([0, 1]). Let (4.1) holds. Choosing ε∗ > 0 such that

B

f0 − ε∗
< λ <

A

f∞ + ε∗
.

Clearly there exists a constant R > 0 such that f(t, z) ≤ (f∞+ε∗)z, for all t ∈ [0, 1]
and z ∈ [R,∞). Hence

f(t, x(t)) ≤ (f∞ + ε∗)x(t) + β, t ∈ [0, 1],

where β = max{f(t, z) : (t, z) ∈ [0, 1]× [0, R]}. So, for x ∈ S and for every t ∈ [0, 1],
we have

x(t) = λ

∫ 1

0

Φ(t, s)f(s, x(s))ds

≤ λ

∫ 1

0

Φ(t, s)[(f∞ + ε∗)x(s) + β]ds

≤ λ

A
(f∞ + ε∗)‖x‖+

λβ

A
.
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We can deduce from this inequality that ‖x‖ ≤ λβ
A−λ(f∞+ε∗) ; that is, S is bounded

in C([0, 1]). By the compactness of the operator T : P → P we conclude that
S = T (S) is relatively compact. The proof is complete. �

Remark 4.2. Assume that f0, f∞ ∈ (0,∞), f∞γ0 > f0, f∞ ≤ f0 and

λ ∈
( B

f∞
,

A

f0

)
.

Thanks to Theorem 2.7, the set of positive solutions S of the problem (1.1) (1.2) is
nonempty. Moreover by the similar arguments we can show that S is compact in
C([0, 1]).

Acknowledgements. The authors wish to express their gratitude to the anony-
mous referee for his/her helpful comments and remarks.
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