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BIFURCATION FROM INFINITY AND MULTIPLE SOLUTIONS
FOR FIRST-ORDER PERIODIC BOUNDARY-VALUE PROBLEMS

ZHENYAN WANG, CHENGHUA GAO

ABSTRACT. In this article, we study the existence and multiplicity of solutions
for the first-order periodic boundary-value problem

o' (t) — a(t)u(t) = Mu(t) + g(u(t)) — h(t), te€(0,T),
u(0) = u(T).

1. INTRODUCTION

The first-order periodic differential equation

W' (t) = a(t)u(t) — f(u(t —7(t)))

has been proposed as models for a variety of physiological processes and conditions
including production of blood cells, respiration, and cardiac arrhythmias, see [3, 8]
15]. Thus, the existence of periodic solutions of this periodic differential equation
has been discussed by several authors; see for example [I1 2 B} [6] [, O 10, 1T, T3]
14l [16] and the references therein.

In these articles, the condition fOT a(t)dt # 0 is used for showing the existence
of solutions. A natural question is what would happen if fOT a(t)dt = 0. Tt is easy

to check that if fOT a(t)dt = 0, then the equation
—u'(t) + a(t)u(t) =0, u(0) =u(T)
has nontrivial solutions. Thus, the operator Lu = —u’(t)+a(t)u(t) is not invertible.
In this article, using Leray-Schauder degree and bifurcation techniques and un-

der the condition that fOT a(t)dt = 0, we discuss the existence and multiplicity of
solutions for the problem

W (1) — a(t)u(t) = Mu(t) + g(ut)) — h(t), te (0,T), (1.1)
u(0) = w(T), (1.2)

where g : R — R is continuous, h € L*(0,7), and the parameter \ is close to 0
which is the eigenvalue of

—u/(t) + a(t)u(t) = Mu(t), u(0) =u(T).
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In this article, we use the following assumptions:

(H1) a(+) € C[0,T] and fOT a(t)dt = 0;
(H2) g: R — R is continuous, and there exist « € [0,1), p, ¢ € (0,00), such that

lg(w)] < plul® +¢, uweR;
(H3) There exist constants A, a, R, r such that r < 0 < R and
glu) > A, forallu>R,
g(u) <a, forallu<r
(H3’) There exist constants A, a, R, such that r < 0 < R and

gu) <A, foralu>R,
g(u) >a, forall u<r.

Tgfoo T h(S) Tg+7DO .
/o w<s>d8</o 5P we™

where
g~ =limsupg(s), gioo = liminf g(s),
§— —00 s—+00

and ¥(t) = els @(9)ds ig the solution of

—u' +a(t)u =0, u(0)=u(T).

[ e | e [ e

gt =limsupg(s), ¢g_oo = liminf g(s).
s

s—+00 — =

(He)

where

Our main results are as follows.

Theorem 1.1. Assume that (H1)-(H4) hold. Then there exists Ay, A_ with Ay >
0> A_ such that

(i) (1.1, (1.2) has at least one solution if X € [0, Ay];

(ii) (L.1), (1.2) has at least three solutions if A € [A_,0).
Theorem 1.2. Assume that (H1), (H2), (H3),(H4’) hold. Then there exists Ay, A—
with Ay > 0> A_ such that

(1) (1.1, (1.2) has at least one solution if X € [A_,0];
(ii) (L.1), (1.2) has at least three solutions if A € (0, A4].
The rest of the paper is arranged as follows. In section 2, we discuss the

Lyapunov-Schmidt procedure for (1.1, (1.2). In section 3, the existence of so-
lutions of (1.1)), (1.2 is discussed under ‘Landesman-Lazer’ type conditions.
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2. LYAPUNOV-SCHMIDT PROCEDURE

Let X,Y be the Banach spaces C[0, 7], L'[0, T'] with the norm ||z|| = max{|z(t)| :
€ [0, 71}, lullh = fo |u(s)|ds, respectively. Define linear operator L : D(L) C
X —Y by
Lu = —u + a(t)u,u € D(L), (2.1)
where D(L) = {u € WHY(0,T) : u(0) = u(T)}. Let N : X — X be the nonlinear
operator defined by

(Nu)(t) = g(u(t)), te€0,T], ue D(L). (22)
It is easy to see that N is continuous. Note that (1.1)), (L.2)) is equivalent to
Lu+ M+ Nu=h,u € D(L). (2.3)

Lemma 2.1. Let L be defined by (2.1). Then
kerL ={x € X : 2(t) = c(t) : c € R},

T
ImL:{er:/O Z((Z))ds:o}.

