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SUBHARMONIC SOLUTIONS FOR NON-AUTONOMOUS
SECOND-ORDER SUBLINEAR HAMILTONIAN SYSTEMS WITH

p-LAPLACIAN

ZHIYONG WANG

Abstract. In this article, we study the existence of subharmonic solutions
to the non-autonomous second-order sublinear Hamiltonian systems with p-
Laplacian. Introducing some kinds of control functions, infinitely many sub-
harmonic solutions are obtained by using the minimax methods in critical
point theory. We point out that our results are new even in the case p = 2.

1. Introduction and main results

Consider the second-order system
d

dt
(|u̇(t)|p−2u̇(t)) +∇F (t, u(t)) = 0 a.e. t ∈ R. (1.1)

where p > 1, F : R × RN → R is T -periodic (T > 0) in its first variable for all
x ∈ RN, and satisfies the assumption

(A1) F (t, x) is measurable in t for every x ∈ RN and continuously differentiable
in x for a.e. t ∈ [0, T ], and there exist a ∈ C(R+, R+), b ∈ L1(0, T ; R+)
such that

|F (t, x)|+ |∇F (t, x)| ≤ a(|x|)b(t)
for all x ∈ RN and a.e. t ∈ [0, T ].

A solution is called subharmonic solution if it is kT -periodic solution for some
positive integer k (see for example [10]).

Recently, considerable attention has been paid to subharmonic solutions of sec-
ond-order Hamiltonian systems with p-Laplacian; see [2, 7, 11, 18, 20, 21, 23]. When
p = 2, Equation (1.1) reduces to the second-order non-autonomous Hamiltonian
system

ü(t) +∇F (t, u(t)) = 0 a.e. t ∈ R. (1.2)
Using the variational methods, many existence results are obtained under suitable
conditions, we refer the reader to [1, 3, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15, 16, 17, 19, 22]
and the reference therein. In particular, in [6], Tang and Wu have proved the
following result.
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Theorem 1.1 ([6]). Suppose that F satisfies assumption (A1) and the following
conditions:

(S1) There exist f, g ∈ L1(0, T ; R+) and α ∈ [0, 1) such that

|∇F (t, x)| ≤ f(t)|x|α + g(t)

for all x ∈ RN and a.e. t ∈ [0, T ];
(S2) There exists γ ∈ L1(0, T ; R) such that

F (t, x) ≥ γ(t)

for all x ∈ RN and a.e. t ∈ [0, T ];
(S3) There exists a subset E of [0, T ] with meas(E) > 0 such that

1
|x|2α

F (t, x) → +∞ as |x| → +∞

for a.e. t ∈ E.
Then problem (1.2) has a kT -periodic solution uk for every positive integer k, and
max0≤t≤kT |u(t)| → +∞ as k → +∞.

Subsequently, Pasca and Tang in [7] dealt with the second order differential in-
clusions systems with p-Laplacian. They generalized Theorem 1.1 in a more general
sense. Note that in [6, 7], it is usually assumed that (S1) holds, for p-Laplacian
systems, α ∈ [0, p− 1). This means that nonlinearity ∇F (t, x) is sublinear.

Recently, the author and Zhang [22], introduced a control function h(t), consider
the case in which nonlinearity ∇F (t, x) is only weak sublinear: It is assumed that
there exists a positive function h ∈ C(R+, R+) satisfied the following restrictions

(i) h(s) ≤ h(t) for all s ≤ t, s, t ∈ R+;
(ii) h(s + t) ≤ C∗(h(s) + h(t)) for all s, t ∈ R+;
(iii) 0 < h(t) ≤ K1t

α + K2 for all t ∈ R+;
(iv) h(t) → +∞ as t → +∞.

