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POSITIVE SOLUTIONS TO GENERALIZED SECOND-ORDER
THREE-POINT INTEGRAL BOUNDARY-VALUE PROBLEMS

SAOWALUK CHASREECHAI, JESSADA TARIBOON

Abstract. In this article, by using Krasnoselskii’s fixed point theorem, we
obtain single and multiple positive solutions to the nonlinear second-order
three-point integral boundary value problem

u′′(t) + a(t)f(u(t)) = 0, 0 < t < T,

u(0) = β

Z η

0
u(s)ds, α

Z η

0
u(s)ds = u(T ),

where 0 < η < T , 0 < α < 2T
η2 , 0 < β < 2T−αη2

η(2T−η)
are given constants. As an

application, we give some examples that illustrate our results.

1. Introduction

We are interested in obtaining positive solutions of the second-order three-point
integral boundary-value problem (BVP)

u′′(t) + a(t)f(u(t)) = 0, t ∈ (0, T ), (1.1)

u(0) = β

∫ η

0

u(s)ds, α

∫ η

0

u(s)ds = u(T ), (1.2)

where 0 < η < T , 0 < α < 2T
η2 , 0 < β < 2T−αη2

η(2T−η) , f ∈ C([0,∞), [0,∞)), a ∈
C([0,∞), [0,∞)) and there exists a t0 ∈ (0, T ), such that a(t0) > 0. Set

f0 = lim
u→0+

f(u)
u

, f∞ = lim
u→∞

f(u)
u

.

The study of the existence of solutions of multi-point boundary-value problems
for linear second-order ordinary differential equations was initiated by Il’in and Moi-
seev [5]. Then Gupta [3] studied three-point boundary value problems for nonlinear
second-order ordinary differential equations. Since then, the existence of positive
solutions for nonlinear second order three-point boundary-value problems has been
studied by many authors by using a nonlinear alternative of the Leray-Schauder
approach, coincidence degree theory, the fixed point theorem for cones and so on.
We refer the reader to [1, 2, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21] and
the references therein. However, all of these papers are concerned with problems
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with three-point boundary conditions consisting of restrictions on the slope of the
solutions and the solutions themselves, for example:

u(0) = 0, αu(η) = u(1);

u(0) = βu(η), αu(η) = u(T );

u′(0) = 0, αu(η) = u(1);

u(0)− βu′(0) = 0, αu(η) = u(1);

αu(0)− βu′(0) = 0, u′(η) + u′(1) = 0; etc.

Recently, Tariboon [20] and the author proved the existence of positive solutions
for the three-point boundary-value problem with integral condition

u′′(t) + a(t)f(u(t)) = 0, t ∈ (0, 1), (1.3)

u(0) = 0, α

∫ η

0

u(s)ds = u(1), (1.4)

where 0 < η < 1 and 0 < α < 2/η2. We note that the three-point integral boundary
conditions (1.2) and (1.4) are related to the area under the curve of solutions u(t)
from t = 0 to t = η.

The aim of this article is to establish some simple criteria for the existence of
single positive solution for (1.1), (1.2) under f0 = 0, f∞ = ∞ (f is superlinear) or
f0 = ∞, f∞ = 0 (f is sublinear). Moreover, we establish the existence conditions of
two positive solutions for (1.1), (1.2) under f0 = f∞ = ∞ or f0 = f∞ = 0. Finally,
we give some examples to illustrate our results. The key tool in our approach is
the Krasnoselskii’s fixed point theorem in a cone.

Theorem 1.1 ([6]). Let E be a Banach space, and let K ⊂ E be a cone. Assume
Ω1, Ω2 are open subsets of E with 0 ∈ Ω1, Ω1 ⊂ Ω2, and let

A : K ∩ (Ω1 \ Ω2) → K

be a completely continuous operator such that
(i) ‖Au‖ 6 ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Au‖ > ‖u‖, u ∈ K ∩ ∂Ω2; or
(ii) ‖Au‖ > ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Au‖ > ‖u‖, u ∈ K ∩ ∂Ω2.

Then A has a fixed point in K ∩ (Ω2 \ Ω1).

2. Preliminaries

We now state and prove several lemmas before stating our main results.

