Electronic Journal of Differential Equations, Vol. 2011 (2011), No. 141, pp. 1–9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

BIFURCATION FROM INFINITY AND MULTIPLE SOLUTIONS FOR FIRST-ORDER PERIODIC BOUNDARY-VALUE PROBLEMS

ZHENYAN WANG, CHENGHUA GAO

ABSTRACT. In this article, we study the existence and multiplicity of solutions for the first-order periodic boundary-value problem

 $u'(t) - a(t)u(t) = \lambda u(t) + g(u(t)) - h(t), \quad t \in (0, T),$ u(0) = u(T).

1. INTRODUCTION

The first-order periodic differential equation

$$u'(t) = a(t)u(t) - f(u(t - \tau(t)))$$

has been proposed as models for a variety of physiological processes and conditions including production of blood cells, respiration, and cardiac arrhythmias, see [3, 8, 15]. Thus, the existence of periodic solutions of this periodic differential equation has been discussed by several authors; see for example [1, 2, 5, 6, 7, 9, 10, 11, 13, 14, 16] and the references therein.

In these articles, the condition $\int_0^T a(t)dt \neq 0$ is used for showing the existence of solutions. A natural question is what would happen if $\int_0^T a(t)dt = 0$. It is easy to check that if $\int_0^T a(t)dt = 0$, then the equation

$$-u'(t) + a(t)u(t) = 0, \quad u(0) = u(T)$$

has nontrivial solutions. Thus, the operator Lu = -u'(t) + a(t)u(t) is not invertible.

In this article, using Leray-Schauder degree and bifurcation techniques and under the condition that $\int_0^T a(t)dt = 0$, we discuss the existence and multiplicity of solutions for the problem

$$u'(t) - a(t)u(t) = \lambda u(t) + g(u(t)) - h(t), \quad t \in (0, T),$$
(1.1)

$$u(0) = u(T),$$
 (1.2)

where $g : \mathbb{R} \to \mathbb{R}$ is continuous, $h \in L^1(0,T)$, and the parameter λ is close to 0 which is the eigenvalue of

$$-u'(t) + a(t)u(t) = \lambda u(t), \quad u(0) = u(T).$$

²⁰⁰⁰ Mathematics Subject Classification. 34B18.

Key words and phrases. First-order periodic problems; Landsman-Lazer type condition; Leray-Schauder degree; bifurcation; existence.

^{©2011} Texas State University - San Marcos.

Submitted September 6, 2011. Published October 28, 2011.

In this article, we use the following assumptions:

(H1) $a(\cdot) \in C[0,T]$ and $\int_0^T a(t)dt = 0;$ (H2) $g: \mathbb{R} \to \mathbb{R}$ is continuous, and there exist $\alpha \in [0,1), p, q \in (0,\infty)$, such that $|g(u)| \leq p|u|^{\alpha} + q, \quad u \in \mathbb{R};$

(H3) There exist constants A, a, R, r such that r < 0 < R and

$$g(u) \ge A$$
, for all $u \ge R$,
 $g(u) \le a$, for all $u \le r$;

(H3') There exist constants A, a, R, r such that r < 0 < R and

$$g(u) \le A$$
, for all $u \ge R$,
 $g(u) \ge a$, for all $u \le r$.

(H4)

$$\int_0^T \frac{g^{-\infty}}{\psi(s)} ds < \int_0^T \frac{h(s)}{\psi(s)} ds < \int_0^T \frac{g_{+\infty}}{\psi(s)} ds,$$

where

$$g^{-\infty} = \limsup_{s \to -\infty} g(s), \quad g_{+\infty} = \liminf_{s \to +\infty} g(s),$$

and $\psi(t) = e^{\int_0^t a(s)ds}$ is the solution of

$$-u' + a(t)u = 0, \quad u(0) = u(T).$$

(H4')

$$\int_0^T \frac{g^{+\infty}}{\psi(s)} ds < \int_0^T \frac{h(s)}{\psi(s)} ds < \int_0^T \frac{g_{-\infty}}{\psi(s)} ds,$$

where

$$g^{+\infty} = \limsup_{s \to +\infty} g(s), \quad g_{-\infty} = \liminf_{s \to -\infty} g(s).$$

Our main results are as follows.

