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EXISTENCE OF SOLUTIONS FOR NONLOCAL ELLIPTIC
SYSTEMS WITH NONSTANDARD GROWTH CONDITIONS

GUOWEI DAI

Abstract. This article concerns the existence and multiplicity of solutions for
a p(x)-Kirchhoff-type systems with Dirichlet boundary condition. By a direct
variational approach and the theory of the variable exponent Sobolev spaces,
under growth conditions on the reaction terms, we establish the existence and
multiplicity of solutions.

1. Introduction

In this article, we study the following nonlocal elliptic systems of gradient type
with nonstandard growth conditions

−M1

( ∫
Ω

1
p(x)

|∇u|p(x) dx
)

div
(
|∇u|p(x)−2∇u

)
=
∂F

∂u
(x, u, v) in Ω,

−M2

( ∫
Ω

1
q(x)

|∇v|q(x) dx
)

div
(
|∇v|q(x)−2∇v

)
=
∂F

∂v
(x, u, v) in Ω,

u = 0, v = 0 on ∂Ω,

(1.1)

where Ω is a bounded domain in RN with a smooth boundary ∂Ω, p(x), q(x) ∈
C+(Ω) with

1 < p− := min
Ω
p(x) ≤ p+ := max

Ω
p(x) < +∞,

1 < q− := min
Ω
q(x) ≤ q+ := max

Ω
q(x) < +∞,

M1(t), M2(t) are continuous functions. We confine ourselves to the case where
M1 = M2 for simplicity. Notice that the results of this paper remain valid for
M1 6= M2 by adding some slight changes in the hypothesis (H4) and (H5). The
function F : Ω× R× R → R is assumed to be continuous in x ∈ Ω and of class C1

in u, v ∈ R.
The operator −div(|∇u|p(x)−2∇u) is called the p(x)-Laplacian, and becomes

p-Laplacian when p(x) ≡ p (a constant). The p(x)-Laplacian possesses more com-
plicated nonlinearities than the p-Laplacian; for example, it is inhomogeneous. The
study of various mathematical problems with variable exponent growth condition
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has been received considerable attention in recent years. These problems are in-
teresting in applications and raise many difficult mathematical problems. One of
the most studied models leading to problem of this type is the model of motion
of electrorheological fluids, which are characterized by their ability to drastically
change the mechanical properties under the influence of an exterior electromagnetic
field [1, 34, 37]. Problems with variable exponent growth conditions also appear in
the mathematical modeling of stationary thermo-rheological viscous flows of non-
Newtonian fluids and in the mathematical description of the processes filtration of
an ideal barotropic gas through a porous medium [5, 6]. Another field of applica-
tion of equations with variable exponent growth conditions is image processing [9].
The variable nonlinearity is used to outline the borders of the true image and to
eliminate possible noise. We refer the reader to [13, 29, 35, 38, 39] for an overview
of and references on this subject, and to [2, 20, 21, 22, 23, 24, 25, 26] for the study
of the p(x)-Laplacian equations and the corresponding variational problems.

Problem (1.1) is related to the stationary version of a model introduced by
Kirchhoff [30]. More precisely, Kirchhoff proposed the model

ρ
∂2u

∂t2
−

(ρ0

h
+

E

2L

∫ L

0

|∂u
∂x
|2 dx

)∂2u

∂x2
= 0, (1.2)

where ρ, ρ0, h, E, L are constants, which extends the classical D’Alembert’s wave
equation, by considering the effects of the changes in the length of the strings
during the vibrations. A distinguishing feature of equation (1.2) is that the equation
contains a nonlocal coefficient ρ0

h + E
2L

∫ L

0
|∂u
∂x |

2 dx which depends on the average
1

2L

∫ L

0
|∂u
∂x |

2 dx, and hence the equation is no longer a pointwise identity. Some early
classical studies of Kirchhoff equations were Bernstein [7] and Pohožaev [33]. The
equation

−
(
a+ b

∫
Ω

|∇u|2 dx
)
∆u = f(x, u) in Ω,

u = 0 on ∂Ω,
(1.3)

is related to the stationary analogue of the equation (1.2). Equation (1.3) received
much attention only after Lions [31] proposed an abstract framework to the prob-
lem. Some important and interesting results can be found, for example, in [3, 8, 17].
More recently Alves et al. [4] and Ma and Rivera [32] obtained positive solutions
of such problems by variational methods. The study of Kirchhoff type equations
has already been extended to the case involving the p-Laplacian (for details, see
[10, 18, 19])and p(x)-Laplacian (see [12, 15, 17, 27]). In [12], by a direct varia-
tional approach, we establish conditions ensuring the existence and multiplicity of
solutions for the problem

−M
( ∫

Ω

1
p(x)

|∇u|p(x) dx
)

div(|∇u|p(x)−2∇u) = f(x, u) in Ω,

u = 0 on ∂Ω.