Lemma 2.1. Let β 6= 2T−αη2

η(2T−η) . Then for y ∈ C[0, T ], the problem

u′′ + y(t) = 0, t ∈ (0, T ), (2.1)

u(0) = β

∫ η

0

u(s)ds, α

∫ η

0

u(s)ds = u(T ), (2.2)

has a unique solution

u(t) =
(β − α)t− βT

(2T − αη2)− βη(2T − η)

∫ η

0

(η − s)2y(s)ds

+
2(1− βη)t + βη2

(2T − αη2)− βη(2T − η)

∫ T

0

(T − s)y(s)ds−
∫ t

0

(t− s)y(s)ds.
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Proof. From (2.1), we have u′′(t) = −y(t). For t ∈ [0, T ), integrating from 0 to t,
we obtain

u′(t) = u′(0)−
∫ t

0

y(s)ds.

For t ∈ [0, T ], integrating from 0 to t, we obtain

u(t) = u(0) + u′(0)t−
∫ t

0

( ∫ x

0

y(s)ds
)
dx;

i.e.,

u(t) = u(0) + u′(0)t−
∫ t

0

(t− s)y(s)ds := A + Bt−
∫ t

0

(t− s)y(s)ds. (2.3)

Integrating (2.3) from 0 to η, where η ∈ (0, T ), we have∫ η

0

u(s)ds = ηA +
η2

2
B −

∫ η

0

( ∫ x

0

(x− s)y(s)ds
)
dx

= ηA +
η2

2
B − 1

2

∫ η

0

(η − s)2y(s)ds.

Since u(0) = A,

u(T ) = A + BT −
∫ T

0

(T − s)y(s)ds.

By (2.2), from u(0) = β
∫ η

0
u(s)ds we have

(1− βη)A− βη2

2
B = −β

2

∫ η

0

(η − s)2y(s)ds,

and from u(T ) = α
∫ η

0
u(s)ds we have

(1− αη)A +
(
T − αη2

2
)
B =

∫ T

0

(T − s)y(s)ds− α

2

∫ η

0

(η − s)2y(s)ds.

Therefore,

A =
βη2

(2T − αη2)− βη(2T − η)

∫ T

0

(T − s)y(s)ds

− βT

(2T − αη2)− βη(2T − η)

∫ η

0

(η − s)2y(s)ds

B =
2(1− βη)

(2T − αη2)− βη(2T − η)

∫ T

0

(T − s)y(s)ds

+
(β − α)

(2T − αη2)− βη(2T − η)

∫ η

0

(η − s)2y(s)ds.

Hence, (2.1)-(2.2) has a unique solution

u(t) =
(β − α)t− βT

(2T − αη2)− βη(2T − η)

∫ η

0

(η − s)2y(s)ds

+
2(1− βη)t + βη2

(2T − αη2)− βη(2T − η)

∫ T

0

(T − s)y(s)ds−
∫ t

0

(t− s)y(s)ds.

�
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Lemma 2.2. Let 0 < α < 2T
η2 , 0 < β < 2T−αη2

η(2T−η) . If y ∈ C(0, T ) and y(t) > 0 on
(0, T ), then the unique solution u of (2.1)-(2.2) satisfies u(t) > 0 for t ∈ [0, T ].

Proof. It is known that the graph of u is concave down on [0, T ] from u′′(t) =
−y(t) 6 0, we obtain ∫ η

0

u(s)ds >
1
2
η
(
u(0) + u(η)

)
, (2.4)

where 1
2η

(
u(0) + u(η)

)
is the area of the trapezoid under the curve u(t) from t = 0

to t = η for η ∈ (0, T ). Combining (2.4) with (2.2), we can get

u(0) >
βη

2− βη
u(η), (2.5)

u(T ) >
αη

2− βη
u(η), (2.6)

such that

2− βη > 2− 2T − αη2

2T − η
=

2(T − η) + 2η2

2T − η
> 0. (2.7)

From the graph of u being concave down on [0, T ] again, we obtain
u(η)− u(0)

η
>

u(T )− u(0)
T

. (2.8)

Using (2.5), (2.6) and (2.8), we obtain
2− 2βη

η
u(η) >

(α− β)η
T

u(η).

If u(0) < 0, then u(η) < 0. It implies 2T−αη2

η(2T−η) 6 β, a contradiction to β < 2T−αη2

η(2T−η) .
If u(T ) < 0, then u(η) < 0, and the same contradiction emerges. Thus, it is true
that u(0) > 0, u(T ) > 0, together with the concavity of u, we have u(t) > 0 for
t ∈ [0, T ]. This proof is complete. �

Lemma 2.3. Let αη2 6= 2T , β > max
{

2T−αη2

η(2T−η) , 0
}
. If y ∈ C(0, T ) and y(t) > 0

for t ∈ [0, T ], then problem (2.1)-(2.2) has no positive solutions.