Here C∗,K1,K2 are positive constants, α ∈ [0, 1), and h(t) need just to satisfy
conditions (i)-(iii) if α = 0. Moreover, conditions

|∇F (t, x)| ≤ f(t)h(|x|) + g(t),

1
h2(|x|)

∫ T

0

F (t, x)dx → ±∞ as |x| → +∞

are posed. Under these assumptions, they show that second-order system
ü(t) = ∇F (t, u(t)) a.e. t ∈ [0, T ],

u(0)− u(T ) = u̇(0)− u̇(T ) = 0
(1.3)

has a T -periodic solution. In addition, if the nonlinearity ∇F (t, x) grows slightly
slower than |x|p−1 at infinity, such as

∇F (t, x) =
t|x|p−1

ln(e + |x|2)
, (1.4)

solutions are saddle points of problem
d

dt
(|u̇(t)|p−2u̇(t)) = ∇F (t, u(t)) a.e. t ∈ [0, T ],

u(0)− u(T ) = u̇(0)− u̇(T ) = 0,
(1.5)

which have been obtained in [23] by minimax methods.
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In the present article, we will focus on the subharmonic solutions for (1.1) by
replacing in assumptions (S1) and (S3) the term |x| with more general control
functions h(|x|). Here, we emphasize that our results are still new when p = 2.

We will establish our main results:

Theorem 1.2. Suppose that F satisfies assumption (A1) and the following condi-
tions:

(H1) There exist constants C∗ > 0, K1 > 0, K2 > 0, α ∈ [0, p−1) and a positive
function h ∈ C(R+, R+) with the properties (i)–(iv). Moreover, there exist
f, g ∈ L1(0, T ; R+) such that

|∇F (t, x)| ≤ f(t)h(|x|) + g(t)

for all x ∈ RN and a.e. t ∈ [0, T ];
(H2) There exists γ ∈ L1(0, T ; R) such that

F (t, x) ≥ γ(t)

for all x ∈ RN and a.e. t ∈ [0, T ];
(H3) There exist a positive function h ∈ C(R+, R+) which satisfies the conditions

(i)–(iv), and a subset E of [0, T ] with meas(E) > 0 such that

1
hq(|x|)

F (t, x) → +∞ as |x| → +∞

for a.e. t ∈ E, here q := p
p−1 .

Then (1.1) has kT -periodic solution uk ∈ W 1,p
kT for every positive integer k such

that ‖uk‖∞ → +∞ as k → +∞, where

W 1,p
kT :=

{
u : [0, kT ] → RN| u is absolutely continuous,

u(0) = u(kT ), u̇ ∈ Lp(0, kT ; RN)
}

is a Banach space with the norm

‖u‖ :=
(∫ kT

0

|u(t)|pdt +
∫ kT

0

|u̇(t)|pdt
)1/p

and ‖uk‖∞ := max0≤t≤kT |u(t)| for u ∈ W 1,p
kT .

Remark 1.3. Theorem 1.2 generalizes Theorem 1.1. In fact, when p = 2, Theorem
1.1 is a special case of Theorem 1.2 with control function h(t) = tα, α ∈ [0, p− 1),
t ∈ R+. Furthermore, there are functions F (t, x) satisfying Theorem 1.2 and not
satisfying Theorem 1.1 and earlier results in the references [1, 2, 3, 4, 5, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23], even for p = 2.

Example 1.4. Consider the function

F (t, x) = sin[(1 + |x|2)1/2 ln1/2(e + |x|2)] + | sinωt| ln
3
2 (e + |x|2)

for all x ∈ RN and t ∈ R, where ω = 2π/T . It is apparent that

|∇F (t, x)| ≤ ln1/2(e + |x|2) + 10,

which implies that F (t, x) is not bounded. Moreover, one has

1
|x|2α

F (t, x) → 0 as |x| → +∞
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for any α ∈ (0, 1) and t ∈ R. Hence, this example can not be solved by Theorem
1.1 and the results in [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23].

On the other hand, put h(t) = ln1/2(e+t2), it is not difficult to see that the prop-
erties (i)-(iv) of h(t) are all satisfied. By simple computation, (H1)-(H3) remains
true. Therefore, F (t, x) satisfies all the conditions of Theorem 1.2, then problem
(1.1) with p = 2 has kT -periodic solution uk ∈ W 1,p

kT for every positive integer k
such that ‖uk‖∞ → +∞ as k → +∞.

