Electronic Journal of Differential Equations, Vol. 2011 (2011), No. 141, pp. 1-9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

BIFURCATION FROM INFINITY AND MULTIPLE SOLUTIONS FOR FIRST-ORDER PERIODIC BOUNDARY-VALUE PROBLEMS

ZHENYAN WANG, CHENGHUA GAO

$$
\begin{aligned}
& \text { ABSTRACT. In this article, we study the existence and multiplicity of solutions } \\
& \text { for the first-order periodic boundary-value problem } \\
& \qquad u^{\prime}(t)-a(t) u(t)=\lambda u(t)+g(u(t))-h(t), \quad t \in(0, T) \\
& \qquad u(0)=u(T)
\end{aligned}
$$

1. Introduction

The first-order periodic differential equation

$$
u^{\prime}(t)=a(t) u(t)-f(u(t-\tau(t)))
$$

has been proposed as models for a variety of physiological processes and conditions including production of blood cells, respiration, and cardiac arrhythmias, see [3, 8, 15. Thus, the existence of periodic solutions of this periodic differential equation has been discussed by several authors; see for example [1, 2, 5, 6, 7, 9, 10, 11, 13, 14, 16] and the references therein.

In these articles, the condition $\int_{0}^{T} a(t) d t \neq 0$ is used for showing the existence of solutions. A natural question is what would happen if $\int_{0}^{T} a(t) d t=0$. It is easy to check that if $\int_{0}^{T} a(t) d t=0$, then the equation

$$
-u^{\prime}(t)+a(t) u(t)=0, \quad u(0)=u(T)
$$

has nontrivial solutions. Thus, the operator $L u=-u^{\prime}(t)+a(t) u(t)$ is not invertible.
In this article, using Leray-Schauder degree and bifurcation techniques and under the condition that $\int_{0}^{T} a(t) d t=0$, we discuss the existence and multiplicity of solutions for the problem

$$
\begin{gather*}
u^{\prime}(t)-a(t) u(t)=\lambda u(t)+g(u(t))-h(t), \quad t \in(0, T), \tag{1.1}\\
u(0)=u(T) \tag{1.2}
\end{gather*}
$$

where $g: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, $h \in L^{1}(0, T)$, and the parameter λ is close to 0 which is the eigenvalue of

$$
-u^{\prime}(t)+a(t) u(t)=\lambda u(t), \quad u(0)=u(T)
$$

[^0]In this article, we use the following assumptions:
(H1) $a(\cdot) \in C[0, T]$ and $\int_{0}^{T} a(t) d t=0$;
(H2) $g: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, and there exist $\alpha \in[0,1), p, q \in(0, \infty)$, such that

$$
|g(u)| \leq p|u|^{\alpha}+q, \quad u \in \mathbb{R}
$$

(H3) There exist constants A, a, R, r such that $r<0<R$ and

$$
\begin{gathered}
g(u) \geq A, \quad \text { for all } u \geq R \\
g(u) \leq a, \\
\text { for all } u \leq r
\end{gathered}
$$

(H3') There exist constants A, a, R, r such that $r<0<R$ and

$$
\begin{gathered}
g(u) \leq A, \quad \text { for all } u \geq R \\
g(u) \geq a, \quad \text { for all } u \leq r
\end{gathered}
$$

$$
\begin{equation*}
\int_{0}^{T} \frac{g^{-\infty}}{\psi(s)} d s<\int_{0}^{T} \frac{h(s)}{\psi(s)} d s<\int_{0}^{T} \frac{g_{+\infty}}{\psi(s)} d s \tag{H4}
\end{equation*}
$$

where

$$
g^{-\infty}=\limsup _{s \rightarrow-\infty} g(s), \quad g_{+\infty}=\liminf _{s \rightarrow+\infty} g(s)
$$

and $\psi(t)=e^{\int_{0}^{t} a(s) d s}$ is the solution of

$$
-u^{\prime}+a(t) u=0, \quad u(0)=u(T)
$$

($\mathrm{H} 4^{\prime}$)

$$
\int_{0}^{T} \frac{g^{+\infty}}{\psi(s)} d s<\int_{0}^{T} \frac{h(s)}{\psi(s)} d s<\int_{0}^{T} \frac{g_{-\infty}}{\psi(s)} d s
$$

where

$$
g^{+\infty}=\limsup _{s \rightarrow+\infty} g(s), \quad g_{-\infty}=\liminf _{s \rightarrow-\infty} g(s)
$$

Our main results are as follows.
Theorem 1.1. Assume that (H1)-(H4) hold. Then there exists λ_{+}, λ_{-}with $\lambda_{+}>$ $0>\lambda_{-}$such that
(i) 1.1), 1.2 has at least one solution if $\lambda \in\left[0, \lambda_{+}\right]$;
(ii) 1.1, 1.2 has at least three solutions if $\lambda \in\left[\lambda_{-}, 0\right)$.