Proof. Tt is easy to see that ker L = {ci(t) : ¢ € R}. The following will prove that

mL={yey: [} %ds=0}.

If y € Im L, then there exists u € D(L) such that —u/(t) + a(¢)u(t) = y(¢t). So
t
ult) = u(O)(t) — [ yls)el wias,
0

Combining with ©(0) = u(T"), we have

[/ g0

On the other hand, if y € Y satisfies T yls) gg = 0, then we set

0 ¥(s)
t
u(t) := —/ y(s)els aDdT s,
0
It is not difficult to prove that € D(L) and Lu = y. O
Define operator P : X — ker L,
(Pu)(t) = w(0)y(t), wueX. (2.4)
Let Q:Y — Y be such that
y(s)
2.5
@)t e (25)

Denote X7 = {u € X : u(0) = 0}.

Lemma 2.2. Let operators P and @Q be defined by and . Then
X=X;&kerL, Y=ImL&ImQ.

We define linear operator K : Im L — D(L) N X,

t
(Ky)(t) = — / y(s)el * O ds e mL, (2.6)
0

satisfying K = L, 1 where L, = L|pynx, -
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Proof. Let y1(t) = y(t) — (Qy)(¥),y € Y, then it is easy to verify that y; € Im L.
Thus Y = ImL+Im@. Also ImZLNIm@Q = {0}. Hence Y = ImL & Im Q. If
u € D(L) N X1, then

(KLyu)(t) = K( —u'(t) + a(t)u(t)) = u(t).
If y € Im L, then
(LyKy)(t) = —( - / y(s)elt A ds) — a(t) / y(s)eld 9O g = y (1),

0 0
This indicates K = L;l. O

Therefore, for every u € X , we have a unique decomposition u(t) = py(t) +
v(t),t € [0,T], where p € R,v € X;. Similarly, for every h € Y, we have unique
decomposition h(t) = 71(t) + h(t),t € [0,T], where 7 € R, h € Im L. The operator
Q. K be defined as (2.5)), (2.6). Then K(I—Q)N : X — X is completely continuous,
and is equivalent to the system

v(t) + AKv(t) + K(I — Q)N(py(t) +v(t)) = Kh(t), (2.7)
Ap(t) + QN (py(t) +v(t)) = T9(2). (2.8)

Lemma 2.3 ([]). Assume that (H2), (H3) hold. Then for each real number s > 0,
there exists a decomposition g(u) = qs(u) + gs(u) of g by qs and gs satisfying the
conditions:

ugs(u) > 0,u € R, (2.9)
lgs(u)| < plu[+q+s,u=1,, (2.10)
there exists o5 depending on a, A and g such that
|gs(w)| < o5,u € R. (2.11)
Lemma 2.4. Assume that (H1)—(H4) hold, and ) satisfies
0<A<m = ! (2.12)

20K Jm —x,
Then there exists constant Ry > 0 such that any solution w of (1.1)) (L.2) satisfies
lu]l < Ro.
Proof. We divide the proof into several steps.

Step 1. By assumption (H2), there exists a constant b such that

lg(w)| < plu| +b,u €R,

where p = 1 /4. Using Lemma with s = 1, (L.1), (1.2) is equivalent to

W(t) — a(t)u(t) = Au(t) + g1(u(t)) + q1(u(t)) — h(t), t € [0,T],u € D(L), (2.13)
where ¢; and ¢; satisfying conditions (2.9)) and (2.11]). Moreover, by (2.10)),

g1 (u)| < plu[ +b+1. (2.14)
Let § > 0 and choose B € R such that
1 1-
b+1D)|—| <=6 2.1
b+Dl5] < 7 (215)

for all u € R with |u| > B. It follows from (2.14)) and (2.15) that

1-
0<q(uut<p+ 15 (2.16)
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for all u € R with |u| > B.
Step 2. Let us define v : R — R by

u” g (u), ul = B;
Y(w) ={B'a(B)(5)+ (1 -5, 0<u<B; (2.17)
B 'qi(-B)($)+ 1+ g)p, —B<u<0.
It is easy to see that 7 is continuous. Moreover, by m, one has