Theorem 1.5. Suppose that F satisfies assumption (A1), (H2) and the following
conditions:

(H4) There exists constant C∗ > 0 and a positive function h∗ ∈ C(R+, R+) with
the properties:
(i*) h∗(s) ≤ h∗(t) for all s ≤ t, s, t ∈ R+;
(ii*) h∗(s + t) ≤ C∗(h∗(s) + h∗(t)) for all s, t ∈ R+;
(ii*) th∗(t)− pH∗(t) → −∞ as t → +∞, where H∗(t) =

∫ t

0
h∗(s)ds;

(iv*) H∗(t)/tp → 0 as t → +∞.
Moreover, there exist f, g ∈ L1(0, T ; R+) such that

|∇F (t, x)| ≤ f(t)h∗(|x|) + g(t)

for all x ∈ RN and a.e. t ∈ [0, T ];
(H5) There exist a positive function h∗ ∈ C(R+, R+) which satisfies the condi-

tions (i*)–(iv*), and a subset E of [0, T ] with meas(E) > 0 such that

1
H∗(|x|)

F (t, x) > 0 as |x| → +∞

for a.e. t ∈ E.
Then (1.1) has kT -periodic solution uk ∈ W 1,p

kT for every positive integer k such
that ‖uk‖∞ → +∞ as k → +∞.

Remark 1.6. (1) In contrast to the result in Theorem 1.2, if ∇F (t, x) grows faster
at infinity, with the rate like |x|p−1

ln(e+|x|2) , from the proof we see that, the approach
of Theorem 1.2 can not be repeated unless f(t) satisfies certain restrictions, and
α has a wider range, say, α ∈ [0, p − 1]. Meanwhile Theorem 1.5 needs only f(t)
belonging to L1(0, T ; R+).

(2) Comparing with [23], we emphasize that Theorem 1.5 can not only treat the
case like (1.4), but also cases like (S1)-(S3). Details for this assertion can be found
in Example 1.7 below, also in the example in Section 4. Furthermore, our methods
here are simpler and more direct than those in [23].

(3) We must point out that assumption (H4) leads to H∗(t) → +∞ as t → +∞
(for details see Lemma 2.2), then (H5) is stronger than (H3) (or (S3)) with α = 0.
Therefore, Theorem 1.5 is a new result, and do not cover Theorem 1.1.

(4) There are functions F (t, x) satisfying Theorem 1.5 and not satisfying Theo-
rem 1.1, Theorem 1.2, or the assumptions in [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23].

Example 1.7. Consider the function

F (t, x) = | sinωt||f(t)| |x|p

ln(e + |x|2)
,
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where f(t) ∈ L1(R, R+). Clearly, for all x ∈ RN and t ∈ R, one has

|∇F (t, x)| ≤ (2 + p)|f(t)| |x|p−1

ln(e + |x|2)
,

which implies that (H1) does not hold for any α ∈ [0, p−1). Moreover, as mentioned
before f(t) only belongs to L1(R, R+) and no other further requirements on f(t)
are posed, then the approach of Theorem 1.2 can not be applied. This is the key
feature that Theorem 1.5 is different from Theorem 1.2. Thus, this example can
not be solved by earlier results even if p = 2.

On the other hand, take h∗(t) = tp−1

ln(e+t2) , H∗(t) =
∫ t

0
sp−1

ln(e+s2)ds, s, t ∈ R+, then
we can find that conditions (H2), (H4) and (H5) are all satisfied, by Theorem 1.5,
problem (1.1) has kT -periodic solution uk ∈ W 1,p

kT for every positive integer k such
that ‖uk‖∞ → +∞ as k → +∞.

Remark 1.8. Without loss of generality, we may assume that functions b in as-
sumption (A1), f, g in (H1), (H4) and γ in (H2) are T -periodic. Then assumptions
(A1), (H1), (H2), (H4) hold for all t ∈ R by the T -periodicity of F (t, x) in the first
variable.

The remainder of this article is organized as follows. In Section 2 we give some
notations and the estimates of control functions h∗(t) and H∗(t). Section 3 are
devoted to the proofs of main theorems. Finally, we will give a new example to
illustrate our results in Section 4.

2. Preliminaries

Let k be a positive integer. For convenience, in the following we will denote
various positive constants as Ci, i = 0, 1, 2, · · · . For u ∈ W 1,p

kT , let ū := 1
kT

∫ kT

0
u(t)dt

and ũ(t) := u(t)− ū, then one has: Sobolev’s inequality

‖ũ‖∞ ≤ C0

∫ kT

0

|u̇(t)|pdt

and Wirtinger’s inequality∫ kT

0

|ũ(t)|pdt ≤ C0

∫ kT

0

|u̇(t)|pdt.