Proof. Suppose that (2.1)-(2.2) has a positive solution u satisfying u(t) > 0, t ∈
[0, T ] and there is a τ0 ∈ (0, T ) such that u(τ0) > 0.

If u(T ) > 0, then
∫ η

0
u(s)ds > 0. It implies

u(0) = β

∫ η

0

u(s)ds >
2T − αη2

η(2T − η)

∫ η

0

u(s)ds >
ηT (u(0) + u(η))− η2u(T )

η(2T − η)
; (2.9)

that is
u(T )− u(0)

T
>

u(η)− u(0)
η

, (2.10)

which is a contradiction to the concavity of u.
If u(T ) = 0, then

∫ η

0
u(s)ds = 0. When τ0 ∈ (0, η), we obtain u(τ0) > u(T ) =

0 > u(η), which contradicts the concavity of u. When τ0 ∈ (η, T ), we obtain
u(η) 6 0 = u(0) < u(τ0), which contradicts the concavity of u again. Therefore, no
positive solutions exist. �

Let E = C[0, T ], then E is a Banach space with respect to the norm

‖u‖ = sup
t∈[0,T ]

|u(t)|.
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Lemma 2.4. Let 0 < α < 2T
η2 , 0 < β < 2T−αη2

η(2T−η) . If y ∈ C(0, T ) and y(t) > 0 for
t ∈ [0, T ], then the unique solution to problem (2.1)-(2.2) satisfies

min
t∈[0,T ]

u(t) > γ‖u‖, (2.11)

where

γ := min
{ αη(T − η)

T (2− βη)− αη2
,

αη2

(2− βη)T
,
βη(T − η)
(2− βη)T

,
βη2

(2− βη)T

}
. (2.12)

Proof. From the fact that u′′(t) = −y(t) 6 0, we know that the graph of u(t) is
concave down on [0, T ]. If u(t) is maximum at t = τ1, then ‖u‖ = u(τ1). We divide
the proof into two cases.

Case (i) If u(0) > u(T ) and mint∈[0,T ] u(t) = u(T ), then either 0 6 τ1 6 η < T ,
or 0 < η < τ1 < T . If 0 6 τ1 6 η < T , then

u(τ1) 6 u(T ) +
u(T )− u(η)

T − η
(τ1 − T )

6 u(T ) +
u(T )− u(η)

T − η
(0− T )

=
Tu(η)− ηu(T )

T − η

6
T

[
2−βη

αη

]
− η

T − η
u(T ) (by (2.6))

=
T (2− βη)− αη2

αη(T − η)
u(T ).

This implies

min
t∈[0,T ]

u(t) >
αη(T − η)

T (2− βη)− αη2
‖u‖.

If 0 < η < τ1 < T , from
u(η)

η
>

u(τ1)
τ1

>
u(τ1)

T
,

together with (2.6), we have

u(T ) >
αη2

(2− βη)T
u(τ1).

This implies

min
t∈[0,T ]

u(t) >
αη2

(2− βη)T
‖u‖.

Case (ii) If u(0) 6 u(T ) and mint∈[0,T ] u(t) = u(0), then either 0 < τ1 < η < T ,
or 0 < η 6 τ1 6 T . If 0 < τ1 < η < T , from

u(η)
T − η

>
u(τ1)
T − τ1

>
u(τ1)

T
,

together with (2.5), we have

u(0) >
βη(T − η)
(2− βη)T

u(τ1).
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Hence

min
t∈[0,T ]

u(t) >
βη(T − η)
(2− βη)T

‖u‖.

If 0 < η 6 τ1 6 T , from
u(τ1)

T
6

u(τ1)
τ1

6
u(η)

η
,

together with (2.5), we have

u(0) >
βη2

(2− βη)T
u(τ1).

This implies

min
t∈[0,T ]

u(t) >
βη2

(2− βη)T
‖u‖.