Theorem 1.2. Assume that (H1), (H2), (H3'),(H4') hold. Then there exists λ_{+}, λ_{-} with $\lambda_{+}>0>\lambda_{-}$such that
(i) 1.1), 1.2 has at least one solution if $\lambda \in\left[\lambda_{-}, 0\right]$;
(ii) 1.1, 1.2 has at least three solutions if $\lambda \in\left(0, \lambda_{+}\right]$.

The rest of the paper is arranged as follows. In section 2, we discuss the Lyapunov-Schmidt procedure for 1.1 , 1.2 . In section 3, the existence of solutions of $1.1,1.2$ is discussed under 'Landesman-Lazer' type conditions.

2. LyApunov-Schmidt procedure

Let X, Y be the Banach spaces $C[0, T], L^{1}[0, T]$ with the norm $\|x\|=\max \{|x(t)|$: $t \in[0, T]\},\|u\|_{1}=\int_{0}^{T}|u(s)| d s$, respectively. Define linear operator $L: D(L) \subset$ $X \rightarrow Y$ by

$$
\begin{equation*}
L u=-u^{\prime}+a(t) u, u \in D(L), \tag{2.1}
\end{equation*}
$$

where $D(L)=\left\{u \in W^{1,1}(0, T): u(0)=u(T)\right\}$. Let $N: X \rightarrow X$ be the nonlinear operator defined by

$$
\begin{equation*}
(N u)(t)=g(u(t)), \quad t \in[0, T], u \in D(L) \tag{2.2}
\end{equation*}
$$

It is easy to see that N is continuous. Note that (1.1, (1.2) is equivalent to

$$
\begin{equation*}
L u+\lambda u+N u=h, u \in D(L) \tag{2.3}
\end{equation*}
$$

Lemma 2.1. Let L be defined by 2.1. Then

$$
\begin{aligned}
& \operatorname{ker} L=\{x \in X: x(t)=c \psi(t): c \in \mathbb{R}\} \\
& \qquad \operatorname{Im} L=\left\{y \in Y: \int_{0}^{T} \frac{y(s)}{\psi(s)} d s=0\right\}
\end{aligned}
$$

Proof. It is easy to see that $\operatorname{ker} L=\{c \psi(t): c \in \mathbb{R}\}$. The following will prove that $\operatorname{Im} L=\left\{y \in Y: \int_{0}^{T} \frac{y(s)}{\psi(s)} d s=0\right\}$.

If $y \in \operatorname{Im} L$, then there exists $u \in D(L)$ such that $-u^{\prime}(t)+a(t) u(t)=y(t)$. So

$$
u(t)=u(0) \psi(t)-\int_{0}^{t} y(s) e^{\int_{s}^{t} a(\tau) d \tau} d s
$$

Combining with $u(0)=u(T)$, we have

$$
\int_{0}^{T} \frac{y(s)}{\psi(s)} d s=0
$$

On the other hand, if $y \in Y$ satisfies $\int_{0}^{T} \frac{y(s)}{\psi(s)} d s=0$, then we set

$$
u(t):=-\int_{0}^{t} y(s) e^{\int_{s}^{t} a(\tau) d \tau} d s
$$

It is not difficult to prove that $x \in D(L)$ and $L u=y$.
Define operator $P: X \rightarrow \operatorname{ker} L$,

$$
\begin{equation*}
(P u)(t)=u(0) \psi(t), \quad u \in X \tag{2.4}
\end{equation*}
$$

Let $Q: Y \rightarrow Y$ be such that

$$
\begin{equation*}
(Q y)(t)=\frac{1}{T} \psi(t) \int_{0}^{T} \frac{y(s)}{\psi(s)} d s \tag{2.5}
\end{equation*}
$$

