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PERIODIC SOLUTIONS FOR p-LAPLACIAN FUNCTIONAL
DIFFERENTIAL EQUATIONS WITH TWO DEVIATING

ARGUMENTS

CHANGXIU SONG, XUEJUN GAO

Abstract. Using the theory of coincidence degree, we prove the existence
of periodic solutions for the p-Laplacian functional differential equations with
deviating arguments.

1. Introduction

In recent years, the existence of periodic solutions for the Duffing equation,
Rayleigh equation and Liénard equation has received a lot of attention; see [1, 2, 4, 5,
6, 7, 8]. For example, Liu [5] studied periodic solutions for the p-Laplacian Liénard
equation with a deviating argument. Using Mawhin’s continuation theorem, some
results on the existence of periodic solution are obtained. But the p-Laplacian
Liénard equation with two deviating arguments has been studied far less often.

In this article, we study the existence of periodic solutions for the following
Liénard equation with two deviating arguments:

(φp(x′(t)))′ + f(x(t))x′(t) + g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t))) = e(t), (1.1)

where f, τ1, τ2, e ∈ C(R, R); g1, g2 ∈ C(R2, R); τ1(t), τ2(t), g1(t, x), g2(t, x), e(t) are
periodic functions with period T ; φp(·) is the p-Laplacian operator, 1 < p < ∞.
By using the theory of coincidence degree, we obtain some results to guarantee the
existence of periodic solutions. Even for p = 2, the results in this paper are also
new.

In what follows, the Lp−norm in Lp([0, T ], R) is defined by

‖x‖p = (
∫ T

0

|x(t)|pdt)1/p,

and the L∞−norm in L∞([0, T ], R) is ‖x‖∞ = maxt∈[0,T ] |x(t)|. Let the Sobolev
space W 1,p([0, T ], R] be denoted by W .
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Lemma 1.1 ([9]). Suppose u ∈ W and u(0) = u(T ) = 0. Then

‖u‖∞ ≤ (T/2)1/q‖u′‖p.

The following Mawhin’s continuous theorem is useful in obtaining the existence
of T -periodic solutions of (1.1).

Lemma 1.2 ([3]). Let X and Y be two Banach spaces. Suppose that L : D(L) ∈
X → Y is a Fredholm operator with index zero and N : X → Y is L-compact on Ω,
where Ω is an open bounded subset of X. Moreover, assume that all the following
conditions are satisfied:

(1) Lx 6= λNx, for all x ∈ ∂Ω ∩D(L), and all λ ∈ (0, 1);
(2) Nx /∈ Im L, for all x ∈ ∂Ω ∩ ker L;
(3) deg{JQN, Ω ∩ ker L, 0} 6= 0, where J : Im Q → ker L is an isomorphism,

then equation Lx = Nx has a solution on Ω ∩D(L).

2. Main results

To use coincidence degree theory in the study of T -periodic solutions for (1.1),
we rewrite (1.1) in the form

x′(t) = φq(y(t))

y′(t) = −f(x(t))x′(t)− g1(t, x(t− τ1(t)))− g2(t, x(t− τ2(t))) + e(t).
(2.1)

If z(t) = (x(t), y(t))T is a T -periodic solution of (2.1), then x(t) must be a T -
periodic solution of (1.1). Thus, the problem of finding a T -periodic solution for
(1.1) reduces to finding one for (2.1).