This completes the proof. �

In the rest of this article, we assume that 0 < α < 2T/η2, 0 < β < 2T−αη2

η(2T−η) . It
is easy to see that (1.1)-(1.2) has a solution u = u(t) if and only if u is a solution
of the operator equation

u(t) =
(β − α)t− βT

(2T − αη2)− βη(2T − η)

∫ η

0

(η − s)2a(s)f(u(s))ds

+
2(1− βη)t + βη2

(2T − αη2)− βη(2T − η)

∫ T

0

(T − s)a(s)f(u(s))ds

−
∫ t

0

(t− s)a(s)f(u(s))ds , Au(t).

Denote
K =

{
u ∈ E : u > 0, min

t∈[0,T ]
u(t) > γ‖u‖

}
, (2.13)

where γ is defined in (2.12).
It is obvious that K is a cone in E. Moreover from Lemma 2.2 and Lemma 2.4,

A(K) ⊂ K. It is also easy to check that A : K → K is completely continuous. In
the following, for the sake of convenience, set

Λ1 =
2T + β(T + η2)

(2T − αη2)− βη(2T − η)

∫ T

0

T (T − s)a(s)ds,

Λ2 =
γ(2− βη)(T − η)

(2T − αη2)− βη(2T − η)

∫ T

0

sa(s)ds.

3. Main results

Now we are in the position to establish the main result.

Theorem 3.1. Problem (1.1)-(1.2) has at least one positive solution under the
assumptions:

(H1) f0 = 0 and f∞ = ∞ (superlinear); or
(H2) f0 = ∞ and f∞ = 0 (sublinear).
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Proof. At first, let (H1) hold. Since f0 = limu→0+(f(u)/u) = 0 for any ε ∈ (0,Λ−1
1 ],

there exists ρ∗ such that

f(u) 6 εu for u ∈ [0, ρ∗]. (3.1)

Let Ωρ∗ = {u ∈ E : ‖u‖ < ρ∗} for any u ∈ K ∩ ∂Ωρ∗ . From (3.1), we obtain

Au(t) 6
(β − α)t− βT

(2T − αη2)− βη(2T − η)

∫ η

0

(η − s)2a(s)f(u(s))ds

+
2(1− βη)t + βη2

(2T − αη2)− βη(2T − η)

∫ T

0

(T − s)a(s)f(u(s))ds

6
βt

(2T − αη2)− βη(2T − η)

∫ η

0

(η − s)2a(s)f(u(s))ds

+
2t + βη2

(2T − αη2)− βη(2T − η)

∫ T

0

(T − s)a(s)f(u(s))ds

6
βT

(2T − αη2)− βη(2T − η)

∫ η

0

(η − s)2a(s)f(u(s))ds

+
2T + βη2

(2T − αη2)− βη(2T − η)

∫ T

0

(T − s)a(s)f(u(s))ds

6
2T + β(T + η2)

(2T − αη2)− βη(2T − η)

∫ T

0

(T 2 − sT )a(s)f(u(s))ds

6 ερ∗
2T + β(T + η2)

(2T − αη2)− βη(2T − η)

∫ T

0

T (T − s)a(s)ds

= εΛ1ρ∗ 6 ρ∗ = ‖u‖,

which yields
‖Au‖ 6 ‖u‖ for u ∈ K ∩ ∂Ωρ∗ . (3.2)

Further, since f∞ = limu→∞(f(u)/u) = ∞, for any M∗ ∈ [Λ−1
2 ,∞), there exists

ρ∗ > ρ∗ such that
f(u) > M∗u for u > γρ∗. (3.3)

Set Ωρ∗ = {u ∈ E : ‖u‖ < ρ∗} for u ∈ K ∩ ∂Ωρ∗ . Since u ∈ K, mint∈[0,T ] u(t) >
γ‖u‖ = γρ∗. Hence, for any u ∈ K ∩ Ωρ∗ , from (3.3) and (2.7), we obtain

Au(η) =
(β − α)η − βT

(2T − αη2)− βη(2T − η)

∫ η

0

(η − s)2a(s)f(u(s))ds

+
(2− βη)η

(2T − αη2)− βη(2T − η)

∫ T

0

(T − s)a(s)f(u(s))ds

−
∫ η

0

(η − s)a(s)f(u(s))ds

=
(2− βη)η

(2T − αη2)− βη(2T − η)

∫ T

0

(T − s)a(s)f(u(s))ds

+
1

(2T − αη2)− βη(2T − η)

×
∫ η

0

(η − s)
[
− (2− βη)T +

(
β(T − η) + αη

)
s
]
a(s)f(u(s))ds



8 S. CHASREECHAI, J. TARIBOON EJDE-2011/14

>
(2− βη)η

(2T − αη2)− βη(2T − η)