Denote $X_{1}=\{u \in X: u(0)=0\}$.
Lemma 2.2. Let operators P and Q be defined by (2.4) and 2.5. Then

$$
X=X_{1} \oplus \operatorname{ker} L, \quad Y=\operatorname{Im} L \oplus \operatorname{Im} Q
$$

We define linear operator $K: \operatorname{Im} L \rightarrow D(L) \cap X_{1}$

$$
\begin{equation*}
(K y)(t)=-\int_{0}^{t} y(s) e^{\int_{s}^{t} a(\tau) d \tau} d s, \quad y \in \operatorname{Im} L \tag{2.6}
\end{equation*}
$$

satisfying $K=L_{p}^{-1}$, where $L_{p}=\left.L\right|_{D(L) \cap X_{1}}$.

Proof. Let $y_{1}(t)=y(t)-(Q y)(t), y \in Y$, then it is easy to verify that $y_{1} \in \operatorname{Im} L$. Thus $Y=\operatorname{Im} L+\operatorname{Im} Q$. Also $\operatorname{Im} L \cap \operatorname{Im} Q=\{0\}$. Hence $Y=\operatorname{Im} L \oplus \operatorname{Im} Q$. If $u \in D(L) \cap X_{1}$, then

$$
\left(K L_{p} u\right)(t)=K\left(-u^{\prime}(t)+a(t) u(t)\right)=u(t) .
$$

If $y \in \operatorname{Im} L$, then

$$
\left(L_{p} K y\right)(t)=-\left(-\int_{0}^{t} y(s) e^{\int_{s}^{t} a(\tau) d \tau} d s\right)^{\prime}-a(t) \int_{0}^{t} y(s) e^{\int_{s}^{t} a(\tau) d \tau} d s=y(t)
$$

This indicates $K=L_{p}^{-1}$.
Therefore, for every $u \in X$, we have a unique decomposition $u(t)=\rho \psi(t)+$ $v(t), t \in[0, T]$, where $\rho \in \mathbb{R}, v \in X_{1}$. Similarly, for every $h \in Y$, we have unique decomposition $h(t)=\tau \psi(t)+\bar{h}(t), t \in[0, T]$, where $\tau \in \mathbb{R}, \bar{h} \in \operatorname{Im} L$. The operator Q, K be defined as (2.5), 2.6). Then $K(I-Q) N: X \rightarrow X$ is completely continuous, and 2.3 is equivalent to the system

$$
\begin{gather*}
v(t)+\lambda K v(t)+K(I-Q) N(\rho \psi(t)+v(t))=K \bar{h}(t), \tag{2.7}\\
\lambda \rho \psi(t)+Q N(\rho \psi(t)+v(t))=\tau \psi(t) . \tag{2.8}
\end{gather*}
$$

Lemma 2.3 (4). Assume that (H2), (H3) hold. Then for each real number $s>0$, there exists a decomposition $g(u)=q_{s}(u)+g_{s}(u)$ of g by q_{s} and g_{s} satisfying the conditions:

$$
\begin{gather*}
u q_{s}(u) \geq 0, u \in \mathbb{R} \tag{2.9}\\
\left|q_{s}(u)\right| \leq p|u|+q+s, u \geq 1 \tag{2.10}
\end{gather*}
$$

there exists σ_{s} depending on a, A and g such that

$$
\begin{equation*}
\left|g_{s}(u)\right| \leq \sigma_{s}, u \in \mathbb{R} \tag{2.11}
\end{equation*}
$$

Lemma 2.4. Assume that (H1)-(H4) hold, and λ satisfies

$$
\begin{equation*}
0 \leq \lambda \leq \eta_{1}:=\frac{1}{2\|K\|_{\operatorname{Im} L \rightarrow X_{1}}} \tag{2.12}
\end{equation*}
$$

Then there exists constant $R_{0}>0$ such that any solution u of (1.1) satisfies $\|u\|<R_{0}$.

