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BIFURCATION FROM INFINITY AND MULTIPLE SOLUTIONS
FOR FIRST-ORDER PERIODIC BOUNDARY-VALUE PROBLEMS

ZHENYAN WANG, CHENGHUA GAO

Abstract. In this article, we study the existence and multiplicity of solutions
for the first-order periodic boundary-value problem

u′(t)− a(t)u(t) = λu(t) + g(u(t))− h(t), t ∈ (0, T ),

u(0) = u(T ).

1. Introduction

The first-order periodic differential equation

u′(t) = a(t)u(t)− f(u(t− τ(t)))

has been proposed as models for a variety of physiological processes and conditions
including production of blood cells, respiration, and cardiac arrhythmias, see [3, 8,
15]. Thus, the existence of periodic solutions of this periodic differential equation
has been discussed by several authors; see for example [1, 2, 5, 6, 7, 9, 10, 11, 13,
14, 16] and the references therein.

In these articles, the condition
∫ T
0
a(t)dt 6= 0 is used for showing the existence

of solutions. A natural question is what would happen if
∫ T
0
a(t)dt = 0. It is easy

to check that if
∫ T
0
a(t)dt = 0, then the equation

−u′(t) + a(t)u(t) = 0, u(0) = u(T )

has nontrivial solutions. Thus, the operator Lu = −u′(t)+a(t)u(t) is not invertible.
In this article, using Leray-Schauder degree and bifurcation techniques and un-

der the condition that
∫ T
0
a(t)dt = 0, we discuss the existence and multiplicity of

solutions for the problem

u′(t)− a(t)u(t) = λu(t) + g(u(t))− h(t), t ∈ (0, T ), (1.1)

u(0) = u(T ), (1.2)

where g : R → R is continuous, h ∈ L1(0, T ), and the parameter λ is close to 0
which is the eigenvalue of

−u′(t) + a(t)u(t) = λu(t), u(0) = u(T ).
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In this article, we use the following assumptions:

(H1) a(·) ∈ C[0, T ] and
∫ T
0
a(t)dt = 0;

(H2) g : R → R is continuous, and there exist α ∈ [0, 1), p, q ∈ (0,∞), such that

|g(u)| ≤ p|u|α + q, u ∈ R;

(H3) There exist constants A, a,R, r such that r < 0 < R and

g(u) ≥ A, for all u ≥ R,

g(u) ≤ a, for all u ≤ r;

(H3’) There exist constants A, a,R, r such that r < 0 < R and

g(u) ≤ A, for all u ≥ R,

g(u) ≥ a, for all u ≤ r.

(H4) ∫ T

0

g−∞

ψ(s)
ds <

∫ T

0

h(s)
ψ(s)

ds <

∫ T

0

g+∞
ψ(s)

ds,

where

g−∞ = lim sup
s→−∞

g(s), g+∞ = lim inf
s→+∞

g(s),

and ψ(t) = e
R t
0 a(s)ds is the solution of

−u′ + a(t)u = 0, u(0) = u(T ).

(H4’) ∫ T

0

g+∞

ψ(s)
ds <

∫ T

0

h(s)
ψ(s)

ds <

∫ T

0

g−∞
ψ(s)

ds,

where

g+∞ = lim sup
s→+∞

g(s), g−∞ = lim inf
s→−∞

g(s).

Our main results are as follows.

Theorem 1.1. Assume that (H1)–(H4) hold. Then there exists λ+, λ− with λ+ >
0 > λ− such that

(i) (1.1), (1.2) has at least one solution if λ ∈ [0, λ+];
(ii) (1.1), (1.2) has at least three solutions if λ ∈ [λ−, 0).

Theorem 1.2. Assume that (H1), (H2), (H3’),(H4’) hold. Then there exists λ+, λ−
with λ+ > 0 > λ− such that

(i) (1.1), (1.2) has at least one solution if λ ∈ [λ−, 0];
(ii) (1.1), (1.2) has at least three solutions if λ ∈ (0, λ+].