∫ T

0

(T − s)a(s)f(u(s))ds

+
−T

(2T − αη2)− βη(2T − η)

∫ η

0

(η − s)(2− βη)a(s)f(u(s))ds

>
(2− βη)η

(2T − αη2)− βη(2T − η)

∫ T

0

(T − s)a(s)f(u(s))ds

+
−T

(2T − αη2)− βη(2T − η)

∫ T

0

(η − s)(2− βη)a(s)f(u(s))ds

=
(2− βη)(T − η)

(2T − αη2)− βη(2T − η)

∫ T

0

sa(s)f(u(s))ds

> γρ∗M∗ (2− βη)(T − η)
(2T − αη2)− βη(2T − η)

∫ T

0

sa(s)ds

= M∗Λ2ρ
∗ > ρ∗ = ‖u‖,

which implies
‖Au‖ > ‖u‖ for u ∈ K ∩ ∂Ωρ∗ . (3.4)

Therefore, from (3.2), (3.4) and Theorem 1.1, it follows that A has a fixed point
in K ∩ (Ωρ∗ \ Ωρ∗) such that ρ∗ 6 ‖u‖ 6 ρ∗.

Next, let (H2) hold. In view of f0 = limu→0+(f(u)/u) = ∞ for any M∗ ∈
[Λ−1

2 ,∞), there exists r∗ > 0 such that

f(u) > M∗u for 0 6 u 6 r∗. (3.5)

Set Ωr∗ = {u ∈ E : ‖u‖ < r∗} for u ∈ K ∩ ∂Ωr∗ . Since u ∈ K, it follows that
mint∈[0,T ] u(t) > γ‖u‖ = γr∗. Thus from (3.5) for any u ∈ K ∩ ∂Ωr∗ , we have

Au(η) =
(β − α)η − βT

(2T − αη2)− βη(2T − η)

∫ η

0

(η − s)2a(s)f(u(s))ds

+
(2− βη)η

(2T − αη2)− βη(2T − η)

∫ T

0

(T − s)a(s)f(u(s))ds

−
∫ η

0

(η − s)a(s)f(u(s))ds

> γr∗M∗
(2− βη)(T − η)

(2T − αη2)− βη(2T − η)

∫ T

0

sa(s)ds

= M∗Λ2r∗ > r∗ = ‖u‖,

which yields
‖Au‖ > ‖u‖ for u ∈ K ∩ ∂Ωr∗ . (3.6)

Since f∞ = limu→∞(f(u)/u) = 0, for any ε1 ∈ (0,Λ−1
1 ], there exists r0 > r∗

such that
f(u) 6 ε1u for u ∈ [r0,∞). (3.7)

We have the next two cases:
Case (i): Suppose that f(u) is unbounded, then from f ∈ C([0,∞), [0,∞)), we

know that there is r∗ > r0 such that

f(u) 6 f(r∗) for u ∈ [0, r∗]. (3.8)



EJDE-2011/14 POSITIVE SOLUTIONS 9

Since r∗ > r0, from (3.7) and (3.8), one has

f(u) 6 f(r∗) 6 ε1r
∗ for u ∈ [0, r∗]. (3.9)

For u ∈ K, ‖u‖ = r∗, from (3.9), we obtain

Au(t) 6
2T + β(T + η2)

(2T − αη2)− βη(2T − η)

∫ T

0

T (T − s)a(s)f(u(s))ds

6 ε1r
∗ 2T + β(T + η2)
(2T − αη2)− βη(2T − η)

∫ T

0

T (T − s)a(s)ds

= ε1Λ1r
∗ 6 r∗ = ‖u‖.

Case (ii) Suppose that f(u) is bounded, say f(u) 6 N for all u ∈ [0,∞). Taking
r∗ > max{N/ε1, r∗}, for u ∈ K, ‖u‖ = r∗, we have

Au(t) 6
2T + β(T + η2)

(2T − αη2)− βη(2T − η)

∫ T

0

T (T − s)a(s)f(u(s))ds

6 N
2T + β(T + η2)

(2T − αη2)− βη(2T − η)

∫ T

0

T (T − s)a(s)ds

6 ε1r
∗ 2T + β(T + η2)
(2T − αη2)− βη(2T − η)

∫ T

0

T (T − s)a(s)ds

= ε1Λ1r
∗ 6 r∗ = ‖u‖.