Proof. We divide the proof into several steps.
Step 1. By assumption (H2), there exists a constant b such that

$$
|g(u)| \leq p|u|+b, u \in \mathbb{R}
$$

where $p=\eta_{1} / 4$. Using Lemma 2.3 with $s=1,1.1,1.2$ is equivalent to

$$
\begin{equation*}
u^{\prime}(t)-a(t) u(t)=\lambda u(t)+g_{1}(u(t))+q_{1}(u(t))-h(t), t \in[0, T], u \in D(L) \tag{2.13}
\end{equation*}
$$

where q_{1} and g_{1} satisfying conditions 2.9 and 2.11. Moreover, by 2.10,

$$
\begin{equation*}
\left|q_{1}(u)\right| \leq p|u|+b+1 \tag{2.14}
\end{equation*}
$$

Let $\bar{\delta}>0$ and choose $B \in \mathbb{R}$ such that

$$
\begin{equation*}
(b+1)\left|\frac{1}{u}\right| \leq \frac{1}{4} \bar{\delta} \tag{2.15}
\end{equation*}
$$

for all $u \in \mathbb{R}$ with $|u| \geq B$. It follows from (2.14) and (2.15) that

$$
\begin{equation*}
0 \leq q_{1}(u) u^{-1} \leq p+\frac{1}{4} \bar{\delta} \tag{2.16}
\end{equation*}
$$

for all $u \in \mathbb{R}$ with $|u| \geq B$.
Step 2. Let us define $\gamma: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\gamma(u)= \begin{cases}u^{-1} q_{1}(u), & |u| \geq B \tag{2.17}\\ B^{-1} q_{1}(B)\left(\frac{u}{B}\right)+\left(1-\frac{u}{B}\right) p, & 0 \leq u<B \\ B^{-1} q_{1}(-B)\left(\frac{u}{B}\right)+\left(1+\frac{u}{B}\right) p, & -B<u \leq 0\end{cases}
$$

It is easy to see that γ is continuous. Moreover, by 2.16), one has

$$
\begin{equation*}
0 \leq \gamma(u) \leq p+\frac{1}{4} \bar{\delta} \tag{2.18}
\end{equation*}
$$

for all $u \in \mathbb{R}$. Defining $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
f(u)=g_{1}(u)+q_{1}(u)-\gamma(u) u \tag{2.19}
\end{equation*}
$$

it follows from 2.16 that for some $\sigma \in \mathbb{R}$,

$$
\begin{equation*}
|f(u)| \leq \sigma \tag{2.20}
\end{equation*}
$$

for all $u \in \mathbb{R}$, where σ depends only on p and h. Finally, 2.13 is equivalent to

$$
u^{\prime}(t)-a(t) u(t)=\lambda u(t)+f(u(t))+\gamma(u(t)) u(t)-h(t), t \in[0, T], u \in D(L)
$$

Step 3. It is to see that $\left.(L+\lambda I)\right|_{X_{1} \cap D(L)}: X_{1} \rightarrow \operatorname{Im} L$ is invertible. From (2.12),

$$
\begin{aligned}
\left\|\left.(L+\lambda I)\right|_{X_{1} \cap D(L)} ^{-1}\right\|_{\operatorname{Im} L \rightarrow X_{1}} & =\left\|\left.L^{-1}\right|_{X_{1} \cap D(L)}(I+\lambda K)^{-1}\right\|_{\operatorname{Im} L \rightarrow X_{1}} \\
& =\|K\|_{\operatorname{Im} L \rightarrow X_{1}}\left\|(I+\lambda K)^{-1}\right\|_{\operatorname{Im} L \rightarrow X_{1}} \\
& \leq 2\|K\|_{\operatorname{Im} L \rightarrow X_{1}} .
\end{aligned}
$$

Let $u=\rho \psi(t)+v$ be a solution of 2.13 , where $\rho \in \mathbb{R}, v \in X_{1}$. Then from 2.7,