It follows from assumption (A1) that functional ϕk on W 1,p
kT give by

ϕk(u) =
1
p

∫ kT

0

|u̇(t)|pdt−
∫ kT

0

F (t, u(t))dt

is continuously differentiable on W 1,p
kT (see [10]). Moreover, one has

(ϕ′k(u), v) =
∫ kT

0

(|u̇(t)|p−2u̇(t), v̇(t))dt−
∫ kT

0

(∇F (t, u(t)), v(t))dt

for all u, v ∈ W 1,p
kT . It is well known that the solutions to problem (1.1) correspond

to the critical points of the functional ϕk.
To proof of our main theorems, we need the following auxiliary results.
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Lemma 2.1 ([4]). Suppose that F satisfies assumption (A1), and E is a measurable
subset of [0, T ]. Assume that

F (t, x) → +∞ as |x| → ∞

for a.e. t ∈ E. Then for every δ > 0, there exists subset Eδ of E with meas(E\Eδ) <
δ such that

F (t, x) → +∞ as |x| → +∞
uniformly for all t ∈ Eδ.

Lemma 2.2. Suppose that there exists a positive function h∗ which satisfies the
conditions (i*), (iii*), (iv*), then we have the following estimates:

(a) 0 < h∗(t) ≤ εtp−1 + C1 for any ε > 0, t ∈ R+,
(b) h∗q(t)/H∗(t) → 0 as t → +∞,
(c) H∗(t) → +∞ as t → +∞.

Proof. It follows from (iv*) that, for any ε > 0, there exists M1 > 0 such that

H∗(t) ≤ εtp ∀t ≥ M1.

Observe that by (iii*), there exists M2 > 0 such that

th∗(t)− pH∗(t) ≤ 0 ∀t ≥ M2,

which implies that

h∗(t) ≤ pH∗(t)
t

≤ pεtp−1 ∀t ≥ M,

where M := max{M1,M2}. Hence we obtain

h∗(t) ≤ pεtp−1 + h∗(M)

for all t > 0 by (i∗) of (H4). Obviously, h∗(t) satisfies (a) due to the definition of
h∗(t) and the above inequality.

Next, we turn to (b). Recalling property (iv*) and the fact q = p
p−1 , we obtain

0 <
h∗q(t)
H∗(t)

=
h∗q(t)
H∗q(t)

·H∗q−1(t) ≤
(p
t

)q ·H∗q−1(t)

= pq · H∗q−1(t)
tq

= pq
(H∗(t)

tp
)1/(p−1) → 0 as t → +∞.

Therefore, estimate (b) holds.
Finally, we show that (c) is also true. By (iii*), one arrives at, for every L > 0,

there exists M3 > 0 such that

th∗(t)− pH∗(t) ≤ −L ∀t ≥ M3.

So, one has
θth∗(θt)− pH∗(θt) ≤ −L

for all |θt| ≥ M3. Then we have

d

dθ

[H∗(θt)
θp

]
=

θt · h∗(θt)− pH∗(θt)
θp+1

≤ − L

θp+1
=

d

dθ

( L

pθp

)
.

Let θ > 1, integrating both sides of the above inequality from 1 to θ, we obtain

H∗(θt)
θp

−H∗(t) ≤ L

pθp
− L

p
=

L

p

( 1
θp − 1

)
.
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Let θ → +∞ in the above inequality, and by (iv*), one has

H∗(t) ≥ L

p

for all t ≥ M3. By the arbitrariness of L, we have H∗(t) → +∞ as t → +∞. This
completes the proof. �

3. Proof of main results

In this section, firstly, we discuss the (PS) condition.

Lemma 3.1. Assume that F satisfies assumptions (A1), (H1)–(H3). Then ϕk

satisfies the (PS) condition, that is, {un} has a convergent subsequence whenever
it satisfies ϕ′k(un) → 0 as n → +∞ and {ϕk(un)} is bounded.