Theorem 1.1. Assume that (H1)–(H4) hold. Then there exists λ_+, λ_- with $\lambda_+ > 0 > \lambda_-$ such that

- (i) (1.1), (1.2) has at least one solution if $\lambda \in [0, \lambda_+]$;
- (ii) (1.1), (1.2) has at least three solutions if $\lambda \in [\lambda_{-}, 0)$.

Theorem 1.2. Assume that (H1), (H2), (H3'), (H4') hold. Then there exists λ_+, λ_- with $\lambda_+ > 0 > \lambda_-$ such that

- (i) (1.1), (1.2) has at least one solution if $\lambda \in [\lambda_{-}, 0]$;
- (ii) (1.1), (1.2) has at least three solutions if $\lambda \in (0, \lambda_+]$.

The rest of the paper is arranged as follows. In section 2, we discuss the Lyapunov-Schmidt procedure for (1.1), (1.2). In section 3, the existence of solutions of (1.1), (1.2) is discussed under 'Landesman-Lazer' type conditions.

2. Lyapunov-Schmidt procedure

Let X, Y be the Banach spaces C[0,T], $L^1[0,T]$ with the norm $||x|| = \max\{|x(t)|:$ $t \in [0,T]$ }, $||u||_1 = \int_0^T |u(s)| ds$, respectively. Define linear operator $L: D(L) \subset X \to Y$ by

$$Lu = -u' + a(t)u, u \in D(L),$$
 (2.1)

where $D(L) = \{ u \in W^{1,1}(0,T) : u(0) = u(T) \}$. Let $N : X \to X$ be the nonlinear operator defined by

$$(Nu)(t) = g(u(t)), \quad t \in [0, T], \ u \in D(L).$$
 (2.2)

It is easy to see that N is continuous. Note that (1.1), (1.2) is equivalent to

$$Lu + \lambda u + Nu = h, u \in D(L).$$
(2.3)

Lemma 2.1. Let L be defined by (2.1). Then

$$\ker L = \{x \in X : x(t) = c\psi(t) : c \in \mathbb{R}\},$$
$$\operatorname{Im} L = \{y \in Y : \int_0^T \frac{y(s)}{\psi(s)} ds = 0\}.$$

Proof. It is easy to see that ker $L = \{c\psi(t) : c \in \mathbb{R}\}$. The following will prove that $\operatorname{Im} L = \{ y \in Y : \int_0^T \frac{y(s)}{\psi(s)} ds = 0 \}.$ If $y \in \operatorname{Im} L$, then there exists $u \in D(L)$ such that -u'(t) + a(t)u(t) = y(t). So

$$u(t) = u(0)\psi(t) - \int_0^t y(s)e^{\int_s^t a(\tau)d\tau}ds.$$

Combining with u(0) = u(T), we have

$$\int_0^T \frac{y(s)}{\psi(s)} ds = 0$$

On the other hand, if $y \in Y$ satisfies $\int_0^T \frac{y(s)}{\psi(s)} ds = 0$, then we set

$$u(t) := -\int_0^t y(s)e^{\int_s^t a(\tau)d\tau}ds.$$

It is not difficult to prove that $x \in D(L)$ and Lu = y.

Define operator $P: X \to \ker L$,

$$(Pu)(t) = u(0)\psi(t), \quad u \in X.$$
 (2.4)

Let $Q: Y \to Y$ be such that

$$(Qy)(t) = \frac{1}{T}\psi(t) \int_0^T \frac{y(s)}{\psi(s)} ds.$$
 (2.5)

Denote $X_1 = \{ u \in X : u(0) = 0 \}.$

Lemma 2.2. Let operators P and Q be defined by (2.4) and (2.5). Then

 $X = X_1 \oplus \ker L, \quad Y = \operatorname{Im} L \oplus \operatorname{Im} Q.$

We define linear operator $K : \operatorname{Im} L \to D(L) \cap X_1$

$$(Ky)(t) = -\int_0^t y(s)e^{\int_s^t a(\tau)d\tau}ds, \quad y \in \operatorname{Im} L,$$
(2.6)

satisfying $K = L_p^{-1}$, where $L_p = L|_{D(L) \cap X_1}$.