$$
\begin{aligned}
\|v\|= & \left\|\left.(L+\lambda I)\right|_{X_{1} \cap D(L)} ^{-1}(I-Q)(\bar{h}-g(\rho \psi(t)+v(t)))\right\| \\
\leq & \left\|\left.(L+\lambda I)\right|_{X_{1} \cap D(L)} ^{1}\right\|_{\operatorname{Im} L \rightarrow X_{1}}\|(I-Q)\|_{Y \rightarrow \operatorname{Im} L}\left[\|\bar{h}\|_{1}+p(|\rho| \cdot\|\psi\|+\|v\|)^{\alpha}+q\right] \\
\leq & 2\|K\|_{\operatorname{Im} L \rightarrow X_{1}}\|(I-Q)\|_{Y \rightarrow \operatorname{Im} L}\left[\|\bar{h}\|_{1}+p(|\rho| \cdot\|\psi\|+\|v\|)^{\alpha}+q\right] \\
= & 2\|K\|_{\operatorname{Im} L \rightarrow X_{1}}\|(I-Q)\|_{Y \rightarrow \operatorname{Im} L}\left[\|\bar{h}\|_{1}+p(|\rho| \cdot\|\psi\|)^{\alpha}\left(1+\frac{\|v\|}{|\rho| \cdot\|\psi\|}\right)^{\alpha}+q\right] \\
\leq & 2\|K\|_{\operatorname{Im} L \rightarrow X_{1}}\|(I-Q)\|_{Y \rightarrow \operatorname{Im} L}\left[\|\bar{h}\|_{1}+p(|\rho| \cdot\|\psi\|)^{\alpha}\left(1+\frac{\alpha\|v\|}{|\rho| \cdot\|\psi\|}\right)+q\right] \\
= & 2\|K\|_{\operatorname{Im} L \rightarrow X_{1}}\|(I-Q)\|_{Y \rightarrow \operatorname{Im} L}\left[\|\bar{h}\|_{1}+p(|\rho| \cdot\|\psi\|)^{\alpha}\right. \\
& \left.\times\left(1+\frac{\alpha}{(|\rho| \cdot\|\psi\|)^{1-\alpha}} \cdot \frac{\|v\|}{(|\rho| \cdot\|\psi\|)^{\alpha}}\right)+q\right] .
\end{aligned}
$$

Therefore,

$$
\frac{\|v\|}{(|\rho| \cdot\|\psi\|)^{\alpha}} \leq \frac{c_{0}}{(|\rho| \cdot\|\psi\|)^{\alpha}}+c_{1}+\frac{\alpha c_{1}}{(|\rho| \cdot\|\psi\|)^{1-\alpha}} \cdot \frac{\|v\|}{(|\rho| \cdot\|\psi\|)^{\alpha}}
$$

where

$$
\begin{gathered}
c_{0}=2\|K\|_{\operatorname{Im} L \rightarrow X_{1}}\|(I-Q)\|_{Y \rightarrow \operatorname{Im} L}\left(\|\bar{h}\|_{1}+q\right) \\
c_{1}=2 p\|K\|_{\operatorname{Im} L \rightarrow X_{1}}\|(I-Q)\|_{Y \rightarrow \operatorname{Im} L}
\end{gathered}
$$

If

$$
|\rho| \geq \frac{\left(2 \alpha c_{1}\right)^{\frac{1}{1-\alpha}}}{\|\psi\|}:=\tilde{c}
$$

then

$$
\begin{equation*}
\frac{\|v\|}{(|\rho| \cdot\|\psi\|)^{\alpha}} \leq \frac{2 c_{0}}{(\tilde{c}\|\psi\|)^{\alpha}}+2 c_{1}:=\bar{c} \tag{2.21}
\end{equation*}
$$

Step 4. If we now assume that the conclusion of the lemma is false, we obtain a sequence $\left\{\lambda_{n}\right\}: 0 \leq \lambda_{n} \leq \eta_{1}, \lambda_{n} \rightarrow 0$ and a sequence $\left\{u_{n}\right\}: u_{n}=\rho_{n} \psi(t)+v_{n}, \rho_{n} \in$ $\mathbb{R}, v_{n} \in X_{1}$ with $\left\|u_{n}\right\| \rightarrow \infty$ such that

$$
\begin{equation*}
\lambda_{n} \rho_{n} \psi(t)+Q g\left(\rho_{n} \psi(t)+v_{n}(t)\right)=\tau \psi(t) \tag{2.22}
\end{equation*}
$$

It follows immediately from 2.21 that

$$
\begin{equation*}
\left|\rho_{n}\right| \rightarrow \infty,\left\|v_{n}\right\|\left(\left|\rho_{n}\right| \cdot\|\psi\|\right)^{-1} \rightarrow 0, \quad n \rightarrow \infty \tag{2.23}
\end{equation*}
$$

So we infer that there exists sufficiently large $n_{0} \in \mathbb{N}$ such that for $n \geq n_{0}$

$$
\begin{equation*}
\left|v_{n}(t)\right|\left(\left|\rho_{n}\right| \psi(t)\right)^{-1} \leq 1, \quad t \in[0, T] . \tag{2.24}
\end{equation*}
$$