Hence, in either case, we always may set Ωr∗ = {u ∈ E : ‖u‖ < r∗} such that

‖Au‖ 6 ‖u‖ for u ∈ K ∩ ∂Ωr∗ . (3.10)

Hence, from (3.6), (3.10) and Theorem 1.1, it follows that A has a fixed point in
K ∩ (Ωρ∗ \ Ωρ∗) such that r∗ 6 ‖u‖ 6 r∗. The proof is complete. �

Theorem 3.2. Suppose that the following assumptions are satisfied:
(H3) f0 = f∞ = ∞,
(H4) There exists a constant ρ1 > 0, such that f(u) 6 Λ−1

1 ρ1 for u ∈ [0, ρ1].
Then (1.1), (1.2) has at least two positive solutions u1 and u2 such that

0 < ‖u1‖ < ρ1 < ‖u2‖.

Proof. At first, in view of f0 = limu→0+(f(u)/u) = ∞, for any M∗ ∈ [Λ−1
2 ,∞),

there exists ρ∗ ∈ (0, ρ1) such that

f(u) > M∗u, for 0 6 u 6 ρ∗. (3.11)

Set Ωρ∗ = {u ∈ E : ‖u‖ < ρ∗} for u ∈ K∩∂Ωρ∗ . Since u ∈ K, then mint∈[0,T ] u(t) >
γ‖u‖ = γρ∗. Thus from (3.11), for any u ∈ K ∩ ∂Ωρ∗ , we obtain

Au(η) =
(β − α)η − βT

(2T − αη2)− βη(2T − η)

∫ η

0

(η − s)2a(s)f(u(s))ds

+
(2− βη)η

(2T − αη2)− βη(2T − η)

∫ T

0

(T − s)a(s)f(u(s))ds

−
∫ η

0

(η − s)a(s)f(u(s))ds

> γρ∗M∗
(2− βη)(T − η)

(2T − αη2)− βη(2T − η)

∫ T

0

sa(s)ds
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= M∗Λ2ρ∗ > ρ∗ = ‖u‖,

which implies
‖Au‖ > ‖u‖ for u ∈ K ∩ ∂Ωρ∗ . (3.12)

Next, since f∞ = limu→∞(f(u)/u) = ∞, then for any M∗ ∈ [Λ−1
2 ,∞), there exists

ρ∗ > ρ1 such that
f(u) > M∗u, for u > γρ∗. (3.13)

Set Ωρ∗ = {u ∈ E : ‖u‖ < ρ∗} for u ∈ K∩∂Ωρ∗ . Since u ∈ K, then mint∈[0,T ] u(t) >
γ‖u‖ = γρ∗. Thus from (3.13) for any u ∈ K ∩ ∂Ωρ∗ , we have

Au(η) =
(β − α)η − βT

(2T − αη2)− βη(2T − η)

∫ η

0

(η − s)2a(s)f(u(s))ds

+
(2− βη)η

(2T − αη2)− βη(2T − η)

∫ T

0

(T − s)a(s)f(u(s))ds

−
∫ η

0

(η − s)a(s)f(u(s))ds

> γρ∗M∗ (2− βη)(T − η)
(2T − αη2)− βη(2T − η)

∫ T

0

sa(s)ds

= M∗Λ2ρ
∗ > ρ∗ = ‖u‖,

which implies
‖Au‖ > ‖u‖ for u ∈ K ∩ ∂Ωρ∗ . (3.14)

Finally, let Ωρ1 = {u ∈ E : ‖u‖ < ρ1} for any u ∈ K ∩ ∂Ωρ1 . Then from (H4) we
obtain

Au(t) 6
2T + β(T + η2)

(2T − αη2)− βη(2T − η)

∫ T

0

T (T − s)a(s)f(u(s))ds

6 Λ−1
1 ρ1

2T + β(T + η2)
(2T − αη2)− βη(2T − η)

∫ T

0

T (T − s)a(s)ds

6 ρ1 = ‖u‖,

which yields
‖Au‖ 6 ‖u‖ for u ∈ K ∩ ∂Ωρ∗ . (3.15)

Thus, from (3.12), (3.14) and (3.15), it follows from Theorem 1.1 that A has a fixed
point u1 in K∩(Ωρ1 \Ωρ∗), and a fixed point u2 in K∩(Ωρ∗ \Ωρ1). Both are positive
solutions of (1.1), (1.2) and 0 < ‖u1‖ < ρ1 < ‖u2‖. The proof is complete. �

Theorem 3.3. Suppose that the following assumptions are satisfied:
(H5) f0 = f∞ = 0,
(H6) There exists a constant ρ2 > 0, such that

f(u) > Λ−1
2 ρ2 for u ∈ [γρ2, ρ2].