In [28], the author established that existence and multiplicity results for a class of
elliptic systems with nonstandard growth conditions.

Motivated by above, we consider the nonlocal elliptic systems (1.1). We establish
the existence and multiplicity of solutions for system (1.1). Local elliptic systems
with standard growth conditions have been the subject of a sizeable literature. We
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refer to the excellent survey article by De Figueiredo [14]. We also refer to [11]
about nonlocal elliptic systems of p-Kirchhoff-type.

This paper is organized as follows. In Section 2, we present some necessary
preliminary knowledge on variable exponent Sobolev spaces. In Sections 3, we give
some existence results of weak solutions of problem (1.1) and their proofs.

2. Preliminaries

To discuss problem (1.1), we need some theory on W
1,p(x)
0 (Ω) which is called

variable exponent Sobolev space. Firstly we state some basic properties of spaces
W

1,p(x)
0 (Ω) which will be used later (for details, see [25]). Denote by S(Ω) the set

of all measurable real functions defined on Ω. Two functions in S(Ω) are considered
as the same element of S(Ω) when they are equal almost everywhere. Write

C+(Ω) = {h : h ∈ C(Ω), h(x) > 1 for any x ∈ Ω},
h− := min

Ω
h(x), h+ := max

Ω
h(x) for every h ∈ C+(Ω).

Define

Lp(x)(Ω) = {u ∈ S(Ω) :
∫

Ω

|u(x)|p(x) dx < +∞ for p ∈ C+(Ω)}

with the norm

|u|Lp(x)(Ω) = |u|p(x) = inf{λ > 0 :
∫

Ω

|u(x)
λ

|p(x) dx ≤ 1},

and
W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)}

with the norm
‖u‖W 1,p(x)(Ω) = |u|Lp(x)(Ω) + |∇u|Lp(x)(Ω).

Denote by W 1,p(x)
0 (Ω) the closure of C∞0 (Ω) in W 1,p(x)(Ω).

Proposition 2.1 ([25]). The spaces Lp(x)(Ω), W 1,p(x)(Ω) and W 1,p(x)
0 (Ω) are sep-

arable and reflexive Banach spaces.

Proposition 2.2 ([25]). Set ρ(u) =
∫
Ω
|u(x)|p(x) dx. For any u ∈ Lp(x)(Ω), then

(1) for u 6= 0, |u|p(x) = λ if and only if ρ(u
λ ) = 1;

(2) |u|p(x) < 1 (= 1;> 1) if and only if ρ(u) < 1 (= 1;> 1);

(3) if |u|p(x) > 1, then |u|p
−

p(x) ≤ ρ(u) ≤ |u|p
+

p(x);

(4) if |u|p(x) < 1, then |u|p
+

p(x) ≤ ρ(u) ≤ |u|p
−

p(x);
(5) limk→+∞ |uk|p(x) = 0 if and only if limk→+∞ ρ(uk) = 0;
(6) limk→+∞ |uk|p(x) = +∞ if and only if limk→+∞ ρ(uk) = +∞.

Proposition 2.3 ([25]). In W 1,p(x)
0 (Ω) the Poincaré inequality holds; that is, there

exists a positive constant C0 such that

|u|Lp(x)(Ω) ≤ C0|∇u|Lp(x)(Ω), ∀u ∈W 1,p(x)
0 (Ω).

So, |∇u|Lp(x)(Ω) is a norm equivalent to the norm ‖u‖ in the space W 1,p(x)
0 (Ω).

We will use the equivalent norm in the following discussion and write ‖u‖p =
|∇u|Lp(x)(Ω) for simplicity.
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Proposition 2.4 ([22, 25]). If q ∈ C+(Ω) and q(x) ≤ p∗(x) (q(x) < p∗(x)) for
x ∈ Ω, then there is a continuous (compact) embedding W 1,p(x)

0 (Ω) ↪→ Lq(x)(Ω),
where

p∗(x) =

{
Np(x)

N−p(x) if p(x) < N,

+∞ if p(x) ≥ N.