Proof. It follows from (H1) and Sobolev’s inequality that∣∣∣ ∫ kT

0

(∇F (t, un(t)), ũn(t))dt
∣∣∣

≤
∫ kT

0

f(t)h(|ūn + ũn(t)|)|ũn(t)|dt +
∫ kT

0

g(t)|ũn(t)|dt

≤
∫ kT

0

f(t)[C∗(h(|ūn|) + h(|ũn(t)|))]|ũn(t)|dt + ‖ũn‖∞
∫ kT

0

g(t)dt

≤ C∗[h(|ūn|) + h(|ũn(t)|)]‖ũn‖∞
∫ kT

0

f(t)dt + ‖ũn‖∞
∫ kT

0

g(t)dt

≤ C∗
[ 1
2pC∗Cp

0

‖ũn‖p
∞ + 2pC∗Cp

0hq(|ūn|)
(∫ kT

0

f(t)dt
)q]

+ ‖ũn‖∞
∫ kT

0

g(t)dt

+ C∗h(‖ũn‖∞)‖ũn‖∞
∫ kT

0

f(t)dt (3.1)

≤ 1
2p

∫ kT

0

|u̇n(t)|pdt + C2h
q(|ūn|) + C∗[K1‖ũn‖α

∞ + K2]‖ũn‖∞
∫ kT

0

f(t)dt

+ ‖ũn‖∞
∫ kT

0

g(t)dt

≤ 1
2p

∫ kT

0

|u̇n(t)|pdt + C2h
q(|ūn|) + C3

(∫ kT

0

|u̇n(t)|pdt
)(α+1)/p

+ C4

(∫ kT

0

|u̇n(t)|pdt
)1/p

.

Hence, we see that

‖ũn‖∞ ≥ |(ϕ′k(un), ũn)|

=
∣∣ ∫ kT

0

|u̇n(t)|pdt−
∫ kT

0

(∇F (t, un(t)), ũn(t))dt
∣∣ (3.2)

≥
(
1− 1

2p

) ∫ kT

0

|u̇n(t)|pdt− C2h
q(|ūn|)− C3

(∫ kT

0

|u̇n(t)|pdt
)(α+1)/p

− C4

(∫ kT

0

|u̇n(t)|pdt
)1/p
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for large n. It follows from Wirtinger’s inequality that

‖ũn‖∞ ≤ (C0 + 1)1/p

(∫ kT

0

|u̇n(t)|pdt

)1/p

for all n, thus we obtain

C5h
q(|ūn|) ≥

∫ kT

0

|u̇n(t)|pdt− C6 (3.3)

for all large n, which implies that

‖ũn‖∞ ≤
(
C0

∫ kT

0

|u̇n(t)|pdt
)1/p

≤ [C0(C5h
q(|ūn|) + C6)]1/p

≤ [C7(|ūn|qα + 1)]1/p.

Then one has

|un(t)| ≥ |ūn| − |ũn(t)| ≥ |ūn| − ‖ũn(t)‖∞ ≥ |ūn| − [C7(|ūn|qα + 1)]1/p (3.4)

for all large n and every t ∈ [0, kT ].
We claim that {|ūn|} is bounded. Arguing indirectly, if {|ūn|} is unbounded, we

may assume that, going to a subsequence if necessary,

|ūn| → +∞ as n → +∞, (3.5)

which, together with (3.4), implies

|un(t)| ≥ 1
2
|ūn|. (3.6)

Then for all large n and every t ∈ [0, kT ], we have

h(|ūn|) ≤ h(2|un(t)|) ≤ 2C∗h(|un(t)|). (3.7)

Set δ = 1
2 meas(E). In virtue of (H3) and Lemma 2.1, there exists a subset Eδ of

E with meas(E\Eδ) < δ such that
1

hq(|x|)
F (t, x) → +∞ as |x| → +∞ (3.8)

uniformly for all t ∈ Eδ, which implies

meas(Eδ) = meas(E)−meas(E\Eδ) > δ > 0, (3.9)

and for every β > 0, there exists M ≥ 1 such that
1

hq(|x|)
F (t, x) ≥ β (3.10)

for all |x| ≥ M and all t ∈ Eδ. By (3.5) and (3.6), one has |un(t)| ≥ M for all large
n and every t ∈ [0, kT ]. It follows from (3.3), (3.7), (3.9), (3.10) that

ϕk(un) =
1
p

∫ kT

0

|u̇n(t)|pdt−
∫ kT

0

F (t, un(t))dt

≤ 1
p
(C5h

q(|ūn|) + C6)−
∫

[0,kT ]\Eδ

γ(t)dt−
∫

Eδ

βhq(|un(t)|)dt

≤ C8h
q(|ūn|) + C9 − β

∫
Eδ

( 1
2C∗h(|ūn|)

)q
dt
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≤ C8h
q(|ūn|) + C9 − β

1
(2C∗)q

hq(|ūn|)δ

for all large n. So, we obtain

lim sup
n→+∞

1
hq(|ūn|)

ϕk(un) ≤ C8 − β
1

(2C∗)q
δ.