The rest of the paper is arranged as follows. In section 2, we discuss the
Lyapunov-Schmidt procedure for (1.1), (1.2). In section 3, the existence of so-
lutions of (1.1), (1.2) is discussed under ‘Landesman-Lazer’ type conditions.
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2. Lyapunov-Schmidt procedure

LetX,Y be the Banach spaces C[0, T ], L1[0, T ] with the norm ‖x‖ = max{|x(t)| :
t ∈ [0, T ]}, ‖u‖1 =

∫ T
0
|u(s)|ds, respectively. Define linear operator L : D(L) ⊂

X → Y by
Lu = −u′ + a(t)u, u ∈ D(L), (2.1)

where D(L) = {u ∈ W 1,1(0, T ) : u(0) = u(T )}. Let N : X → X be the nonlinear
operator defined by

(Nu)(t) = g(u(t)), t ∈ [0, T ], u ∈ D(L). (2.2)

It is easy to see that N is continuous. Note that (1.1), (1.2) is equivalent to

Lu+ λu+Nu = h, u ∈ D(L). (2.3)

Lemma 2.1. Let L be defined by (2.1). Then

kerL = {x ∈ X : x(t) = cψ(t) : c ∈ R},

ImL = {y ∈ Y :
∫ T

0

y(s)
ψ(s)

ds = 0}.

Proof. It is easy to see that kerL = {cψ(t) : c ∈ R}. The following will prove that
ImL = {y ∈ Y :

∫ T
0

y(s)
ψ(s)ds = 0}.

If y ∈ ImL, then there exists u ∈ D(L) such that −u′(t) + a(t)u(t) = y(t). So

u(t) = u(0)ψ(t)−
∫ t

0

y(s)e
R t

s
a(τ)dτds.

Combining with u(0) = u(T ), we have∫ T

0

y(s)
ψ(s)

ds = 0.

On the other hand, if y ∈ Y satisfies
∫ T
0

y(s)
ψ(s)ds = 0, then we set

u(t) := −
∫ t

0

y(s)e
R t

s
a(τ)dτds.

It is not difficult to prove that x ∈ D(L) and Lu = y. �

Define operator P : X → kerL,

(Pu)(t) = u(0)ψ(t), u ∈ X. (2.4)

Let Q : Y → Y be such that

(Qy)(t) =
1
T
ψ(t)

∫ T

0

y(s)
ψ(s)

ds. (2.5)

Denote X1 = {u ∈ X : u(0) = 0}.

Lemma 2.2. Let operators P and Q be defined by (2.4) and (2.5). Then

X = X1 ⊕ kerL, Y = ImL⊕ ImQ.

We define linear operator K : ImL→ D(L) ∩X1

(Ky)(t) = −
∫ t

0

y(s)e
R t

s
a(τ)dτds, y ∈ ImL, (2.6)

satisfying K = L−1
p , where Lp = L|D(L)∩X1 .
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Proof. Let y1(t) = y(t) − (Qy)(t), y ∈ Y , then it is easy to verify that y1 ∈ ImL.
Thus Y = ImL + ImQ. Also ImL ∩ ImQ = {0}. Hence Y = ImL ⊕ ImQ. If
u ∈ D(L) ∩X1, then

(KLpu)(t) = K
(
− u′(t) + a(t)u(t)

)
= u(t).

If y ∈ ImL, then

(LpKy)(t) = −
(
−

∫ t

0

y(s)e
R t

s
a(τ)dτds

)′ − a(t)
∫ t

0

y(s)e
R t

s
a(τ)dτds = y(t).

This indicates K = L−1
p . �

Therefore, for every u ∈ X , we have a unique decomposition u(t) = ρψ(t) +
v(t), t ∈ [0, T ], where ρ ∈ R, v ∈ X1. Similarly, for every h ∈ Y , we have unique
decomposition h(t) = τψ(t) + h̄(t), t ∈ [0, T ], where τ ∈ R, h̄ ∈ ImL. The operator
Q,K be defined as (2.5), (2.6). ThenK(I−Q)N : X → X is completely continuous,
and (2.3) is equivalent to the system

v(t) + λKv(t) +K(I −Q)N(ρψ(t) + v(t)) = Kh̄(t), (2.7)

λρψ(t) +QN(ρψ(t) + v(t)) = τψ(t). (2.8)

Lemma 2.3 ([4]). Assume that (H2), (H3) hold. Then for each real number s > 0,
there exists a decomposition g(u) = qs(u) + gs(u) of g by qs and gs satisfying the
conditions:

uqs(u) ≥ 0, u ∈ R, (2.9)

|qs(u)| ≤ p|u|+ q + s, u ≥ 1, , (2.10)

there exists σs depending on a,A and g such that

|gs(u)| ≤ σs, u ∈ R. (2.11)

Lemma 2.4. Assume that (H1)–(H4) hold, and λ satisfies

0 ≤ λ ≤ η1 :=
1

2‖K‖ImL→X1

. (2.12)

Then there exists constant R0 > 0 such that any solution u of (1.1) (1.2) satisfies
‖u‖ < R0.