Proposition 2.5 ([23, 25]). The conjugate space of Lp(x)(Ω) is Lq(x)(Ω), where
1

q(x) + 1
p(x) = 1 holds a.e. in Ω. For any u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω), we have

the following Hölder-type inequality∣∣ ∫
Ω

uv dx
∣∣ ≤ (

1
p−

+
1
q−

)|u|p(x)|v|q(x).

We write

I(u) =
∫

Ω

1
p(x)

|∇u|p(x) dx.

Proposition 2.6 ([23]). The functional I : X → R is convex. The mapping
I ′ : X → X∗ is a strictly monotone, bounded homeomorphism, and is of (S+) type,
namely

un ⇀ u and lim sup
n→+∞

I ′(un)(un − u) ≤ 0 implies un → u,

where X = W
1,p(x)
0 (Ω), X∗ is the dual space of X.

For every (u, v) and (ϕ,ψ) in W := W
1,p(x)
0 (Ω)×W

1,q(x)
0 (Ω), let

F(u, v) :=
∫

Ω

F (x, u, v) dx.

Then
F ′(u, v)(ϕ,ψ) = D1F(u, v)(ϕ) +D2F(u, v)(ψ),

where

D1F(u, v)(ϕ) =
∫

Ω

∂F

∂u
(x, u, v)ϕdx,

D2F(u, v)(ψ) =
∫

Ω

∂F

∂v
(x, u, v)ψ dx.

The Euler-Lagrange functional associated to (1.1) is given by

J(u, v) := M̂
( ∫

Ω

1
p(x)

|∇u|p(x) dx
)

+ M̂(
∫

Ω

1
q(x)

|∇v|q(x) dx)−F(u, v),

where M̂(t) :=
∫ t

0
M(τ) dτ . It is easy to verify that J ∈ C1(W,R) is weakly lower

semi-continuous and (u, v) ∈W is a weak solution of (1.1) if and only if (u, v) is a
critical point of J . Moreover, we have

J ′(u, v)(ϕ,ψ) = D1J(u, v)(ϕ) +D2J(u, v)(ψ), (2.1)

where

D1J(u, v)(ϕ) = M
( ∫

Ω

1
p(x)

|∇u|p(x) dx
) ∫

Ω

|∇u|p(x)−2∇u∇ϕdx−D1F(u, v)(ϕ),

D2J(u, v)(ψ) = M
( ∫

Ω

1
q(x)

|∇v|q(x) dx
) ∫

Ω

|∇v|q(x)−2∇v∇ψ dx−D2F(u, v)(ψ).
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Let us choose on W the norm ‖ · ‖ defined by

‖(u, v)‖ := max{‖u‖p, ‖v‖q}.
The dual space of W will be denoted by W ∗ and ‖ · ‖∗ will stand for its norm.
Therefore

‖J ′(u, v)‖∗ = ‖D1J(u, v)‖∗,p + ‖D2J(u, v)‖∗,q
where ‖ · ‖∗,p (respectively ‖ · ‖∗,q) is the norm of (W 1,p(x)

0 (Ω))∗ (respectively
(W 1,q(x)

0 (Ω))∗).

3. Existence of solutions

In this section we discuss the existence of weak solutions of (1.1). For simplicity,
we use c, ci, i = 1, 2, . . . to denote the general positive constant (the exact value
may change from line to line).

Before stating our results, we introduce some natural growth hypotheses on the
right-hand side of (1.1) and the nonlocal coefficient M(t). These hypotheses will
ensure the mountain pass geometry and the Palais-Smale condition for the Euler-
Lagrange functional J .

(H1) For all (x, s, t) ∈ Ω× R2, we assume

|F (x, s, t)| ≤ c
(
1 + |s|p1(x) + |t|q1(x) + |s|α(x)|t|β(x)

)
,

where c is a positive constant, (p1(x), q1(x), α(x), β(x)) ∈ (C+(Ω))4 such
that

p1(x) < p∗(x), q1(x) < q∗(x),
2α(x)
p∗(x)

+
2β(x)
q∗(x)

< 1 in Ω,

p−1 , 2α− > p+, q−1 , 2β− > q+.