By the arbitrariness of β > 0, one has

lim sup
n→+∞

1
hq(|ūn|)

ϕk(un) = −∞,

which contradicts the boundedness of ϕk(un). Hence {|ūn|} is bounded. Fur-
thermore, by (3.2) and (3.3), we know {un} is bounded. Arguing then as in [11,
Proposition 4.1], we conclude that (PS) condition is satisfied. �

Lemma 3.2. Assume that F satisfies assumption (A1), (H2), (H4), (H5). Then
ϕk satisfies the (PS) condition.

Proof. It follows from (3.1) and Lemma 2.2 that∣∣ ∫ kT

0

(∇F (t, un(t)), ũn(t))dt
∣∣

≤ C∗
[ 1
2pC∗Cp

0

‖ũn‖p
∞ + 2pC∗Cp

0h∗q(|ūn|)
(∫ kT

0

f(t)dt
)q]

+ ‖ũn‖∞
∫ kT

0

g(t)dt

+ C∗h∗(‖ũn‖∞)‖ũn‖∞
∫ kT

0

f(t)dt

≤ 1
2p

∫ kT

0

|u̇n(t)|pdt + C2h
∗q(|ūn|) + C∗[ε‖ũn‖p−1

∞ + C1]‖ũn‖∞
∫ kT

0

f(t)dt

+ ‖ũn‖∞
∫ kT

0

g(t)dt (3.11)

≤
( 1
2p

+ εC10

) ∫ kT

0

|u̇n(t)|pdt + C2h
∗q(|ūn|) + C11

(∫ kT

0

|u̇n(t)|pdt
)1/p

,

which implies

‖ũn‖∞ ≥ |(ϕ′k(un), ũn)|

≥
(
1− 1

2p
− εC10

) ∫ kT

0

|u̇n(t)|pdt− C2h
∗q(|ūn|)− C11

(∫ kT

0

|u̇n(t)|pdt
)1/p

for large n. Thus, by (3.2), one has

C12h
∗q(|ūn|) ≥

∫ kT

0

|u̇n(t)|pdt− C13 (3.12)

for all large n and ε small enough, which implies

‖ũn‖∞ ≤ [C0(C12h
∗q(|ūn|) + C13)]1/p ≤ [C14(ε|ūn|p + 1)]1/p

by Lemma 2.2. Consequently, we get

|un(t)| ≥ |ūn| − [C14(ε|ūn|p + 1)]1/p (3.13)

for all large n, every t ∈ [0, kT ] and ε small enough.
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Assume {|ūn|} is unbounded, by (3.13), for ε small enough, we obtain

|un(t)| ≥ 1
2
|ūn|. (3.14)

Combine (3.14) with (H4), one has

H∗(|ūn|) ≤ 2C∗H∗(|un(t)|).

With the same arguments of (3.8)-(3.10), by (H5), we know

1
H∗(|x|)

F (t, x) ≥ C15 (3.15)

for all |x| ≥ M and all t ∈ Eδ. We see that, jointly with (3.12), (3.15) and Lemma
2.2, for all large n,

ϕk(un) =
1
p

∫ kT

0

|u̇n(t)|pdt−
∫ kT

0

F (t, un(t))dt

≤ 1
p
(C12h

∗q(|ūn|) + C13)−
∫

[0,kT ]\Eδ

γ(t)dt−
∫

Eδ

C15H
∗(|un(t)|)dt

≤ C16h
∗q(|ūn|) + C17 − C15

∫
Eδ

1
2C∗H∗(|ūn|)dt

≤ C16h
∗q(|ūn|) + C17 − C18δH

∗(|ūn|),

which implies

0 = lim sup
n→+∞

1
H∗(|ūn|)

ϕk(un)

≤ lim sup
n→+∞

[
C16

h∗q(|ūn|)
H∗(|ūn|)

+
C17

H∗(|ūn|)
− C18δ

]
≤ −C18δ,

a contradiction. Hence {|ūn|} is bounded, moreover, we can get {un} is bounded.
So (PS) condition is satisfied, which completes the proof. �

Now, we are ready to proof our main results.

