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PERIODIC BOUNDARY-VALUE PROBLEMS FOR
FOURTH-ORDER DIFFERENTIAL EQUATIONS WITH DELAY

SAMUEL A. IYASE

Abstract. We study the periodic boundary-value problem

x(iv)(t) + f(ẍ)
...
x (t) + bẍ(t) + g(t, ẋ(t− τ)) + dx = p(t)

x(0) = x(2π), ẋ(0) = ẋ(2π), ẍ(0) = ẍ(2π),
...
x (0) =

...
x (2π),

Under some resonant conditions on the asymptotic behaviour of the ratio
g(t, y)/(by) for |y| → ∞. Uniqueness of periodic solutions is also examined.

1. Introduction

In this article we study the periodic boundary-value problem

x(iv)(t) + f(ẍ)
...
x (t) + bẍ+ g(t, ẋ(t− τ)) + dx = p(t)

x(0) = x(2π), ẋ(0) = ẋ(2π), ẍ(0) = ẍ(2π),
...
x (0) =

...
x (2π),

(1.1)

with fixed delay τ ∈ [0, 2π), f : R → R is a continuous function, P : [0, 2π] → R and
g : [0, 2π] × R → R are 2π−periodic in t and g satisfies Caratheodory conditions
with b and d real constants. The unknown function x : [0, 2π] → R is defined for
0 < t ≤ τ by x(t − τ) = [2π − (t − τ)]. We are concerned with the existence and
uniqueness of periodic solution of equation (1.1) under some resonant conditions
on g.

It is pertinent to note that fourth-order differential equations with time delay
are used to model problems in engineering and biological or physiological systems.
For instance, the oscillatory movements of muscles that occur as a result of the
interaction of a muscle with its load (see [5]). For other papers dealing with the
study of fourth order differential equations with time delay see [2, 3] and references
therein.

In what follows, we shall use the spaces C([0, 2π]), Ck([0, 2π]) and Lk([0, 2π]) of
continuous, k times continuously differentiable or measurable real functions whose
kth power of the absolute value are lebesgue integrable. We shall use the following
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Sobolev spaces:

W 4,2
2π =

{
x : [0, 2π] → R : x, ẋ, ẍ,

...
xare absolutely continuous on [0, 2π] and

x(0) = x(2π), ẋ(0) = ẋ(2π), ẍ(0) = ẍ(2π),
...
x (0) =

...
x (2π)

}
with the norm

|x|2
W 4,2

2π
=

4∑
i=0

1
2π

∫ 2π

0

|xi(t)|2dt

and

H1
2π = {x : [0, 2π] → R : x is absolutely continuous on [0, 2π] and ẋ ∈ L2

2π}
with the norm

|x|2
W 4,2

2π
=

( 1
2π

∫ 2π

0

x(t)dt
)2

+
1
2π

∫ 2π

0

|ẋ|2dt.

2. The Linear Problem

We consider here the linear delay equation

x(iv)(t) + a
...
x (t) + bẍ(t) + cẋ(t− τ)) + dx = 0

x(0) = x(2π), ẋ(0) = ẋ(2π), ẍ(0) = ẍ(2π),
...
x (0) =

...
x (2π),

(2.1)

where c is a real constant.

Lemma 2.1. Let b < 0, d > 0 and

0 <
c

b
< n (2.2)

where n is an integer n ≥ 1. Then (2.1) has no non-trivial periodic solution for
any fixed τ ∈ [0, 2π).

Proof. We consider a solution of the form x(t) = eλt where λ = in with i2 = −1.
Then Lemma 2.1 will follow if

ψ(n, τ) = n4 − bn2 + cn sinnτ + d 6= 0

for all n ≥ 1 and τ ∈ [0, 2π). By (2.2), we obtain

b−1ψ(n, τ) =
n4

b
− n2 +

c

b
n sinnτ +

d

b

≤ n4

b
− n2 +

c

b
n+

d

b

<
n4

b
+
d

b
< 0.