(H2) There exist M > 0, θ1 > p+

1−µ , θ2 > q+

1−µ such that for all x ∈ Ω, and all
(s, t) ∈ R2 with |s|θ1 + |t|θ2 ≥ 2M , one has

0 < F (x, s, t) ≤ s

θ1

∂F

∂s
(x, s, t) +

t

θ2

∂F

∂t
(x, s, t),

where µ comes from (H5) below.
(H3) F (x, s, t) = o(|s|p+

+ |t|q+
) as (s, t) → (0, 0) uniformly with respect to to

x ∈ Ω.
(H4) There exists m0 > 0, such that M(t) ≥ m0.
(H5) There exists 0 < µ < 1 such that M̂(t) ≥ (1− µ)M(t)t.
As an example, we let M(t) = a + bt : R+ → R with a, b are two positive

constants. It is clear that M(t) ≥ a > 0. Taking µ = 1/2, we have

M̂(t) =
∫ t

0

M(s) ds = at+
1
2
bt2 ≥ 1

2
(a+ bt)t = (1− µ)M(t)t.

So conditions (H4), (H5) are satisfied.

Theorem 3.1. If M satisfies (H4) and

|F (x, s, t)| ≤ c1(1 + |s|α1 + |t|β1),

where α1, β1 are two constants with 1 ≤ α1 < min{p−, q−}, 1 ≤ β1 < min{p−, q−}
then (1.1) has a weak solution.



6 G. DAI EJDE-2011/137

Proof. From (H4) we have M̂(t) ≥ m0t. For (un, vn) ∈ W such that ‖(un, vn)‖ →
+∞, we have

J(un, vn)

= M̂(
∫

Ω

1
p(x)

|∇un|p(x) dx) + M̂(
∫

Ω

1
q(x)

|∇vn|q(x) dx)−
∫

Ω

F (x, un, vn) dx

≥ m0

∫
Ω

1
p(x)

|∇un|p(x) dx+m0

∫
Ω

1
q(x)

|∇vn|q(x) dx

− c1

∫
Ω

|un|α1 dx− c1

∫
Ω

|vn|β1 dx− c1|Ω|

≥ m0

p+
‖un‖p−

p +
m0

q+
‖vn‖q−

q − c3‖un‖α1
p − c2‖vn‖β1

q − c1|Ω|,

where |Ω| denotes the measure of Ω. Without loss of generality, we may assume
‖un‖p ≥ ‖vn‖q. Hence,

J(un, vn) ≥ m0

p+
‖un‖p−

p − c3‖un‖α1
p − c2‖un‖β1

p − c1|Ω|, (3.1)

By the definition of norm on W , we have ‖(un, vn)‖ = ‖un‖p → +∞. In view of
(3.1) and the assumptions on α1 and β1, we can easily see that J(un, vn) → +∞
as n → +∞; i.e., J is a coercive functional. Since J also is weakly lower semi-
continuous, J has a minimum point (u, v) in W , and (u, v) is a weak solution pair
which may be trivial of (1.1). The proof is completed. �

Lemma 3.2. Let (un, vn) be a Palais-Smale sequence for the Euler-Lagrange func-
tional J . If (H2), (H4), (H5) are satisfied then (un, vn) is bounded.

Proof. Let (un, vn) be a Palais-Smale sequence for the functional J . This means
that J(un, vn) is bounded and ‖J ′(un, vn)‖∗ → 0 as n → +∞. Then, there is a
positive constant c0 such that

c0 ≥ J(un, vn)

= M̂
( ∫

Ω

1
p(x)

|∇un|p(x) dx
)

+ M̂
( ∫

Ω

1
q(x)

|∇vn|q(x) dx
)
−

∫
Ω

F (x, un, vn) dx

≥ (1− µ)M
( ∫

Ω

1
p(x)

|∇un|p(x) dx
) ∫

Ω

1
p(x)

|∇un|p(x) dx

−
∫

Ω

un

θ1

∂F

∂u
(x, un, vn) dx+ (1− µ)M

( ∫
Ω

1
q(x)

|∇vn|q(x) dx
)

×
∫

Ω

1
q(x)

|∇vn|q(x) dx−
∫

Ω

vn

θ2

∂F

∂v
(x, un, vn) dx− c4,

where c4 is some positive constant. Then

c0 ≥ J(un, vn)