0<~y(u)<p+ 35 (2.18)
for all u € R. Defining f : R — R by
fw) = g1(u) + q1(u) = v(uw)u, (2.19)
it follows from that for some o € R,
[fw)] <o (2.20)

for all uw € R, where ¢ depends only on p and h. Finally, (2.13)) is equivalent to

u'(t) = a(t)u(t) = Mu(t) + f(u(t) + y(ut)u(t) = h(t),t € [0,T],u € D(L).
Step 3. It is to see that (L + A)|x,np(r) : X1 — Im L is invertible. From

Em).

1L+ ADIx iy llm z—x0 = L7 x,mp@) (L +AK) ™ Hlim - x,

= | K [tm 2—x, |( + AK) ™ [tm 1—x,
S 2||K||ImL—>X1~

Let u = py(t) 4+ v be a solution of (2.13)), where p € R,v € X;. Then from (2.7),
[l = (L + A peny (= Q) (R — g(pwo(t) + v (1))
< L+ AD 5 Ap oy llm = x: 1T = Q)lly—1m 2[Rl + (|| - %1+ [[v])* + g]
2K It L, 1T = @)y — 1 IRl + 2ol - 91l + 1) + g

L T L A e e ARy
< 2K i | — @lly—tm 21l + p(lol - 1) (1 + |p‘f,'ﬁlL||> +q
= 2K lim 3, | (T = Q)lly 1 £ [1B 11 + 210 - [161)°
) o |
* U e G- o) + 4
Therefore,
Iv] © L., o |y
Qo Tel)™ = Qo - Tl Gl Tel== " ol el
where
co = 2| Kltm—x, (I = Q)|ly—1m (|2ll1 + @),
c1 = 2P| K|lm—x, (1 = Q)lly—1m<L-
If

(2ac) = _

>
Pz =

|
o
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then
[ o]l 2co
(ol - [l = (ellwl)e
Step 4. If we now assume that the conclusion of the lemma is false, we obtain a
sequence {A,}: 0 < A, < n1, A, — 0 and a sequence {u,} : u, = pp0(t) + vn, pn €
R, v, € X1 with |Juy| — oo such that

+2¢1 :=¢. (2.21)

Anpnt(t) + Qg(pnth(t) + vn(t)) = TY(1). (2.22)
It follows immediately from that
|on| = 00, [lvnll(lpal - l¥]) ™" =0, n— oo (2.23)

So we infer that there exists sufficiently large ng € N such that for n > ng

lon()|(lpnl (1)~ <1, t€[0,T). (2.24)

Without loss of generality, let p, — 400 if n — 400 (the other case be proved by
similar method), then there exists sufficiently large ng € N. If n > ng, A\ppn > 0;

thus
1 [T glpntpl(s) +vn(s))
’ T /0 Y(s) ds =0, (2.25)
1o T g(pato(s) + vals) '
T2t / o

To apply Fatou’s lemma to (2.25)), we need a function K € L[0,T] such that
for s € [0, 7], % > K(s). Indeed, from the relation (2.24)), one has that there
exists nonnegative function k; € L'[0, 7] such that for n > ng,

[on () (pn () ! < ka(t), te0,T],
and for every s € [0, 7],
Y(un(s))un(s) + f(un(s)) = y(un(s))(pnto(s) + vn(s)) + f(un(s))
pub(s) £ oals) o
un(9) LD a5
Hun ()1~ Fa(5)) — [/ a(5))]

>—(p+=0)(1 —ki(s)) — o := K(s).