Proof of Theorem 1.2. It follows from Lemma 3.1 that ϕk satisfies the (PS) condi-
tion. In order to use the saddle point theorem, we only need to verify the following
conditions

(I1) ϕk(u) → +∞ as ‖u‖ → +∞ in W̃ 1,p
kT ,

(I2) ϕk(x + ek(t)) → −∞ as |x| → +∞ in RN,

where W̃ 1,p
kT := {u ∈ W 1,p

kT : ū = 0}, ek(t) = k cos(k−1ωt)x0 ∈ W̃ 1,p
kT , x0 ∈ RN,

|x0| = 1 and ω = 2π
T . Next, we show that ϕk satisfies (I1) and (I2).

For all x ∈ RN, it follows from (3.10) that
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ϕk(x + ek(t)) =
1
p

∫ kT

0

|ėk(t)|pdt−
∫ kT

0

F (t, x + k cos(k−1ωt)x0)dt

≤ 1
p

∫ kT

0

|ω(sin k−1ωt)x0|pdt−
∫

[0,kT ]\Eδ

γ(t)dt

− β

∫
Eδ

hq(|x + k cos(k−1ωt)x0|)dt

≤ C19k −
∫

[0,kT ]\Eδ

γ(t)dt− βhq(M) meas(Eδ)

(3.16)

for all |x| ≥ M + k. By the arbitrariness of β, one has

ϕk(x + ek(t)) → −∞ as |x| → +∞ in RN.

Thus (I2) is satisfied.
For all u ∈ W̃ 1,p

kT , it follows from Sobolev’s inequality that∣∣ ∫ kT

0

[F (t, u(t))− F (t, 0)]dt
∣∣ = ∣∣ ∫ kT

0

(∇F (t, su(t)), u(t))dsdt
∣∣

≤
∫ kT

0

∫ 1

0

f(t)h(|su(t)|)|u(t)|dsdt +
∫ kT

0

∫ 1

0

g(t)|u(t)|dsdt

≤
∫ kT

0

f(t)[K1|u(t)|α + K2]|u(t)|dt +
∫ kT

0

g(t)|u(t)|dt

≤ K1‖u‖α+1
∞

∫ kT

0

f(t)dt + K2|u‖∞
∫ kT

0

f(t)dt + ‖u‖∞
∫ kT

0

g(t)dt

≤ C20

(∫ kT

0

|u̇(t)|pdt
)(α+1)/p

+ C21

(∫ kT

0

|u̇(t)|pdt
)1/p

.

Hence, we have

ϕk(u) =
1
p

∫ kT

0

|u̇(t)|pdt−
∫ kT

0

[F (t, u(t))− F (t, 0)]dt−
∫ kT

0

F (t, 0)dt

≥ 1
p

∫ kT

0

|u̇(t)|pdt− C20

(∫ kT

0

|u̇(t)|pdt
)(α+1)/p

− C21

(∫ kT

0

|u̇(t)|pdt
)1/p

− C22,

then we can conclude that ϕk(u) → +∞ as ‖u‖ → +∞ in W̃ 1,p
kT . Plainly, condition

(I1) holds.
By (I1), (I2) and the saddle point theorem, there exists a critical point uk ∈ W 1,p

kT

for ϕk such that
−∞ < inf

W̃ 1,p
kT

ϕk ≤ ϕk(uk) ≤ sup
RN+ek

ϕk.

For fixed x ∈ RN, set

Ak := {t ∈ [0, kT ]||x + k(cos k−1ωt)x0| ≤ M}.
Using the same argument of [6], we have

meas(Ak) ≤ 1
2
kδ. (3.17)
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Let Ek := ∪k−1
j=0 (jT + Eδ), then it follows from (3.17) that

meas(Ek\Ak) ≥ 1
2
kδ

for large k. Taking into account (3.16), we have

k−1ϕk(x + ek(t)) ≤ C19 − k−1

∫
[0,kT ]\(Eδ\Ak)

γ(t)dt− k−1βhq(M) meas(Eδ)

≤ C19 +
∫ T

0

|γ(t)|dt− 1
2
δhq(M)β

for every x ∈ RN and all large k. Hence one has

lim sup
k→+∞

sup
x∈RN

k−1ϕk(x + ek) ≤ C19 +
∫ T

0

|γ(t)|dt− 1
2
δhq(M)β.