Then (1.1), (1.2) has at least two positive solutions u1 and u2 such that

0 < ‖u1‖ < ρ2 < ‖u2‖.

Proof. Firstly, since f0 = limu→0+(f(u)/u) = 0, for any ε ∈ (0,Λ−1
1 ], there exists

ρ∗ ∈ (0, ρ2) such that
f(u) 6 εu, for u ∈ [0, ρ∗]. (3.16)
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Let Ωρ∗ = {u ∈ E : ‖u‖ < ρ∗} for any u ∈ K ∩ ∂Ωρ∗ . Then from (3.16), we obtain

Au(t) 6
2T + β(T + η2)

(2T − αη2)− βη(2T − η)

∫ T

0

T (T − s)a(s)f(u(s))ds

6 ερ∗
2T + β(T + η2)

(2T − αη2)− βη(2T − η)

∫ T

0

T (T − s)a(s)ds

6 εΛ1ρ∗ 6 ρ∗ = ‖u‖,
which implies

‖Au‖ 6 ‖u‖ for u ∈ K ∩ ∂Ωρ∗ . (3.17)
Secondly, in view of f∞ = limu→∞(f(u)/u) = 0, for any ε1 ∈ (0,Λ−1

1 ] there exists
ρ0 > ρ2, such that

f(u) 6 ε1u, for u ∈ [ρ0,∞). (3.18)
We consider the next two cases.

Case (i): Suppose that f(u) is unbounded. Then from f ∈ C([0,∞), [0,∞)),
there exists ρ∗ > ρ0 such that

f(u) 6 f(ρ∗), for u ∈ [0, ρ∗]. (3.19)

Since ρ∗ > ρ0, from (3.18) and (3.18) one has

f(u) 6 f(ρ∗) 6 ε1ρ
∗, for u ∈ [0, ρ∗]. (3.20)

For u ∈ K, and ‖u‖ = ρ∗, from (3.20), we obtain

Au(t) 6
2T + β(T + η2)

(2T − αη2)− βη(2T − η)

∫ T

0

T (T − s)a(s)f(u(s))ds

6 ε1ρ
∗ 2T + β(T + η2)
(2T − αη2)− βη(2T − η)

∫ T

0

T (T − s)a(s)ds

6 ε1Λ1ρ
∗ 6 ρ∗ = ‖u‖.

Case (ii): Suppose that f(u) is bounded, say f(u) 6 L for all u ∈ [0,∞). Taking
ρ∗ > max{L/ε1, ρ0}, for u ∈ K with ‖u‖ = ρ∗, we have

Au(t) 6
2T + β(T + η2)

(2T − αη2)− βη(2T − η)

∫ T

0

T (T − s)a(s)f(u(s))ds

6 L
2T + β(T + η2)

(2T − αη2)− βη(2T − η)

∫ T

0

T (T − s)a(s)ds

6 ε1ρ
∗ 2T + β(T + η2)
(2T − αη2)− βη(2T − η)

∫ T

0

T (T − s)a(s)ds

6 ε1Λ1ρ
∗ 6 ρ∗ = ‖u‖.

Hence, in either case, we always may set Ωρ∗ = {u ∈ E : ‖u‖ < ρ∗} such that

‖Au‖ 6 ‖u‖ for u ∈ K ∩ ∂Ωρ∗ . (3.21)

Finally, set Ωρ2 = {u ∈ E : ‖u‖ < ρ2} for u ∈ K ∩ ∂Ωρ2 . Since u ∈ K,
mint∈[0,T ] u(t) > γ‖u‖ = γρ2. Hence, for any u ∈ K ∩ ∂Ωρ2 , and (H6), we have

Au(η) =
(β − α)η − βT

(2T − αη2)− βη(2T − η)

∫ η

0

(η − s)2a(s)f(u(s))ds

+
(2− βη)η

(2T − αη2)− βη(2T − η)

∫ T

0

(T − s)a(s)f(u(s))ds
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−
∫ η

0

(η − s)a(s)f(u(s))ds

> γρ2Λ−1
2

(2− βη)(T − η)
(2T − αη2)− βη(2T − η)