Proof. We divide the proof into several steps.
Step 1. By assumption (H2), there exists a constant b such that

|g(u)| ≤ p|u|+ b, u ∈ R,
where p = η1/4. Using Lemma 2.3 with s = 1, (1.1), (1.2) is equivalent to

u′(t)− a(t)u(t) = λu(t) + g1(u(t)) + q1(u(t))− h(t), t ∈ [0, T ], u ∈ D(L), (2.13)

where q1 and g1 satisfying conditions (2.9) and (2.11). Moreover, by (2.10),

|q1(u)| ≤ p|u|+ b+ 1. (2.14)

Let δ̄ > 0 and choose B ∈ R such that

(b+ 1)| 1
u
| ≤ 1

4
δ̄ (2.15)

for all u ∈ R with |u| ≥ B. It follows from (2.14) and (2.15) that

0 ≤ q1(u)u−1 ≤ p+
1
4
δ̄ (2.16)
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for all u ∈ R with |u| ≥ B.
Step 2. Let us define γ : R → R by

γ(u) =


u−1q1(u), |u| ≥ B;
B−1q1(B)( uB ) + (1− u

B )p, 0 ≤ u < B;
B−1q1(−B)( uB ) + (1 + u

B )p, −B < u ≤ 0.
(2.17)

It is easy to see that γ is continuous. Moreover, by (2.16), one has

0 ≤ γ(u) ≤ p+
1
4
δ̄ (2.18)

for all u ∈ R. Defining f : R → R by

f(u) = g1(u) + q1(u)− γ(u)u, (2.19)

it follows from (2.16) that for some σ ∈ R,

|f(u)| ≤ σ (2.20)

for all u ∈ R, where σ depends only on p and h. Finally, (2.13) is equivalent to

u′(t)− a(t)u(t) = λu(t) + f(u(t)) + γ(u(t))u(t)− h(t), t ∈ [0, T ], u ∈ D(L).

Step 3. It is to see that (L + λI)|X1∩D(L) : X1 → ImL is invertible. From
(2.12),

‖(L+ λI)|−1
X1∩D(L)‖ImL→X1 = ‖L−1|X1∩D(L)(I + λK)−1‖ImL→X1

= ‖K‖ImL→X1‖(I + λK)−1‖ImL→X1

≤ 2‖K‖ImL→X1 .

Let u = ρψ(t) + v be a solution of (2.13), where ρ ∈ R, v ∈ X1. Then from (2.7),

‖v‖ = ‖(L+ λI)|−1
X1∩D(L)(I −Q)(h̄− g(ρψ(t) + v(t)))‖

≤ ‖(L+ λI)|−1
X1∩D(L)‖ImL→X1‖(I −Q)‖Y→ImL[‖h̄‖1 + p(|ρ| · ‖ψ‖+ ‖v‖)α + q]

≤ 2‖K‖ImL→X1‖(I −Q)‖Y→ImL[‖h̄‖1 + p(|ρ| · ‖ψ‖+ ‖v‖)α + q]

= 2‖K‖ImL→X1‖(I −Q)‖Y→ImL[‖h̄‖1 + p(|ρ| · ‖ψ‖)α(1 +
‖v‖

|ρ| · ‖ψ‖
)α + q]

≤ 2‖K‖ImL→X1‖(I −Q)‖Y→ImL[‖h̄‖1 + p(|ρ| · ‖ψ‖)α(1 +
α‖v‖
|ρ| · ‖ψ‖

) + q]

= 2‖K‖ImL→X1‖(I −Q)‖Y→ImL[‖h̄‖1 + p(|ρ| · ‖ψ‖)α

×
(
1 +

α

(|ρ| · ‖ψ‖)1−α
· ‖v‖
(|ρ| · ‖ψ‖)α

)
+ q].