Without loss of generality, let $\rho_{n} \rightarrow+\infty$ if $n \rightarrow+\infty$ (the other case be proved by similar method), then there exists sufficiently large $n_{0} \in \mathbb{N}$. If $n \geq n_{0}, \lambda_{n} \rho_{n} \geq 0$; thus

$$
\begin{gather*}
\tau-\frac{1}{T} \int_{0}^{T} \frac{g\left(\rho_{n} \psi(s)+v_{n}(s)\right)}{\psi(s)} d s \geq 0 \tag{2.25}\\
\tau \geq \frac{1}{T} \liminf _{n \rightarrow \infty} \int_{0}^{T} \frac{g\left(\rho_{n} \psi(s)+v_{n}(s)\right)}{\psi(s)} d s
\end{gather*}
$$

To apply Fatou's lemma to 2.25 , we need a function $\hat{K} \in L^{1}[0, T]$ such that for $s \in[0, T], \frac{g\left(u_{n}(s)\right)}{\psi(s)} \geq \hat{K}(s)$. Indeed, from the relation 2.24 , one has that there exists nonnegative function $k_{1} \in L^{1}[0, T]$ such that for $n \geq n_{0}$,

$$
\left|v_{n}(t)\right|\left(\rho_{n} \psi(t)\right)^{-1} \leq k_{1}(t), \quad t \in[0, T],
$$

and for every $s \in[0, T]$,

$$
\begin{aligned}
\gamma\left(u_{n}(s)\right) u_{n}(s)+f\left(u_{n}(s)\right) & =\gamma\left(u_{n}(s)\right)\left(\rho_{n} \psi(s)+v_{n}(s)\right)+f\left(u_{n}(s)\right) \\
& \geq \gamma\left(u_{n}(s)\right) \frac{\rho_{n} \psi(s)+v_{n}(s)}{\left|\rho_{n}\right| \psi(s)}+f\left(u_{n}(s)\right) \\
& \geq \gamma\left(u_{n}(s)\right)\left(1-k_{1}(s)\right)-\left|f\left(u_{n}(s)\right)\right| \\
& \geq-\left(p+\frac{1}{4} \bar{\delta}\right)\left(1-k_{1}(s)\right)-\sigma:=\hat{K}(s)
\end{aligned}
$$

It follows from $\psi(s)>0$ that

$$
\frac{1}{\psi(s)} g\left(\rho_{n} \psi(s)+v_{n}(s)\right) \geq \frac{1}{\psi(s)} \hat{K}(s), s \in[0, T]
$$

Thus, applying Fatou's lemma to 2.25 , we have

$$
\begin{aligned}
\tau & \geq \frac{1}{T} \liminf _{n \rightarrow \infty} \int_{0}^{T} \frac{g\left(\rho_{n} \psi(s)+v_{n}(s)\right)}{\psi(s)} d s \\
& \geq \frac{1}{T} \int_{0}^{T} \liminf _{n \rightarrow \infty} \frac{g\left(\rho_{n} \psi(s)+v_{n}(s)\right)}{\psi(s)} d s \\
& \geq \frac{1}{T} \int_{0}^{T} \frac{g_{+\infty}}{\psi(s)} d s
\end{aligned}
$$

This contradicts with (H4).

Lemma 2.5. Assume that (H1), (H2), (H3'), (H4') hold, and λ satisfies

$$
0 \leq \lambda \leq \eta_{1}:=\frac{1}{2\|K\|_{\operatorname{Im} L \rightarrow X_{1}}}
$$

Then there exists constant $R_{0}>0$ such that any solution u of (1.1) 1.2) satisfy $\|u\|<R_{0}$.

3. The Proof of the Main Result

Lemma 3.1. Assume that (H1)-(H4) hold. Then there exists $R_{1}: R_{1} \geq R_{0}$ such that for $0 \leq \lambda \leq \delta$, and $R \geq R_{1}$ one has

$$
\operatorname{deg}(L+\lambda I+N-h, B(R), 0)=\operatorname{deg}(L+\delta I, B(R), 0)= \pm 1
$$

where $B(R)=\{u \in C[0, T]:\|u\|<R\}$, and the deg denotes Leray-Schauder degree when $\lambda \neq 0$ and coincidence degree when $\lambda=0$. Then $1.1,(1.2$ has a solution in $\bar{B}(R)$ for $0 \leq \lambda \leq \delta$.