We set the following notation: T > 0 is a constant, CT = {x ∈ C(R, R) :
x(t + T ) ≡ x(t)} with the norm ‖x‖∞ = maxt∈[0,T ] |x(t)|, X = Z = {z = (x, y) ∈
C(R, R2) : z(t) ≡ z(x + T )} with the norm ‖z‖ = max{‖x‖∞, ‖y‖∞}. Clearly, X
and Z are Banach spaces. Also let L : Dom L ⊂ X → Z be defined by

(Lz)(t) = z′(t) =
(

x′(t)
y′(t)

)
,

and N : X → Z defined by

(Nz)(t) =
(

φq(y(t))
−f(x(t))x′(t)− g1(t, x(t− τ1(t)))− g2(t, x(t− τ2(t))) + e(t)

)
It is easy to see that kerL = R2, Im L = {z ∈ Z :

∫ T

0
z(s)ds = 0}. So L is a

Fredholm operator with index zero. Let P : X → ker L and Q : Z → Im Q be
defined by

Pu =
1
T

∫ T

0

u(s)ds, u ∈ X; Qv =
1
T

∫ T

0

v(s)ds, v ∈ Z,

and let Kp denote the inverse of L|ker P∩Dom L. Obviously, kerL = Im Q = R2 and

(Kpz)(t) =
∫ t

0

z(s)ds− 1
T

∫ T

0

∫ t

0

z(s) ds dt. (2.2)

From this equality, one can easily see that N is L-compact on Ω, where Ω is an
open bounded subset of X.

Theorem 2.1. Suppose that there exist constants d > 0 r1 ≥ 0 and r2 ≥ 0 such
that
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(H1) g1(t, u) + g2(t, v)− e(t) > 0 for all t ∈ R, |max{u, v}| > d;
(H2) limx→−∞ supt∈[0,T ]

|g1(t,x)|
|x|p−1 ≤ r1; limx→−∞ supt∈[0,T ]

|g2(t,x))|
|x|p−1 ≤ r2.

Then (1.1) has at least one T -periodic solution, if 4(r1 + r2)T (T/2)p/q < 1.

Proof. Consider the parametric equation

(Lz)(t) = λ(Nz)(t), λ ∈ (0, 1). (2.3)

Let z(t) =
(

x(t)
y(t)

)
be a possible T -periodic solution of (2.3) for some λ ∈ (0, 1).

One can see x = x(t) is a T -periodic solution of the equation

(φp(x′(t)))′+λp−1f(x(t))x′(t)+λpg1(t, x(t−τ1(t)))+λpg2(t, x(t−τ2(t))) = λpe(t).
(2.4)

Integrating both sides of (2.4) over [0, T ], we have∫ T

0

[g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t)))− e(t)]dt = 0, (2.5)

which implies that there exists η ∈ [0, T ] such that

g1(η, x(η − τ1(η))) + g2(η, x(η − τ2(η)))− e(η) = 0.

From assumption (H1), we know that there exists ξ ∈ R such that |x(ξ)| ≤ d.
Let ξ = kT +t0, where t0 ∈ [0, T ] and k is an integer. Let χ(t) = x(t+t0)−x(t0).

Then χ(0) = χ(T ) = 0 and χ ∈ W 1,p([0, T ], R). By Lemma 1.1, we have

‖x‖∞ ≤ ‖χ‖∞+ d ≤ (
T

2
)1/q‖χ′‖p + d = (

T

2
)1/q‖x′‖p + d.

On the other hand, multiplying the two sides of (2.4) by x(t) and integrating them
over [0, T ], we obtain

−‖x′‖p
p = −λp

∫ T

o

x(t)[g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t)))− e(t)]dt;

i.e.,

‖x′‖p
p ≤ ‖x‖∞

∫ T

0

|g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t)))− e(t)|dt. (2.6)

From assumption (H2), there exists a constant ρ > 0 such that

|g1(t, x)| ≤ r1|x|p−1, |g2(t, x)| ≤ r2|x|p−1, ∀t ∈ R, x < −ρ. (2.7)

Let

E1 = {t ∈ [0, T ] : max{x(t− τ1(t)), x(t− τ2(t))} < −ρ},
E2 = {t ∈ [0, T ] : max{x(t− τ1(t)), x(t− τ2(t))} > ρ},

E3 = {t ∈ [0, T ] : |max{x(t− τ1(t)), x(t− τ2(t))}| ≤ ρ},
E4 = {t ∈ [0, T ] : −ρ ≤ x(t− τ1(t)) ≤ ρ,−ρ ≤ x(t− τ2(t)) ≤ ρ},

E5 = {t ∈ [0, T ] : x(t− τ1(t)) < −ρ,−ρ ≤ x(t− τ2(t)) ≤ ρ},
E6 = {t ∈ [0, T ] : −ρ ≤ x(t− τ1(t)) ≤ ρ, x(t− τ2(t)) < −ρ}.