≥
(1− µ

p+
− 1
θ1

)
M

( ∫
Ω

1
p(x)

|∇un|p(x) dx
) ∫

Ω

|∇un|p(x) dx+
1
θ1
D1J(un, vn)(un)

+
(1− µ

q+
− 1
θ2

)
M

( ∫
Ω

1
q(x)

|∇vn|q(x) dx
) ∫

Ω

|∇vn|q(x) dx

+
1
θ2
D2J(un, vn)(vn)− c4
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≥
(1− µ

p+
− 1
θ1

)
m0

∫
Ω

|∇un|p(x) dx+
(1− µ

q+
− 1
θ2

)
m0

∫
Ω

|∇vn|q(x) dx

− 1
θ1
‖D1J(un, vn)‖∗,p‖un‖p −

1
θ2
‖D2J(un, vn)‖∗,q‖vn‖q − c4.

Now, suppose that the sequence (un, vn) is not bounded. Without loss of generality,
we may assume ‖un‖p ≥ ‖vn‖q.

Therefore, for n large enough, we have

c5 ≥
(1− µ

p+
− 1
θ1

)
m0‖un‖p−

p −
( 1
θ1
‖D1J(un, vn)‖∗,p +

1
θ2
‖D2J(un, vn)‖∗,q

)
‖un‖p.

But, this cannot hold true since p− > 1. Hence, {‖(un, vn)‖} is bounded. �

In the following lemma, we show every bounded Palais-Smale sequence for the
functional J contains a convergence subsequence.

Lemma 3.3. Let (un, vn) be a bounded Palais-Smale sequence for the Euler-La-
grange functional J . If (H1), (H4) are satisfied, then (un, vn) contains a convergent
subsequence.

Proof. Let (un, vn) be a bounded Palais-Smale sequence for the functional J . Then
there is a subsequence still denoted by (un, vn) which converges weakly in W .
Without loss of generality, we assume that (un, vn) ⇀ (u, v), then J ′(un, vn)(un −
u, vn − v) → 0. Thus, we have

J ′(un, vn)(un − u, vn − v)

= M
( ∫

Ω

1
p(x)

|∇un|p(x) dx
) ∫

Ω

|∇un|p(x)−2∇un(∇un −∇u) dx

+M
( ∫

Ω

1
q(x)

|∇vn|q(x) dx
) ∫

Ω

|∇vn|q(x)−2∇vn(∇vn −∇v) dx

−
∫

Ω

∂F

∂u
(x, un, vn)(un − u) dx−

∫
Ω

∂F

∂v
(x, un, vn)(vn − v) dx→ 0.

On the other hand, let α̃, β̃ be two continuous and positive functions on Ω such
that

2α(x) + α̃(x)
p∗(x)

+
2β(x) + β̃(x)

q∗(x)
= 1, ∀x ∈ Ω.

Using the Young inequality, we obtain

|s|α(x)|t|β(x) ≤ |s|
α(x)p∗(x)

2α(x)+eα(x) + |t|
β(x)q∗(x)

2β(x)+ eβ(x) = |s|p2(x) + |t|q2(x),

where p2(x) := α(x)p∗(x)
2α(x)+eα(x) < p∗(x), q2(x) := β(x)q∗(x)

2β(x)+eβ(x)
< q∗(x). From (H1), we

can obtain that there exist p3(x), q3(x) ∈ C+(Ω) with p3(x) < p∗(x), q3(x) < q∗(x)
in Ω such that

|F (x, s, t)| ≤ c6
(
1 + |s|p3(x) + |t|q3(x)

)
.

From this inequality, Propositions 2.4 and 2.5, we can easily obtain∫
Ω

∂F

∂u
(x, un, vn)(un − u) dx→ 0

and ∫
Ω

∂F

∂v
(x, un, vn)(vn − v) dx→ 0. (3.2)
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Therefore, we have

M
( ∫

Ω

1
p(x)

|∇un|p(x) dx
) ∫

Ω

|∇un|p(x)−2∇un(∇un −∇u) dx→ 0,

M
( ∫

Ω

1
q(x)

|∇vn|q(x) dx
) ∫

Ω

|∇vn|q(x)−2∇vn(∇vn −∇v) dx→ 0.

In view of (H4), we have∫
Ω

|∇un|p(x)−2∇un(∇un −∇u) dx→ 0,∫
Ω

|∇vn|q(x)−2∇vn(∇vn −∇v) dx→ 0.