Proof. Let $y_1(t) = y(t) - (Qy)(t), y \in Y$, then it is easy to verify that $y_1 \in \text{Im } L$. Thus Y = Im L + Im Q. Also $\text{Im } L \cap \text{Im } Q = \{0\}$. Hence $Y = \text{Im } L \oplus \text{Im } Q$. If $u \in D(L) \cap X_1$, then

$$(KL_p u)(t) = K(-u'(t) + a(t)u(t)) = u(t).$$

If $y \in \operatorname{Im} L$, then

$$(L_p K y)(t) = -\left(-\int_0^t y(s) e^{\int_s^t a(\tau)d\tau} ds\right)' - a(t) \int_0^t y(s) e^{\int_s^t a(\tau)d\tau} ds = y(t).$$

This indicates $K = L_p^{-1}.$

Therefore, for every $u \in X$, we have a unique decomposition $u(t) = \rho \psi(t) + v(t), t \in [0,T]$, where $\rho \in \mathbb{R}, v \in X_1$. Similarly, for every $h \in Y$, we have unique decomposition $h(t) = \tau \psi(t) + \bar{h}(t), t \in [0,T]$, where $\tau \in \mathbb{R}, \bar{h} \in \text{Im } L$. The operator Q, K be defined as (2.5), (2.6). Then $K(I-Q)N : X \to X$ is completely continuous, and (2.3) is equivalent to the system

$$v(t) + \lambda K v(t) + K(I - Q) N(\rho \psi(t) + v(t)) = K \bar{h}(t), \qquad (2.7)$$

$$\lambda \rho \psi(t) + QN(\rho \psi(t) + v(t)) = \tau \psi(t). \tag{2.8}$$

Lemma 2.3 ([4]). Assume that (H2), (H3) hold. Then for each real number s > 0, there exists a decomposition $g(u) = q_s(u) + g_s(u)$ of g by q_s and g_s satisfying the conditions:

$$uq_s(u) \ge 0, u \in \mathbb{R},\tag{2.9}$$

$$|q_s(u)| \le p|u| + q + s, u \ge 1,, \tag{2.10}$$

there exists σ_s depending on a, A and g such that

$$|g_s(u)| \le \sigma_s, u \in \mathbb{R}. \tag{2.11}$$

Lemma 2.4. Assume that (H1)–(H4) hold, and λ satisfies

$$0 \le \lambda \le \eta_1 := \frac{1}{2 \|K\|_{\operatorname{Im} L \to X_1}}.$$
(2.12)

Then there exists constant $R_0 > 0$ such that any solution u of (1.1) (1.2) satisfies $||u|| < R_0$.

Proof. We divide the proof into several steps.

Step 1. By assumption (H2), there exists a constant b such that

$$|g(u)| \le p|u| + b, u \in \mathbb{R},$$

where $p = \eta_1/4$. Using Lemma 2.3 with s = 1, (1.1), (1.2) is equivalent to

$$u'(t) - a(t)u(t) = \lambda u(t) + g_1(u(t)) + q_1(u(t)) - h(t), t \in [0, T], u \in D(L), \quad (2.13)$$

where q_1 and g_1 satisfying conditions (2.9) and (2.11). Moreover, by (2.10),

$$|q_1(u)| \le p|u| + b + 1. \tag{2.14}$$

Let $\overline{\delta} > 0$ and choose $B \in \mathbb{R}$ such that

$$(b+1)|\frac{1}{u}| \le \frac{1}{4}\bar{\delta} \tag{2.15}$$

for all $u \in \mathbb{R}$ with $|u| \ge B$. It follows from (2.14) and (2.15) that

$$0 \le q_1(u)u^{-1} \le p + \frac{1}{4}\bar{\delta}$$
(2.16)

for all $u \in \mathbb{R}$ with $|u| \ge B$.