By (2.4) it is easy to see that∫ T

0

[g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t)))− e(t)]dt = 0.
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Hence ∫
E2

|g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t)))− e(t)|dt

=
∫

E2

[g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t)))− e(t)]dt

= −
( ∫

E1

+
∫

E3

)
[g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t)))− e(t)]dt

≤
( ∫

E1

+
∫

E3

)
|g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t)))− e(t)|dt.

From the above inequality and (2.7) we obtain∫ T

0

|g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t)))− e(t)|dt

≤ 2
( ∫

E1

+
∫

E3

)
|g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t)))− e(t)|dt

≤ 2
( ∫

E1

+
∫

E3

)
|g1(t, x(t− τ1(t)))|dt + 2

( ∫
E1

+
∫

E3

)
|g2(t, x(t− τ2(t)))|dt

+ 2
∫ T

0

|e(t)|dt

≤ 2r1

∫
E1

|x(t− τ1(t)|p−1dt + 2r2

∫
E1

|x(t− τ2(t)|p−1dt

+ 2
∫

E3

(|g1(t, x(t− τ1(t)))|+ |g2(t, x(t− τ2(t)))|)dt + 2
∫ T

0

|e(t)|dt

≤ 2(r1 + r2)T‖x‖p−1
∞ + 2

( ∫
E4

+
∫

E5

+
∫

E6

)(
|g1(t, x(t− τ1(t)))|

+ |g2(t, x(t− τ2(t)))|
)
dt + 2

∫ T

0

|e(t)|dt

≤ 2(r1 + r2)T‖x‖p−1
∞ + 2T (g1ρ + g2ρ) + 2r1

∫
E5

|x(t− τ1(t)|p−1dt

+ 2Tg2ρ + 2r2

∫
E6

|x(t− τ2(t)|p−1dt + 2Tg1ρ + 2
∫ T

0

|e(t)|dt

≤ 4(r1 + r2)T‖x‖p−1
∞ + 4T (g1ρ + g2ρ) + 2

∫ T

0

|e(t)|dt,

where

g1ρ = max
t∈[0,T ],|x|≤ρ

|g1(t, x(t− τ1(t)))|, g2ρ = max
t∈[0,T ],|x|≤ρ

|g2(t, x(t− τ2(t)))|.

From (2.6) and the above inequality, we have

‖x′‖p
p ≤ ‖x‖∞

∫ T

0

|g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t)))− e(t)|dt

≤ ‖x‖∞[4(r1 + r2)T‖x‖p−1
∞ + 4T (g1ρ + g2ρ) + 2

∫ T

0

|e(t)|dt]
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= 4(r1 + r2)T
(
(
T

2
)1/q‖x′‖p + d

)p

+ [4T (g1ρ + g2ρ)

+ 2
∫ T

0

|e(t)|dt]
(
(
T

2
)1/q‖x′‖p + d

)
.

Case (1): ‖x′(t)‖ = 0, from (2.6) we see ‖x‖∞ ≤ d.
Case (2): ‖x′(t)‖ > 0, then we know that

[(
T

2
)1/q‖x′‖p + d]p = (

T

2
)p/q‖x′‖p

p[1 + (
T

2
)−1/q d

‖x′(t)‖p
]p.

From mathematical analysis, there is a constant δ > 0 such that

(1 + x)p < 1 + (1 + p)x, ∀x ∈ [0, δ]. (2.8)

If (T
2 )−1/q d

‖x′(t)‖p
> δ, then we have ‖x′‖p < (T

2 )−1/q d
δ .