Using Proposition 2.6, we have un → u in W
1,p(x)
0 (Ω) and vn → v in W

1,q(x)
0 (Ω),

which implies that (un, vn) → (u, v) in W . This completes the proof. �

Theorem 3.4. If hypotheses (H1)–(H5) hold, then (1.1) has at least one weak
solution.

Proof. Let us show that J satisfies the conditions of Mountain Pass Theorem (see
[36, Theorem 2.10]). By Lemmas 3.2 and 3.3, J satisfies Palais-Smale condition in
W .

For ‖(u, v)‖ < 1, using the Young’s inequality, the fact 2α(x)
p∗(x) + 2β(x)

q∗(x) < 1 in Ω,
Propositions 2.2 and 2.4, we obtain∫

Ω

|u|α(x)|v|β(x) dx ≤ 1
2

∫
Ω

|u|2α(x) dx+
1
2

∫
Ω

|v|2β(x) dx ≤ c7(‖u‖2α−

p + ‖v‖2β−

q ).

On the other hand, assuming (H1), W 1,p(x)
0 (Ω) ↪→ Lp+

(Ω), and W
1,q(x)
0 (Ω) ↪→

Lq+
(Ω). Then there exists c8, c9 > 0 such that

|u|p+ ≤ c8‖u‖p for u ∈W 1,p(x)
0 (Ω)

|v|q+ ≤ c9‖v‖q for v ∈W 1,q(x)
0 (Ω),

where | · |r denote the norm on Lr(x)(Ω) with r ∈ C+(Ω). Let ε > 0 be small enough
such that εcp

+

8 ≤ m0
2p+ and εcq

+

9 ≤ m0
2q+ . By the assumptions (H1) and (H3), we have

|F (x, s, t)| ≤ ε
(
|s|p

+
+ |t|q

+)
+ c(ε)(|s|p1(x) + |t|q1(x) + |s|α(x)|t|β(x))

for all (x, s, t) ∈ Ω×R2. In view of (H4) and and the above inequality, for ‖(u, v)‖
sufficiently small, noting Proposition 2.2, we have

J(u, v) ≥ m0

p+

∫
Ω

|∇u|p(x) dx+
m0

q+

∫
Ω

|∇v|q(x) dx− ε

∫
Ω

|u|p
+
dx− ε

∫
Ω

|v|q
+
dx

− c(ε)
∫

Ω

(
|u|p1(x) + |v|q1(x) + |u|α(x)|v|β(x)

)
dx

≥ m0

p+
‖u‖p+

p − εcp
+

8 ‖u‖p+

p +
m0

q+
‖v‖q+

q − εcq
+

9 ‖v‖q+

q

− c(ε)
(
‖u‖p−1

p + ‖v‖q−1
q + c7‖u‖2α−

p + c7‖v‖2β−

q

)
≥ m0

2p+
‖u‖p+

p +
m0

2q+
‖v‖q+

q − c(ε)
(
‖u‖p−1

p + ‖v‖q−1
q + c7‖u‖2α−

p + c7‖v‖2β−

q

)
.
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Since p−1 , 2α
− > p+ and q−1 , 2β

− > q+, there exist r > 0, δ > 0 such that J(u) ≥
δ > 0 for every ‖(u, v)‖ = r.

On the other hand, we have known that the assumption (H2) implies the follow-
ing assertion: for every x ∈ Ω, s, t ∈ R, the inequality

F (x, s, t) ≥ c10(|s|θ1 + |t|θ2 − 1) (3.3)

holds; see [28]. When t > t0, from (H5) we can easily obtain that

M̂(t) ≤ M̂(t0)

t
1/(1−µ)
0

t1/(1−µ) := c11t
1/(1−µ),

where t0 is an arbitrarily positive constant. For (ũ, ṽ) ∈W \ {(0, 0)} and t > 1, we
have

J(tũ, tṽ) = M̂
( ∫

Ω

1
p(x)

|t∇ũ|p(x) dx
)

+ M̂
( ∫

Ω

1
q(x)

|t∇ṽ|q(x) dx
)

−
∫

Ω

F (x, tũ, tṽ) dx

≤ c12(
∫

Ω

|t∇ũ|p(x) dx)1/(1−µ) − c10t
θ1

∫
Ω

|ũ|θ1 dx

+ c13

( ∫
Ω

|t∇ṽ|q(x) dx
)1/(1−µ)