Therefore,
‖v‖

(|ρ| · ‖ψ‖)α
≤ c0

(|ρ| · ‖ψ‖)α
+ c1 +

αc1
(|ρ| · ‖ψ‖)1−α

· ‖v‖
(|ρ| · ‖ψ‖)α

,

where

c0 = 2‖K‖ImL→X1‖(I −Q)‖Y→ImL(‖h̄‖1 + q),

c1 = 2p‖K‖ImL→X1‖(I −Q)‖Y→ImL.

If

|ρ| ≥ (2αc1)
1

1−α

‖ψ‖
:= c̃,
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then
‖v‖

(|ρ| · ‖ψ‖)α
≤ 2c0

(c̃‖ψ‖)α
+ 2c1 := c̄. (2.21)

Step 4. If we now assume that the conclusion of the lemma is false, we obtain a
sequence {λn} : 0 ≤ λn ≤ η1, λn → 0 and a sequence {un} : un = ρnψ(t) + vn, ρn ∈
R, vn ∈ X1 with ‖un‖ → ∞ such that

λnρnψ(t) +Qg(ρnψ(t) + vn(t)) = τψ(t). (2.22)

It follows immediately from (2.21) that

|ρn| → ∞, ‖vn‖(|ρn| · ‖ψ‖)−1 → 0, n→∞. (2.23)

So we infer that there exists sufficiently large n0 ∈ N such that for n ≥ n0

|vn(t)|(|ρn|ψ(t))−1 ≤ 1, t ∈ [0, T ]. (2.24)

Without loss of generality, let ρn → +∞ if n→ +∞ (the other case be proved by
similar method), then there exists sufficiently large n0 ∈ N. If n ≥ n0, λnρn ≥ 0;
thus

τ − 1
T

∫ T

0

g(ρnψ(s) + vn(s))
ψ(s)

ds ≥ 0,

τ ≥ 1
T

lim inf
n→∞

∫ T

0

g(ρnψ(s) + vn(s))
ψ(s)

ds.

(2.25)

To apply Fatou’s lemma to (2.25), we need a function K̂ ∈ L1[0, T ] such that
for s ∈ [0, T ], g(un(s))

ψ(s) ≥ K̂(s). Indeed, from the relation (2.24), one has that there
exists nonnegative function k1 ∈ L1[0, T ] such that for n ≥ n0,

|vn(t)|(ρnψ(t))−1 ≤ k1(t), t ∈ [0, T ],

and for every s ∈ [0, T ],

γ(un(s))un(s) + f(un(s)) = γ(un(s))(ρnψ(s) + vn(s)) + f(un(s))

≥ γ(un(s))
ρnψ(s) + vn(s)

|ρn|ψ(s)
+ f(un(s))

≥ γ(un(s))(1− k1(s))− |f(un(s))|

≥ −(p+
1
4
δ̄)(1− k1(s))− σ := K̂(s).

It follows from ψ(s) > 0 that
1

ψ(s)
g(ρnψ(s) + vn(s)) ≥

1
ψ(s)

K̂(s), s ∈ [0, T ].

Thus, applying Fatou’s lemma to (2.25), we have

τ ≥ 1
T

lim inf
n→∞

∫ T

0

g(ρnψ(s) + vn(s))
ψ(s)

ds

≥ 1
T

∫ T

0

lim inf
n→∞

g(ρnψ(s) + vn(s))
ψ(s)

ds

≥ 1
T

∫ T

0

g+∞
ψ(s)

ds.

This contradicts with (H4). �
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Lemma 2.5. Assume that (H1), (H2), (H3’), (H4’) hold, and λ satisfies

0 ≤ λ ≤ η1 :=
1

2‖K‖ImL→X1

.

Then there exists constant R0 > 0 such that any solution u of (1.1) (1.2) satisfy
‖u‖ < R0.