Proof. From Lemma 2.4 and the definition of L, if $\lambda \in[0, \delta]$,

$$
\operatorname{deg}(L+\delta I, B(R), 0)
$$

is defined and depends on λ. Let $(\mu, u) \in[0,1] \times X$ be a solution of 2.3). Then

$$
L u+\delta u+\mu(N u-h)=0
$$

So

$$
\|u\|=\mu\left\|(L+\delta)^{-1}(h-N u)\right\| \leq\left\|(L+\delta)^{-1}\right\|_{Y \rightarrow X}\left(\|h\|_{1}+p\|u\|^{\alpha}+q\right)
$$

Therefore there exists $R_{0}^{\prime}>0$ such that $\|u\|<R_{0}^{\prime}$. Choosing $R_{1}=\max \left\{R_{0}^{\prime}, R_{0}\right\}$, then for arbitrary $R>R_{1}$,

$$
\operatorname{deg}(L+\lambda I+N-h, B(R), 0)=\operatorname{deg}(L+\delta I, B(R), 0)= \pm 1
$$

Lemma 3.2. Assume that (H1), (H2), (H3'),(H4') hold. Then there exists R_{1} : $R_{1} \geq R_{0}$ such that for $0 \leq \lambda \leq \delta$, and $R \geq R_{1}$ one has

$$
\operatorname{deg}(L+\lambda I+N-h, B(R), 0)=\operatorname{deg}(L+\delta I, B(R), 0)= \pm 1
$$

where $B(R)=\{u \in C[0, T]:\|u\|<R\}$.
Lemma 3.3. Assume that (H1)-(H4) hold. Then there exists $\mu \geq 0$ such that for $-\mu \leq \lambda \leq 0$ one has

$$
\operatorname{deg}(L+\lambda I+N-h, B(R), 0)=\operatorname{deg}(L+\delta I, B(R), 0)= \pm 1
$$

where R be defined in Lemma 3.1. Then 1.1, (1.2) has a solution in $B(R)$ for $-\mu \leq \lambda \leq \delta$.

Proof. Let

$$
\tau_{0}=\inf _{u \in \partial B(R) \cap X}\|L u+N u-h\| .
$$

It is easy to verify that $\tau_{0}>0$. Choosing sufficiently small $\mu>0$ such that $\mu R<\tau_{0}$, then if $\lambda \in[-\mu, \mu]$,

$$
\operatorname{deg}(L+\lambda I+N-h, B(R), 0)=\operatorname{deg}(L+N-h, B(R), 0)
$$

Combined with Lemma 3.1, the result can be proved. That is to see that if $\lambda \in$ $[-\mu, \delta], 2.3$ has at least one solution in $\bar{B}(R)$.

Lemma 3.4. Assume that (H1), (H2), (H3')(H4') hold. Then there exists $\mu \geq 0$ such that for $-\mu \leq \lambda \leq 0$, one has

$$
\operatorname{deg}(L+\lambda I+N-h, B(R), 0)=\operatorname{deg}(L+\delta I, B(R), 0)= \pm 1
$$

where R be defined in Lemma 3.1. Then (1.1), 1.2 has a solution in $B(R)$ for $-\mu \leq \lambda \leq \delta$.

Remark 3.5. Since g is L-completely continuous and satisfies (H2) and since $\lambda=0$ is a simple eigenvalue of L, it follows from bifurcation results of (4) that there exist two connected sets $\mathcal{C}_{+}, \mathcal{C}_{-} \subset \mathbb{R} \times X$ of solutions of (1.1), (1.2) such that for all sufficiently small $\epsilon>0$,

$$
\mathcal{C}_{+} \cap U_{\epsilon} \neq \emptyset, \quad \mathcal{C}_{-} \cap U_{\epsilon} \neq \emptyset
$$