∫ T

0

sa(s)ds > ρ2 = ‖u‖,

which yields
‖Au‖ > ‖u‖ for u ∈ K ∩ ∂Ωρ2 . (3.22)

Thus, since ρ∗ < ρ < ρ∗ and from (3.17), (3.21) and (3.22), it follows from Theorem
1.1 that A has a fixed point u1 in K ∩ (Ωρ2 \ Ωρ∗), and a fixed point u2 in K ∩
(Ωρ∗ \ Ωρ2). Both are positive solutions of (1.1), (1.2) and 0 < ‖u1‖ < ρ2 < ‖u2‖.
The proof is complete. �

4. Some examples

In this section, to illustrate our results, we consider some examples.

Example 4.1. Consider the boundary-value problem

u′′(t) + t2up = 0, 0 < t < e2, (4.1)

u(0) =
2
9

∫ e

0

u(s)ds, u(e2) =
2
3

∫ e

0

u(s)ds. (4.2)

Set α = 2/3, β = 2/9, η = e, T = e2, a(t) = t2, f(u) = up. We can show that

0 < α =
2
3

< 2 =
2T

η2
, 0 < β =

2
9

<
4

3(2e− 1)
=

2T − αη2

η(2T − η)
.

Case I: p ∈ (1,∞). In this case, f0 = 0, f∞ = ∞ and (H1) holds. Then (4.1),
(4.2) has at least one positive solution.

Case II: p ∈ (0, 1) In this case, f0 = ∞, f∞ = 0 and (H2) holds. Then (4.1),
(4.2) has at least one positive solution.

Example 4.2. Consider the boundary-value problem

u′′(t) +
1
83

(4− t)1/2(u1/2 + u2) = 0, 0 < t < 4, (4.3)

u(0) =
1
10

∫ 1

0

u(s)ds, u(4) = 2
∫ 1

0

u(s)ds. (4.4)

Set α = 2, β = 1/10, η = 1, T = 4, a(t) = 1
83 (4− t)1/2, f(u) = u1/2 + u2. We can

show that 0 < α = 2 < 8 = 2T/η2, 0 < β = 1/10 < 6/7 = (2T − αη2)/(η(2T − η)).
Since f0 = f∞ = ∞, then (H3) holds. Again Λ−1

1 = ((2T−αη2)−βη(2T−η))/(2T +
β(T + η2))(

∫ T

0
T (T − s)a(s)ds)−1 = 530/85, because f(u) is monotone increasing

function for u > 0, taking ρ1 = 4, then when u ∈ [0, ρ1], we obtain

f(u) 6 f(4) = 18 <
530
85

ρ1 = Λ−1
1 ρ1,

which implies (H4) holds. Hence, by Theorem 3.2, BVP (4.3), (4.4) has at least
two positive solutions u1 and u2 such that 0 < ‖u1‖ < 4 < ‖u2‖.

Example 4.3. Consider the boundary-value problem

u′′(t) + e32u2e−u = 0, 0 < t <
4
5
, (4.5)
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u(0) = 2
∫ 1/5

0

u(s)ds, u
(4

5

)
= 20

∫ 1/5

0

u(s)ds. (4.6)

Set α = 20, β = 2, η = 1/5, T = 4/5, a(t) ≡ e32, f(u) = u2e−u. We can show
that 0 < α = 20 < 40 = 2T/η2, 0 < β = 2 < 20/7 = (2T − αη2)/(η(2T − η)), γ =
min{αη(T−η)/(T (2−βη)−αη2), αη2/((2−βη)T ), βη(T−η)/((2−βη)T ), βη2/((2−
βη)T )} = min{5, 5/8, 3/16, 1/16} = 1/16. Since f0 = f∞ = 0, then (H5) holds.
Again Λ−1

2 = ((2T − αη2) − βη(2T − η))/(γ(2 − βη)(T − η))(
∫ T

0
sa(s)ds)−1 =

25
2 e−32, since f(u) is monotone decreasing function for u > 2, taking ρ2 = 32,when
u ∈ [γρ2, ρ2], we obtain

f(u) > f(32) = 1024e−32 > 400e−32 = Λ−1
2 ρ2,

which implies (H6) holds. Hence, by Theorem 3.3, BVP (4.5), (4.6) has at least
two positive solutions u1 and u2 such that 0 < ‖u1‖ < 32 < ‖u2‖.
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