Therefore, ψ(n, τ) 6= 0 and the result follows. If x ∈ L1
2π we shall write

x̄ =
1
2π

∫ 2π

0

x(t)dt, x̃(t) = x(t)− x̄

such that
∫ 2π

0
x̃(t)dt = 0. �

We consider next the delay equation

x(iv)(t) + a
...
x (t) + bẍ(t) + c(t)ẋ(t− τ)) + dx = 0

x(0) = x(2π), ẋ(0) = ẋ(2π), ẍ(0) = ẍ(2π),
...
x (0) =

...
x (2π),

(2.3)

where a, b are constants and c(t) ∈ L2
2π.
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Theorem 2.2. Let b < 0, d > 0 and Γ(t) = b−1c(t) ∈ L2
2π. Suppose that

0 < Γ(t) < 1 . (2.4)

Then (2.3) has no non-trivial periodic solution for every fixed τ ∈ [0, 2π).

Proof. Let x(t) be any solution of (2.3). Then

0 =
1
2π

∫ 2π

0

¨̃x(t)
[b−1

2π

{
x(iv) + a

...
x + dx+ {ẍ+ Γ(t)ẋ(t− τ)}

}]
dt

= −b
−1

2π

∫ 2π

0

¨̃x2(t)dt− db−1

2π

∫ 2π

0

˙̃x2(t)dt+
1
2π

∫ 2π

0

¨̃x(t)[
...
x (t) + Γ(t)ẋ(t− τ)]dt

≥ 1
2π

∫ 2π

0

¨̃x(t)[ẍ(t) + Γ(t)ẋ(t− τ)]dt

=
∫ 2π

0

[¨̃x2(t) + Γ(t)¨̃x(t)ẋ(t− τ)]dt

=
1
2π

∫ 2π

0

[
¨̃x2(t)− Γ(t)

2
¨̃x2(t)− Γ(t)

2
˙̃x2(t− τ)

]
dt

+
1
2π

∫ 2π

0

Γ(t)
2

[
¨̃x(t) + ẋ(t− τ)

]2

dt.

In the above expression we used the equality

ab =
(a+ b

2
)2 − a2

2
− b2

2
.

From the periodicity of ẋ(t), it follows that

1
2π

∫ 2π

0

¨̃x2(t)dt =
1
2π

∫ 2π

0

¨̃x2(t− τ)dt.

Hence,

0 ≥ 1
2

[ 1
2π

∫ 2π

0

[¨̃x2(t)− Γ(t)¨̃x2(t)]dt
]

=
1
2

[ 1
2π

∫ 2π

0

[¨̃x2(t− τ)− Γ(t) ˙̃x2(t− τ)]dt

≥ δ| ˙̃x|2H1
2π

= δ|ẋ|H1
2π
.

By [4, Lemma 1] where δ > 0 is a constant. This implies that x is constant a.e.
But since d 6= 0 we must have x = 0, a. e. �

3. The non-linear problem

We shall consider here a preliminary Lemma which will enable us obtain a priori
estimates required for our results.

Lemma 3.1. Let all the conditions of Lemma 2.1 hold and let δ be related to Γ(t)
by Theorem 2.2. Suppose that v ∈ L2

2π and

0 < v(t) < Γ(t) + ε a.e. t ∈ [0, 2π]

holds for any v ∈ L2
2π, where ε > 0. Then

1
2π

∫ 2π

0

¨̃x(t)
[
b−1{x(iv) + a

...
x + dx}+ ẍ+ Γ(t)ẋ(t− τ)

]
dt ≥ (δ − ε)|ẋ|2H1

2π
.
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Proof. From the proof of Theorem 2.2, we have

1
2π

∫ 2π

0

¨̃x(t)
[
b−1{x(iv) + a

...
x + dx}+ ẍ+ v(t)ẋ(t− τ)

]
dt

≥ 1
2

[ 1
2π

∫ 2π

0

[¨̃x2(t)− Γ(t)¨̃x2(t)]dt
]

+
1
2

[ 1
2π

∫ 2π

0

[¨̃x2(t− τ)− Γ(t) ˙̃x2(t− τ)]dt
]

− ε
1
2π

∫ 2π

0

( ˙̃x2(t− τ) + ¨̃x2(t))dt

≥ 1
2

[ 1
2π

∫ 2π

0

[¨̃x2(t− τ)− Γ(t) ˙̃x2(t− τ)]dt
]
− ε

2π

∫ 2π

0

ẋ2(t− τ)

− ε

2π

∫ 2π

0

¨̃x2(t− τ)dt

≥ δ| ˙̃x|2H1
2π
− ε|¨̃x|2H1

2π

≥ (δ − ε)| ˙̃x|2H1
2π
.