3. The Proof of the Main Result

Lemma 3.1. Assume that (H1)–(H4) hold. Then there exists R1 : R1 ≥ R0 such
that for 0 ≤ λ ≤ δ, and R ≥ R1 one has

deg(L+ λI +N − h,B(R), 0) = deg(L+ δI,B(R), 0) = ±1,

where B(R) = {u ∈ C[0, T ] : ‖u‖ < R}, and the deg denotes Leray-Schauder degree
when λ 6= 0 and coincidence degree when λ = 0. Then (1.1),(1.2) has a solution in
B̄(R) for 0 ≤ λ ≤ δ.

Proof. From Lemma 2.4 and the definition of L, if λ ∈ [0, δ],

deg(L+ δI,B(R), 0)

is defined and depends on λ. Let (µ, u) ∈ [0, 1]×X be a solution of (2.3). Then

Lu+ δu+ µ(Nu− h) = 0.

So

‖u‖ = µ‖(L+ δ)−1(h−Nu)‖ ≤ ‖(L+ δ)−1‖Y→X(‖h‖1 + p‖u‖α + q).

Therefore there exists R′0 > 0 such that ‖u‖ < R′0. Choosing R1 = max{R′0, R0},
then for arbitrary R > R1,

deg(L+ λI +N − h,B(R), 0) = deg(L+ δI,B(R), 0) = ±1.

�

Lemma 3.2. Assume that (H1), (H2), (H3’),(H4’) hold. Then there exists R1 :
R1 ≥ R0 such that for 0 ≤ λ ≤ δ, and R ≥ R1 one has

deg(L+ λI +N − h,B(R), 0) = deg(L+ δI,B(R), 0) = ±1,

where B(R) = {u ∈ C[0, T ] : ‖u‖ < R}.

Lemma 3.3. Assume that (H1)–(H4) hold. Then there exists µ ≥ 0 such that for
−µ ≤ λ ≤ 0 one has

deg(L+ λI +N − h,B(R), 0) = deg(L+ δI,B(R), 0) = ±1,

where R be defined in Lemma 3.1. Then (1.1),(1.2) has a solution in B(R) for
−µ ≤ λ ≤ δ.

Proof. Let
τ0 = inf

u∈∂B(R)∩X
‖Lu+Nu− h‖.

It is easy to verify that τ0 > 0. Choosing sufficiently small µ > 0 such that µR < τ0,
then if λ ∈ [−µ, µ],

deg(L+ λI +N − h,B(R), 0) = deg(L+N − h,B(R), 0).

Combined with Lemma 3.1, the result can be proved. That is to see that if λ ∈
[−µ, δ], (2.3) has at least one solution in B̄(R). �
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Lemma 3.4. Assume that (H1), (H2), (H3’)(H4’) hold. Then there exists µ ≥ 0
such that for −µ ≤ λ ≤ 0, one has

deg(L+ λI +N − h,B(R), 0) = deg(L+ δI,B(R), 0) = ±1,

where R be defined in Lemma 3.1. Then (1.1), (1.2) has a solution in B(R) for
−µ ≤ λ ≤ δ.

Remark 3.5. Since g is L-completely continuous and satisfies (H2) and since λ = 0
is a simple eigenvalue of L, it follows from bifurcation results of [4] that there exist
two connected sets C+, C− ⊂ R × X of solutions of (1.1), (1.2) such that for all
sufficiently small ε > 0,

C+ ∩ Uε 6= ∅, C− ∩ Uε 6= ∅,

where Uε := {(λ, u) ∈ R×X, |λ| < ε, ‖u‖ > 1/ε}.

Proof of Theorem 1.1. Set λ+ = δ, then it follows from Lemma 3.1 and Lemma
3.3 that (1.1), (1.2) has at least one solution in B(R) for λ ∈ [−µ, λ+]. On the
other hand, Remark 3.5 shows that there exists two connected sets C+ and C− of
solutions of (1.1), (1.2) bifurcating from infinity at λ = 0. Hence by Lemma 2.4,
the connected sets C+ and C− of Remark 3.5 must satisfy

C+, C− ⊂ {(λ, u) : ‖u‖ ≥ 1/ε,−µ < λ < 0}.

and hence, if 1/ε ≥ R; i.e., ε ≤ 1/k. Choosing λ− = max{−µ,−1/k}, we obtain
two solutions u1, u2 : u1 ∈ C+, u2 ∈ C−, and ‖ui‖ ≥ R (i = 1, 2). �

Theorem 1.2 can be proved by a similar method.
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