Step 2. Let us define $\gamma : \mathbb{R} \to \mathbb{R}$ by

$$\gamma(u) = \begin{cases} u^{-1}q_1(u), & |u| \ge B; \\ B^{-1}q_1(B)(\frac{u}{B}) + (1 - \frac{u}{B})p, & 0 \le u < B; \\ B^{-1}q_1(-B)(\frac{u}{B}) + (1 + \frac{u}{B})p, & -B < u \le 0. \end{cases}$$
(2.17)

It is easy to see that γ is continuous. Moreover, by (2.16), one has

$$0 \le \gamma(u) \le p + \frac{1}{4}\bar{\delta} \tag{2.18}$$

for all $u \in \mathbb{R}$. Defining $f : \mathbb{R} \to \mathbb{R}$ by

$$f(u) = g_1(u) + q_1(u) - \gamma(u)u, \qquad (2.19)$$

it follows from (2.16) that for some $\sigma \in \mathbb{R}$,

$$|f(u)| \le \sigma \tag{2.20}$$

for all $u \in \mathbb{R}$, where σ depends only on p and h. Finally, (2.13) is equivalent to

$$u'(t) - a(t)u(t) = \lambda u(t) + f(u(t)) + \gamma(u(t))u(t) - h(t), t \in [0, T], u \in D(L).$$

Step 3. It is to see that $(L + \lambda I)|_{X_1 \cap D(L)} : X_1 \to \operatorname{Im} L$ is invertible. From (2.12),

$$\begin{aligned} \|(L+\lambda I)|_{X_1\cap D(L)}^{-1}\|_{\mathrm{Im}\,L\to X_1} &= \|L^{-1}|_{X_1\cap D(L)}(I+\lambda K)^{-1}\|_{\mathrm{Im}\,L\to X_1} \\ &= \|K\|_{\mathrm{Im}\,L\to X_1}\|(I+\lambda K)^{-1}\|_{\mathrm{Im}\,L\to X_1} \\ &\leq 2\|K\|_{\mathrm{Im}\,L\to X_1}. \end{aligned}$$

Let $u = \rho\psi(t) + v$ be a solution of (2.13), where $\rho \in \mathbb{R}, v \in X_1$. Then from (2.7), $\|v\| = \|(L + \lambda I)|_{X_1 \cap D(L)}^{-1} (I - Q)(\bar{h} - g(\rho\psi(t) + v(t)))\|$ $\leq \|(L + \lambda I)|_{X_1 \cap D(L)}^{-1} \|_{\mathrm{Im}\,L \to X_1} \|(I - Q)\|_{Y \to \mathrm{Im}\,L} [\|\bar{h}\|_1 + p(|\rho| \cdot \|\psi\| + \|v\|)^{\alpha} + q]$ $\leq 2\|K\|_{\mathrm{Im}\,L \to X_1} \|(I - Q)\|_{Y \to \mathrm{Im}\,L} [\|\bar{h}\|_1 + p(|\rho| \cdot \|\psi\|)^{\alpha} (1 + \frac{\|v\|}{|\rho| \cdot \|\psi\|})^{\alpha} + q]$ $= 2\|K\|_{\mathrm{Im}\,L \to X_1} \|(I - Q)\|_{Y \to \mathrm{Im}\,L} [\|\bar{h}\|_1 + p(|\rho| \cdot \|\psi\|)^{\alpha} (1 + \frac{\|v\|}{|\rho| \cdot \|\psi\|})^{\alpha} + q]$ $\leq 2\|K\|_{\mathrm{Im}\,L \to X_1} \|(I - Q)\|_{Y \to \mathrm{Im}\,L} [\|\bar{h}\|_1 + p(|\rho| \cdot \|\psi\|)^{\alpha} (1 + \frac{\alpha\|v\|}{|\rho| \cdot \|\psi\|}) + q]$ $= 2\|K\|_{\mathrm{Im}\,L \to X_1} \|(I - Q)\|_{Y \to \mathrm{Im}\,L} [\|\bar{h}\|_1 + p(|\rho| \cdot \|\psi\|)^{\alpha} (1 + \frac{\alpha\|v\|}{|\rho| \cdot \|\psi\|}) + q]$ $= 2\|K\|_{\mathrm{Im}\,L \to X_1} \|(I - Q)\|_{Y \to \mathrm{Im}\,L} [\|\bar{h}\|_1 + p(|\rho| \cdot \|\psi\|)^{\alpha} (1 + \frac{\alpha\|v\|}{|\rho| \cdot \|\psi\|}) + q]$.