If (T
2 )−1/q d

‖x′(t)‖p
≤ δ, by (2.8) we know that

[(
T

2
)1/q‖x′‖p + d]p ≤ (

T

2
)p/q‖x′(t)‖p

p + (p + 1)(
T

2
)p−1)/qd‖x′(t)‖p−1

p . (2.9)

By (2.9), we obtain

‖x′‖p
p ≤ 4(r1 + r2)T (

T

2
)p/q‖x′(t)‖p

p + (p + 1)(
T

2
)p−1)/qd‖x′(t)‖p−1

p

+ (4T (g1ρ + g2ρ) + 2
∫ T

0

|e(t)|dt)
(
(
T

2
)1/q‖x′‖p + d

)
.

As p > 1, 4(r1 + r2)T (T
2 )p/q < 1, there exists a constant R2 > 0 such that ‖x′‖p ≤

R2.
Let R1 = max{(T

2 )−1/q d
δ , R2}. Then we have ‖x‖∞ ≤ (T

2 )1/qR1 := R0. By the
second equation of (2.1) we obtain

y′(t) = −f(x(t))x′(t)− λg1(t, x(t− τ1(t)))− λg2(t, x(t− τ2(t))) + λe(t).

Hence ∫ T

0

|y′(t)|dt ≤ fR0

∫ T

0

|x′(t)|dt + Tg1R0 + Tg2R0 +
∫ T

0

|e(t)|dt

≤ fR0T
1/q‖x′‖p + Tg1R0 + Tg2R0 +

∫ T

0

|e(t)|dt

≤ fR0T
1/qR1 + Tg1R0 + Tg2R0 +

∫ T

0

|e(t)|dt := R3,

where

fR0 = max
|s|≤R0

|f(s)|, g1R0 = max
t∈[0,T ],s≤R0

|g1(t, s)|, g2R0 = max
t∈[0,T ],s≤R0

|g2(t, s)|.

By the first equation of (2.1) we have
∫ T

0
φq(y(t))dt = 0, which implies there exists

a constant t1 ∈ [0, T ] such that y(t1) = 0. So

|y(t)| = |
∫ t

t1

y′(s)ds| ≤
∫ T

0

|y′(s)|ds ≤ R3,

and ‖y‖∞ ≤ R3.
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Let R4 > max{R0, R3}, Ω = {z ∈ Z : ‖z‖ < R4}, then Lz 6= λNZ, for all
z ∈ Dom L ∩ ∂Ω, λ ∈ (0, 1). Since

QNz =
1
T

∫ T

0

(
φq(y(t))

−f(x(t))x′(t)− g1(t, x(t− τ1(t)))− g2(t, x(t− τ2(t))) + e(t)

)
,

for any z ∈ ker L ∩ ∂Ω, if QNz = 0, we obtain y = 0, |x| = R4 > d. But when
|x| = R4, we know that −g1(t, x)− g2(t, x)+ e(t) < 0, which yields a contradiction.
So conditions (1) and (2) of Lemma 1.2 is satisfied.

Define the isomorphism J : Im Q → ker L as follows:

J(x, y)T = (−y, x)T .

Let H(µ, z) = µx + (1− µ)JQNz, (µ, z) ∈ [0, 1]× Ω, then we have

H(µ, z) =
(

µx + (1− µ) 1
T

∫ T

0
[g1(t, x) + g2(t, x)− e(t)]dt

µy + (1− µ)φq(y)

)
,

where (µ, z) ∈ [0, 1]×(ker L∩∂Ω). It is obvious that H(µ, z) = µx+(1−µ)JQNz 6=
0 for (µ, z) ∈ [0, 1]× (ker L ∩ ∂Ω). Hence

deg{JQN, Ω ∩ ker L, 0} = deg{I,Ω ∩ ker L, 0} = 1 6= 0.