− c10t
θ2

∫
Ω

|ṽ|θ2 dx− c14

≤ c12t
p+

1−µ

( ∫
Ω

|∇ũ|p(x) dx
)1/(1−µ)

− c10t
θ1

∫
Ω

|ũ|θ1 dx

+ c13t
q+

1−µ

( ∫
Ω

|∇ṽ|q(x) dx
)1/(1−µ)

− c10t
θ2

∫
Ω

|ṽ|θ2 dx− c14

→ −∞, as t→ +∞,

due to θ1 > p+

1−µ and θ2 > q+

1−µ . Since J(0, 0) = 0, considering Lemmas 3.2 and 3.3,
we see that J satisfies the conditions of Mountain Pass Theorem. So J admits at
least one nontrivial critical point. �

Next we will prove under some symmetry condition on the function F that (1.1)
possesses infinitely many nontrivial weak solutions.

Theorem 3.5. Assume (H1), (H2), (H4), (H5), and that F (x, u, v) is even in u, v.
Then (1.1) has a sequence of solutions {(±uk,±vk)}∞k=1 such that J(±uk,±vk) →
+∞ as k → +∞.

Because W 1,p(x)
0 and W

1,q(x)
0 are a reflexive and separable Banach space, then

W and W ∗ are too. There exist {ej} ⊂W and {e∗j} ⊂W ∗ such that

W = span{ej : j = 1, 2, . . . }, W ∗ = span{e∗j : j = 1, 2, . . . },
and

〈ei, e
∗
j 〉 =

{
1, i = j,

0, i 6= j,

where 〈·, ·〉 denotes the duality product between W and W ∗. For convenience, we
write Xj = span{ej}, Yk = ⊕k

j=1Xj , Zk = ⊕∞j=kXj . We will use the following
“Fountain theorem” to prove Theorem 3.5.

Lemma 3.6 ([36]). Assume



10 G. DAI EJDE-2011/137

(A1) X is a Banach space, I ∈ C1(X,R) is an even functional.
(A2) For each k = 1, 2, . . . , there exist ρk > rk > 0 such that
(A2) infu∈Zk,‖u‖=rk

I(u) → +∞ as k → +∞.
(A3) maxu∈Yk,‖u‖=ρk

I(u) ≤ 0.
(A4) I satisfies Palais-Smale condition for every c > 0.

Then I has a sequence of critical values tending to +∞.

For every a > 1, u, v ∈ La(Ω), we define

|(u, v)|a := max{|u|a, |v|a}.
Set

a := max
x∈Ω

{2α(x), 2β(x), p1(x), q1(x)} > min{p−, q−},

b := min
x∈Ω

{2α(x), 2β(x), p1(x), q1(x)} > 0.

Then we have the following result.

Lemma 3.7 ([28]). Denote

βk = sup{|(u, v)|a : ‖(u, v)‖ = 1, (u, v) ∈ Zk}.
Then limk→+∞ βk = 0.

Proof of Theorem 3.5. According to the assumptions on F , Lemmas 3.2 and 3.3,
J is an even functional and satisfies Palais-Smale condition. We will prove that if
k is large enough, then there exist ρk > rk > 0 such that (A2) and (A3) holding.
Thus, the conclusion can be obtained from Fountain theorem.

(A2): For any (uk, vk) ∈ Zk, ‖uk‖p ≥ 1, ‖vk‖q ≥ 1 and ‖(uk, vk)‖ = rk (rk will
be specified below), we have

J(uk, vk)

= M̂
( ∫

Ω

1
p(x)

|∇uk|p(x) dx
)

+ M̂
( ∫

Ω

1
q(x)

|∇vk|q(x) dx
)
−

∫
Ω

F (x, uk, vk) dx

≥ m0

∫
Ω

1
p(x)

|∇uk|p(x) dx+m0

∫
Ω

1
q(x)

|∇vk|q(x) dx−
∫

Ω

F (x, uk, vk) dx

≥ m0

p+

∫
Ω

|∇uk|p(x) dx+
m0

q+

∫
Ω

|∇vk|q(x) dx

− c

∫
Ω

(
1 + |uk|p1(x) + |vk|q1(x) + |uk|α(x)|vk|β(x)