»-I>>—l

It follows from 1 (s) > 0 that

ﬁg(in(s) +v,(s)) > 1/)(1 ) K(s),s € [0,T].
Thus, applying Fatou’s lemma to (2.25), we have
T
> 7hnnl>i£f/o g(ﬂn¢(;})($ Un(s))ds
- */ liming 20 S0l
21 S

This contradicts with (H4). O
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Lemma 2.5. Assume that (H1), (H2), (H3’), (H4’) hold, and X\ satisfies
-
2| K |ltm L—x,

Then there exists constant Ry > 0 such that any solution uw of (L.1|) (1.2]) satisfy
[[ull < Ro.

0< A<=

3. THE PROOF OF THE MAIN RESULT

Lemma 3.1. Assume that (H1)—(H4) hold. Then there exists Ry : Ry > Ry such
that for 0 < XA <4, and R > Ry one has

deg(L + A + N — h, B(R),0) = deg(L + 61, B(R),0) = £1,

where B(R) = {u € C[0,T] : ||u|| < R}, and the deg denotes Leray-Schauder degree
when A # 0 and coincidence degree when A = 0. Then (1.1)),(1.2)) has a solution in
B(R) for0 < X <.

Proof. From Lemma and the definition of L, if A € [0, 4],
deg(L + I, B(R),0)
is defined and depends on A. Let (u,u) € [0,1] x X be a solution of . Then
Lu+ du+ p(Nu—h) =0.
So
lall = (L + )7 (h = Nu)| < (L + 8) "y —x (hlls + plull® + ).

Therefore there exists Rf, > 0 such that |Ju|| < Rj. Choosing Ry = max{R(, Ro},
then for arbitrary R > Ry,

deg(L + A + N — h, B(R),0) = deg(L + 61, B(R),0) = £1.
]

Lemma 3.2. Assume that (H1), (H2), (H3"),(H4’) hold. Then there exists R :
Ry > Ry such that for 0 < A <6, and R > Ry one has

deg(L + A + N — h, B(R),0) = deg(L + 61, B(R),0) = £1,
where B(R) = {u € C[0,T] : ||u|]| < R}.
Lemma 3.3. Assume that (H1)-(H4) hold. Then there exists u > 0 such that for
—u < A <0 one has

deg(L + X[ + N — h, B(R),0) = deg(L + 61, B(R),0) = £1,

where R be defined in Lemma . Then (1.1),(1.2) has a solution in B(R) for
—pn < A <4.

Proof. Let

To = inf [Lu 4+ Nu — h||.
uw€dB(R)NX

It is easy to verify that 79 > 0. Choosing sufficiently small ¢ > 0 such that pR < 9,
then if A € [—p, y],
deg(L + A + N — h, B(R),0) = deg(L + N — h, B(R),0).

Combined with Lemma the result can be proved. That is to see that if A €
[—u, 0], (2.3) has at least one solution in B(R). O
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Lemma 3.4. Assume that (H1), (H2), (H3’)(H4’) hold. Then there exists pu > 0
such that for —pu < X\ <0, one has

deg(L + A + N — h, B(R),0) = deg(L + 61, B(R),0) = £1,

where R be defined in Lemma . Then (1.1)), (1.2) has a solution in B(R) for
—u < A<9.

Remark 3.5. Since g is L-completely continuous and satisfies (H2) and since A = 0
is a simple eigenvalue of L, it follows from bifurcation results of [4] that there exist
two connected sets C;,C_ C R x X of solutions of , such that for all
sufficiently small € > 0,

C.NU#0D, C_NU#0,
where U, := {(\,u) e R x X, |\ <e¢|lu| > 1/}

Proof of Theorem[I1. Set A* = 4, then it follows from Lemma and Lemma

that (1.1), (1.2) has at least one solution in B(R) for A € [—p,Ay]. On the
other hand, Remark shows that there exists two connected sets C+ and C— of

solutions of (1.1)), (1.2]) bifurcating from infinity at A = 0. Hence by Lemma
the connected sets C+ and C— of Remark [3.5] must satisfy

CirCoC{O0u): fJul = 1/, —p < A < 0.

and hence, if 1/e > R; ie., € < 1/k. Choosing A_ = max{—pu,—1/k}, we obtain
two solutions uy,uz : ug € C4,uz € C_, and |lu;|| > R (i = 1,2). O

Theorem [1.2| can be proved by a similar method.
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