So the condition (3) of Lemma 1.2 is satisfied. By applying Lemma 1.2, we conclude
that equation Lz = Nz has a solution z(t) = (x(t), y(t))T ; i.e., (1.1) has a T -
periodic solution x(t). �

Theorem 2.2. Suppose that there exist constants d > 0, r1 ≥ 0, and r2 ≥ 0 such
that (H1) holds and

(H2*) limx→+∞ supt∈[0,T ]
|g1(t,x)|
|x|p−1 ≤ r1; limx→+∞ supt∈[0,T ]

|g2(t,x))|
|x|p−1 ≤ r2.

Then (1.1) has at least one T -periodic solution, if 4(r1 + r2)T (T
2 )p/q < 1.

Theorem 2.3. Suppose that p > 2 and there exist constants d > 0, b1 ≥ 0, b2 ≥ 0
such that (H1) holds and

(H3) |gi(t, u)− gi(t, v)| ≤ bi|u− v| for all t, u, v ∈ R, i = 1, 2.
Then (1.1) has at least one T -periodic solution.

Proof. By the proof of Theorem 2.1, we have

‖x‖∞ ≤ ‖χ‖∞ + d ≤ (
T

2
)1/q‖χ′‖p + d = (

T

2
)1/q‖x′‖p + d,

and

‖x′‖p
p ≤ ‖x‖∞

∫ T

0

|g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t)))− e(t)|dt.

From assumption (H3), we have∫ T

0

|g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t)))− e(t)|dt

≤
∫ T

0

|g1(t, x(t− τ1(t)))− g1(t, 0)|dt +
∫ T

0

|g1(t, 0)|dt

+ |g2(t, x(t− τ2(t)))− g1(t, 0)|dt +
∫ T

0

|g2(t, 0)|dt +
∫ T

0

|e(t)|dt

≤ b1

∫ T

0

|x(t− τ1(t))|dt +
∫ T

0

|g1(t, 0)|dt + b2

∫ T

0

|x(t− τ2(t))|dt
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+
∫ T

0

|g2(t, 0)|dt +
∫ T

0

|e(t)|dt

≤ T (b1 + b2)‖x‖∞ + Tb

where b = max{|g1(t, 0)|+ |g2(t, 0)|+ |e(t)|}. Thus,

‖x′‖p
p ≤ ‖x‖∞[T (b1 + b2)‖x‖∞ + Tb]

≤ T (b1 + b2)[(
T

2
)1/q‖x′‖p + d]2 + Tb(

T

2
)1/q‖x′‖p + Tbd.

As p > 2, there exists a constant R2 > 0 such that ‖x′‖p ≤ R2. The rest of the
proof is same to Theorem 2.1 and is omitted. �

Corollary 2.4. Suppose that p = 2 and conditions (H1), (H3) hold. Then (1.1)
has at least one T -periodic solution, if T (b1 + b2)(T

2 )
2
q < 1.

Remark 2.5. If condition (H1) is replaced by
(H1*) g1(t, u) + g2(t, v)− e(t) < 0 for all t ∈ R, |max{u, v}| > d,

then the results in this article still hold.

Example 2.6. Consider the equation

(φ3(x′(t)))′ + ex(t)x′(t) + g1(t, x(t− sin t)) + g2(t, x(t− cos t)) =
1
π

sin t, (2.10)

where p = 3, T = 2π, τ1(t) = sin t, τ2(t) = cos t,

g1(t, x) =

{
esin2 tx3 + 1

π sin t, x ≥ 0,

x2

18eπ3 esin2 t + 1
π sin t, x < 0,

g2(t, x) =

{
ecos2 tx3, x ≥ 0,

x2

18eπ3 ecos2 t, x < 0.

By (2.10), we can get d = 1/10 (Actually, d can be an arbitrarily small positive),
r1 = r2 = 1/(18π3), 4(r1+r2)T (T/2)p/q < 1 and check that (H1)–(H2) hold. Thus,
according to Theorem 2.1, equation (2.10) has at least one 2π-periodic solution.
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