�

We shall consider the non-linear delay equation

x(iv) + f(ẍ)
...
x + bẍ+ g(t, ẋ(t− τ)) + dx = p(t) (3.1)

where f : R → R is a continuous function and g : [0, 2π] × R → R are 2π periodic
in t and g satisfies Caratheodory condition; that is, g(·, x) is measurable on [0, 2π]
for each x ∈ R and g(t, ·) is continuous on R for almost each t ∈ [0, 2π]. We assume
moreover that for r > 0 there exists Yr ∈ L2

2π such that |g(t, y)| ≤ Yr(t) for a.e.
t ∈ [0, 2π] and x ∈ [−r, r].

Theorem 3.2. Let b < 0 and d > 0. Suppose that g is Caratheodory function
satisfying the inequality

g(t, y) ≥ 0, |y| ≤ r (3.2)

lim
|y|→∞

sup
g(t, y)
by

≤ Γ(t) (3.3)

uniformly a.e., t ∈ [0, 2π] where r > 0 is a constant and Γ(t) ∈ L2
2π is such that

0 < Γ(t) < 1 (3.4)

Then for arbitrary continuous function f , the boundary-value problem (3.1) has at
least one 2π-periodic solution.

Proof. Let δ > 0 be associated to the function Γ by Theorem 2.2. Then by (3.2),
(3.3) there exists a constant R1 > 0 such that

0 ≤ g(t, y)
by

< Γ(t) +
δ

2
(3.5)

if |y| ≥ R1 for a. e., t ∈ [0, 2π] and all y ∈ R. Define Ȳ : [0, 2π]× R → R by

Y =


y−1g(t, y), |y| ≥ R1

R−1g(t, R), 0 < y < R1

−R−1
1 g(t,−R1), −R1 < y < 0

Γ(t), y = 0.

(3.6)
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Then by (3.5), we have

0 ≤ Y (t, y) < Γ(t) +
δ

2
(3.7)

for a. e. t ∈ [0, 2π] for all y ∈ R. Moreover the function Y (t, y) satisfies
Caratheodory conditions and

g̃(t, ẋ(t− τ)) = b−1g(t, ẋ(t− τ))− Y (t, ẋ(t− τ))ẋ(t− τ)

is such that a. e. t ∈ [0, 2π] and all x ∈ R, we have

|g̃(t, ẋ(t− τ))| ≤ α(t) (3.8)

for some α(t) ∈ L2
2π. To prove that (3.1) has at least one periodic solution, it

suffices to show that the possible solution of the family of equations

b−1[x(iv) + λf(ẍ)
...
x ] + ẍ+ (1− λ)Γ(t)ẋ(t− τ) + λY (t, ẋ(t− τ))

+ b−1dx+ λg̃(t, ẋ(t− τ)) + Y (t, ẋ(t− τ)) = λb−1p(t)
(3.9)

are a-priori bounded in W 4,2
2π independently of λ ∈ [0, 1]. By inequality (3.7) one

has

0 ≤ (1− λ)Γ(t) + λY (t, ẋ(t− τ)) ≤ Γ(t) +
δ

2
(3.10)

for a. e. t ∈ [0, 2π] and all x ∈ R. From Theorem 2.2, we can derive that for λ = 0
equation (3.9) has only the trivial solution. Then using Lemma 3.1 and Cauchy
Schwarz inequality we obtain

0 =
1
2π

∫ 2π

0

ẍ
{
b−1[x(iv) + f(ẍ)

...
x ] + ẍ+ (1− λ)Γ(t)ẋ(t− τ)