where $U_{\epsilon}:=\{(\lambda, u) \in \mathbb{R} \times X,|\lambda|<\epsilon,\|u\|>1 / \epsilon\}$.
Proof of Theorem 1.1. Set $\lambda^{+}=\delta$, then it follows from Lemma 3.1 and Lemma 3.3 that 1.1$)$, 1.2) has at least one solution in $B(R)$ for $\lambda \in\left[-\mu, \lambda_{+}\right]$. On the other hand, Remark 3.5 shows that there exists two connected sets $\mathcal{C}+$ and $\mathcal{C}-$ of solutions of (1.1), 1.2) bifurcating from infinity at $\lambda=0$. Hence by Lemma 2.4, the connected sets $\mathcal{\mathcal { C }}+$ and $\mathcal{C}-$ of Remark 3.5 must satisfy

$$
\mathcal{C}_{+}, \mathcal{C}_{-} \subset\{(\lambda, u):\|u\| \geq 1 / \epsilon,-\mu<\lambda<0\} .
$$

and hence, if $1 / \epsilon \geq R$; i.e., $\epsilon \leq 1 / k$. Choosing $\lambda_{-}=\max \{-\mu,-1 / k\}$, we obtain two solutions $u_{1}, u_{2}: u_{1} \in \mathcal{C}_{+}, u_{2} \in \mathcal{C}_{-}$, and $\left\|u_{i}\right\| \geq R(i=1,2)$.

Theorem 1.2 can be proved by a similar method.

References

[1] R. P. Agarwal, Jinhai Chen; Periodic solutions for first order differential systems. Appl. Math. Lett. 23 (2010), no. 3, 337-341.
[2] S. Cheng, G. Zhang; Existence of positive periodic soutions for non-autonomous functional differential equations, Electronic J. Differential Equations, 59 (2001) 1-8.
[3] W. S. Gurney, S. P. Blythe, R. N. Nisbet; Nicholson's blowflies revisited, Nature 287 (1980) 17-21.
[4] R. Iannacci, M. N. Nkashama; Unbounded perturcations of forced second order at resonace, J. Diff. Eqns., 69(1987), 289-309.
[5] Z. Jin, H. Wang; A note on positive periodic solutions of delayed differential equations, Appl. Math. Lett., 23(5)(2010) 581-584.
[6] R. Ma, R. Chen, T. Chen; Existence of positive periodic solutions of nonlinear first-order delayed differential equations, J. Math. Anal. Appl., 384 (2011) 527-535.
[7] R. Ma; Bifurcation from infinity and multiple solutions for periodic boundary value problems, Nonlinear Analysis: TMA, 42 (2000), 27-39.
[8] M. C. Mackey, L. Glass; Oscillations and chaos in physiological control systems, Science 197 (1977) 287-289.
[9] J. Mawhin, K. Schmitt; Landesman-Lazer type problems at an eigenvalue of odd multiplicity, Result in Math. 14(1988), 138-146.
[10] S. Padhi, S. Srivastava; Multiple periodic solutions for nonlinear first order functional differential equations with applications to population dynamics, Appl. Math. Comput. 203(1) (2008) 1-6.
[11] S. Padhi, S. Srivastava; Existence of three periodic solutions for a nonlinear first order functional differential equation, Journal of the Franklin Institute, 346(2009), 818-829.
[12] P. Rabinowitz; On bifurcation from infinity, J. Diff. Eqns., 14(1973) 462-475.
[13] A. Wan, D. Jiang, X. Xu; A new existence theory for positive periodic solutions to functional differential equations, Comput. Math. Appl., 47 (2004) 1257-1262.
[14] H. Wang; Positive periodic solutions of functional differential equations, J. Diff. Eqns., 202 (2004) 354-366.
[15] M. Wazewska-Czyzewska, A. Lasota; Mathematical problems of the dynamics of a system of red blood cells, Mat. Stos. 6 (1976) 23-40 (in Polish).
[16] G. Zhang, S. Cheng; Positive periodic solutions of nonautonomuous functional differential equations depending on a parameter, Abstr. Appl. Anal. 7(2002) 279-286.

Zhenyan Wang
Department of Mathematics, Northwest Normal University, Lanzhou 730070, China
E-mail address: wangzhenyan86714@163.com
Chenghua Gao
Department of Mathematics, Northwest Normal University, Lanzhou 730070, China
E-mail address: gaokuguo@163.com

[^0]: 2000 Mathematics Subject Classification. 34B18.
 Key words and phrases. First-order periodic problems; Landsman-Lazer type condition; Leray-Schauder degree; bifurcation; existence.
 © 2011 Texas State University - San Marcos.
 Submitted September 6, 2011. Published October 28, 2011.