)
dx

≥ m0

p+
‖uk‖p−

p +
m0

q+
‖vk‖q−

q − c|uk|
p1(ξ

k
1 )

p1(x) − c|vk|
q1(ξ

k
2 )

q1(x)

− c15|uk|
2α(ηk

1 )

2α(x) − c15|vk|
2β(ηk

2 )

2β(x) − c|Ω|,

where ξk
1 , ξ

k
2 , η

k
1 , η

k
2 ∈ Ω. Therefore,

J(uk, vk)

≥ m0

max{p+, q+}
‖(uk, vk)‖min{p−,q−} − c|uk|

p1(ξ
k
1 )

a − c|vk|
q1(ξ

k
2 )

a

− c|uk|
2α(ηk

1 )
a − c|vk|

2β(ηk
2 )

a − c|Ω|

≥ m0

max{p+, q+}
‖(uk, vk)‖min{p−,q−} − c(βk‖(uk, vk)‖)p1(ξ

k
1 ) − c(βk‖(uk, vk)‖)q1(ξ

k
2 )
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− c(βk‖(uk, vk)‖)2α(ηk
1 ) − c(βk‖(uk, vk)‖)2β(ηk

2 ) − c|Ω|

≥ m0

max{p+, q+}
‖(uk, vk)‖min{p−,q−} − c16β

b
k‖(uk, vk)‖a − c|Ω|,

where a, b are defined above. At this stage, we fix rk as follows:

rk :=
( m0

2c16 max{p+, q+}βb
k

)1/(a−min{p−,q−})
→ +∞ as k → +∞.

Consequently, if ‖(uk, vk)‖ = rk then

J(uk, vk) ≥ m0

2 max{p+, q+}
‖(uk, vk)‖min{p−,q−} − c|Ω| → +∞ as k → +∞.

(A3): From (H2), we have F (x, u, v) ≥ c10(|u|θ1 + |v|θ2 − 1) for every x ∈ Ω and
u, v ∈ R. Therefore, for any (u, v) ∈ Yk with ‖(u, v)‖ = 1 and 1 < ρk = tk with
tk → +∞, we have

J(tku, tkv)

= M̂
( ∫

Ω

1
p(x)

|tk∇u|p(x) dx
)

+ M̂
( ∫

Ω

1
q(x)

|tk∇v|q(x) dx
)
−

∫
Ω

F (x, tku, tkv) dx.

≤ c17

( ∫
Ω

|tk∇u|p(x) dx
)1/(1−µ)

+ c18

( ∫
Ω

|tk∇v|q(x) dx
)1/(1−µ)

− c10t
θ1
k

∫
Ω

|u|θ1 dx− c10t
θ2
k

∫
Ω

|v|θ2 dx+ c19,

≤ c17t
p+

1−µ

k

( ∫
Ω

|∇u|p(x) dx
)1/(1−µ)

− c10t
θ1
k

∫
Ω

|u|θ1 dx

+ c18t
q+

1−µ

k

( ∫
Ω

|∇v|q(x) dx
)1/(1−µ)

− c10t
θ2
k

∫
Ω

|v|θ2 dx+ c19.

By θ1 > p+

1−µ , θ2 > q+

1−µ and dimYk = k, it is easy to see that J(tku, tkv) → −∞ as
‖(tku, tkv)‖ → +∞ for (u, v) ∈ Yk.

The proof of Theorem 3.5 is completed by the Fountain theorem. �
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[32] T. F. Ma, J. E. Muñoz Rivera; Positive solutions for a nonlinear nonlocal elliptic transmission
problem, Appl. Math. Lett. 16 (2003) 243–248.
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[37] V. V. Zhikov; Averaging of functionals of the calculus of variations and elasticity theory,

Math. USSR. Izv. 9 (1987), 33–66.
[38] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik; Homogenization of Differential Operators and

Integral Functionals, Translated from the Russian by G.A. Yosifian, Springer-Verlag, Berlin,
1994.

[39] V. V. Zhikov; On some variational problems, Russian J. Math. Phys. 5 (1997), 105–116.

Guowei Dai
Department of Mathematics, Northwest Normal University, Lanzhou, 730070, China

E-mail address: daiguowei@nwnu.edu.cn


	1. Introduction
	2. Preliminaries
	3. Existence of solutions
	Acknowledgments

	References