+ λY (t, ẋ(t− τ))ẋ(t− τ) + λg̃(t, ẋ(t− τ)) + b−1dx− λp(t)
}
dt

≥ δ

2
|ẋ|2H1

2π
− (|α|2 + |b−1||p|2)| ˙̃x|2 + |b−1|d| ˙̃x|2

≥ δ

2
|ẋ|2H1

2π
− β|ẋ|H2

2π
− b−1|...x |22π

≥ δ

2
|ẋ|2H1

2π
− β|ẋ|H1

2π

for some β > 0. Hence,

|ẋ|H1
2π
≤ 2β

δ
= c1, (3.11)

with c1 > 0. This implies

|ẍ|2 ≤ c2 (3.12)

|ẍ|∞ ≤ c3 (3.13)

where c2 > 0 and c3 > 0. Using Wirtinger’s inequality in (3.12), we obtain

|ẋ|2 ≤ c4 (3.14)

with c4 > 0. Multiplying (3.9) by −ẍ(t) and integrating over [0, 2π], we obtain

|...x |22 ≤ |ẍ|22|1 +
δ

2
|ẍ|2 + |α|2 + d|ẋ|2 + |p|2|ẍ|2

Applying Wirtingers inequality we obtain

|...x |22 ≤ c5 (3.15)
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with c5 > 0 and hence
|ẍ|∞ ≤ c6

with c6 > 0. We multiply (3.9) by x(iv)(t) and integrate over [0, 2π] to get

−b−1|x(iv)|22 ≤ |f(ẍ)|∞|ẍ|2|x(iv)|2|b−1|+ |ẍ|2|x(iv)|2 + |1 +
δ

2
||ẋ|2|xi(iv)|2

+ |b−1||d||ẍ|2 + |α|2|x(iv)|2 + |p|2|xi(iv)|2
≤ |f(ẍ)|∞|ẍ|2|x(iv)|2|b−1|+ |ẍ|2|x(iv)|2

+ |1 +
δ

2
||ẋ|2|x(iv)|2|b−1|d|x(iv)|2 + |α|2|x(iv)|2 + |p|2|xi(iv)|2|b−1|,

where we used the Wirtinger’s inequality. Thus

|x(iv)|2 ≤ c7 (3.16)

with c7 > 0. Finally multiplying (3.9) by x(t) and integrating over [0, 2π] we obtain

|x|2 ≤ c8 (3.17)

with c8 > 0. Hence,

|x|W 4,2
2π

= |x|2 + |ẋ|2 + |ẍ|2 + |...x |2 + |x(iv)|2 ≤ c8 + c4 + c2 + c5 + c7 = C9

Taking R > C9 > 0, the required a priori bound in W 4,2
2π is obtained independently

of x and λ. �

4. Uniqueness Result

For f(x) = a, a constant, in (1.1), we have the following uniqueness result.

Theorem 4.1. Let a, b, d be constants with b < 0 and d > 0. Suppose g is a
Caratheodory function satisfying

0 <
g(t, ẋ1)− g(t, ẋ2)

b(ẋ1 − ẋ2)
< Γ(t) (4.1)

for all x1, x2 ∈ R with x1 6= x2 where Γ(t) ∈ L2
2π is such that 0 < Γ(t) < 1. Then

for all arbitrary constant a and every τ ∈ [0, 2π) the boundary-value problem

x(iv)(t) + a
...
x + bẍ+ g(t, ẋ(t− τ)) + dx = p(t)

x(0) = x(2π), ẋ(0) = ẋ(2π), ẍ(0) = ẍ(2π),
...
x (0) =

...
x (2π),

(4.2)

has at most one solution.

Proof. Let x1, x2 be any two solutions of (4.2). Set x = x1 − x2. Then x satisfies
the boundary value problem

b−1x(iv)(t) + a
...
x + Γ(t)ẋ(t− τ) + b−1dx = 0

x(0) = x(2π), ẋ(0) = ẋ(2π), ẍ(0) = ẍ(2π),
...
x (0) =

...
x (2π),

where the function Γ(t) ∈ L2
2π is defined by

Γ(t) =

{
g(t,ẋ1(t−τ))−g(t,ẋ2(t−τ))

ẋ(t) if ẍ(t) 6= 0
1
2 if ẍ(t) = 0

if ẋ(t) on every subset of [0, 2π] of positive measure, then x is constant Since
d 6= 0 we must have x = 0 and hence x1 = x2 a.e. Suppose on the other hand that
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ẋ(t) 6= 0 on a certain subset of [0, 2π] of positive measure, then using the arguments
of Theorem 2.2 we obtain that x = 0 and hence x1 = x2 a .e. �
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