Observe the arbitrariness of β, we obtain

lim sup
k→+∞

sup
x∈RN

k−1ϕk(x + ek) = −∞,

which implies
lim sup
k→+∞

k−1ϕk(uk) = −∞. (3.18)

Finally, we prove that ‖uk‖∞ → +∞ as k → +∞. If not, going to a subsequence
if necessary, we may assume that

‖uk‖∞ ≤ C23

for all k ∈ N. Hence we have

k−1ϕk(uk) ≥ −k−1

∫ kT

0

F (t, uk(t))dt ≥ −k−1 max
0≤s≤C23

a(s)
∫ kT

0

b(t)dt

= − max
0≤s≤C23

a(s)
∫ T

0

b(t)dt.

It follows that
lim inf
k→+∞

k−1ϕk(uk) > −∞,

which contradicts (3.18). This completes the proof. �

Proof of Theorem 1.5. By Lemma 3.2, ϕk satisfies the (PS) condition. By the
argument of Theorem 1.2, we only need to check that ϕk satisfies (I1) and (I2). In
fact from (3.15), for all x ∈ RN it follows that

ϕk(x + ek(t)) =
1
p

∫ kT

0

|ėk(t)|pdt−
∫ kT

0

F (t, x + k cos(k−1ωt)x0)dt

≤ C19k −
∫

[0,kT ]\Eδ

γ(t)dt− C15

∫
Eδ

H∗(|x + k cos(k−1ωt)x0|)dt

for all |x| ≥ M + k. Using the fact H∗(t) → +∞ as t → +∞ of Lemma 2.2 and
(3.9), one has

ϕk(x + ek(t)) → −∞ as |x| → +∞ in RN.

Thus (I2) is safisfied.
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For all u ∈ W̃ 1,p
kT , we have

∣∣ ∫ kT

0

[F (t, u(t))− F (t, 0)]dt
∣∣

≤
∫ kT

0

∫ 1

0

f(t)h∗(|su(t)|)|u(t)|dsdt + ‖u‖∞
∫ kT

0

g(t)dt

≤
∫ kT

0

f(t)[ε|u(t)|p−1 + C1]|u(t)|dt + ‖u‖∞
∫ kT

0

g(t)dt

≤ εC24

∫ kT

0

|u̇(t)|pdt + C25

(∫ kT

0

|u̇(t)|pdt
)1/p

,

which implies

ϕk(u) ≥
(1
p
− εC24

) ∫ kT

0

|u̇(t)|pdt− C25

(∫ kT

0

|u̇(t)|pdt
)1/p

− C22.

Then for any ε small enough, we have ϕk(u) → +∞ as ‖u‖ → +∞ in W̃ 1,p
kT . So

condition (I1) holds, and the proof hereby is complete. �

4. Example

In this section, we give a new example to illustrate our results. Consider function

F (t, x) = | sinωt||x|1+α,

where 0 < α < p− 1 and ω = 2π/T . We claim both Theorem 1.2 and Theorem 1.5
can handle this case.

Indeed, choose h(t) = tα, α ∈ (0, p − 1), clearly, all conditions of Theorem 1.2
are satisfied. So that (1.1) has a kT -periodic solution uk ∈ W 1,p

kT for every positive
integer k, and ‖uk‖∞ → +∞ as k → +∞.

Let h∗(t) = tα, H∗(t) =
∫ t

0
sαds and C∗ is a suitable positive constant. We know

that

(i*) h∗(s) ≤ h∗(t) for all s ≤ t, s, t ∈ R+;
(ii*) h∗(s + t) = (s + t)α ≤ C∗(h∗(s) + h∗(t)) for all s, t ∈ R+;
(iii*) th∗(t)− pH∗(t) =

(
1− p

1+α

)
t1+α → −∞ as t → +∞;

(iv*) H∗(t)/tp → 0 as t → +∞.

Moreover, we can check that (H2) and (H5) are satisfied. Therefore, by Theorem
1.5, problem (1.1) has kT -periodic solution uk ∈ W 1,p

kT for every positive integer k,
and ‖uk‖∞ → +∞ as k → +∞.
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