Therefore,

$$\frac{\|v\|}{(|\rho| \cdot \|\psi\|)^{\alpha}} \le \frac{c_0}{(|\rho| \cdot \|\psi\|)^{\alpha}} + c_1 + \frac{\alpha c_1}{(|\rho| \cdot \|\psi\|)^{1-\alpha}} \cdot \frac{\|v\|}{(|\rho| \cdot \|\psi\|)^{\alpha}}$$

where

$$c_0 = 2 \|K\|_{\operatorname{Im} L \to X_1} \|(I-Q)\|_{Y \to \operatorname{Im} L} (\|\bar{h}\|_1 + q),$$

$$c_1 = 2p \|K\|_{\operatorname{Im} L \to X_1} \|(I-Q)\|_{Y \to \operatorname{Im} L}.$$

 \mathbf{If}

$$|\rho| \ge \frac{(2\alpha c_1)^{\frac{1}{1-\alpha}}}{\|\psi\|} := \tilde{c},$$

Z. WANG, C. GAO

then

$$\frac{\|v\|}{(|\rho| \cdot \|\psi\|)^{\alpha}} \le \frac{2c_0}{(\tilde{c}\|\psi\|)^{\alpha}} + 2c_1 := \bar{c}.$$
(2.21)

Step 4. If we now assume that the conclusion of the lemma is false, we obtain a sequence $\{\lambda_n\}: 0 \leq \lambda_n \leq \eta_1, \lambda_n \to 0$ and a sequence $\{u_n\}: u_n = \rho_n \psi(t) + v_n, \rho_n \in \mathbb{R}, v_n \in X_1$ with $||u_n|| \to \infty$ such that

$$\lambda_n \rho_n \psi(t) + Qg(\rho_n \psi(t) + v_n(t)) = \tau \psi(t).$$
(2.22)

It follows immediately from (2.21) that

$$|\rho_n| \to \infty, \|v_n\| (|\rho_n| \cdot \|\psi\|)^{-1} \to 0, \quad n \to \infty.$$

$$(2.23)$$

So we infer that there exists sufficiently large $n_0 \in \mathbb{N}$ such that for $n \geq n_0$

$$|v_n(t)|(|\rho_n|\psi(t))^{-1} \le 1, \quad t \in [0,T].$$
 (2.24)

Without loss of generality, let $\rho_n \to +\infty$ if $n \to +\infty$ (the other case be proved by similar method), then there exists sufficiently large $n_0 \in \mathbb{N}$. If $n \ge n_0$, $\lambda_n \rho_n \ge 0$; thus

$$\tau - \frac{1}{T} \int_0^T \frac{g(\rho_n \psi(s) + v_n(s))}{\psi(s)} ds \ge 0,$$

$$\tau \ge \frac{1}{T} \liminf_{n \to \infty} \int_0^T \frac{g(\rho_n \psi(s) + v_n(s))}{\psi(s)} ds.$$

(2.25)

To apply Fatou's lemma to (2.25), we need a function $\hat{K} \in L^1[0,T]$ such that for $s \in [0,T], \frac{g(u_n(s))}{\psi(s)} \ge \hat{K}(s)$. Indeed, from the relation (2.24), one has that there exists nonnegative function $k_1 \in L^1[0,T]$ such that for $n \ge n_0$,

$$|v_n(t)|(\rho_n\psi(t))^{-1} \le k_1(t), \quad t \in [0,T],$$

and for every $s \in [0, T]$,

$$\begin{split} \gamma(u_n(s))u_n(s) + f(u_n(s)) &= \gamma(u_n(s))(\rho_n\psi(s) + v_n(s)) + f(u_n(s)) \\ &\geq \gamma(u_n(s))\frac{\rho_n\psi(s) + v_n(s)}{|\rho_n|\psi(s)} + f(u_n(s)) \\ &\geq \gamma(u_n(s))(1 - k_1(s)) - |f(u_n(s))| \\ &\geq -(p + \frac{1}{4}\bar{\delta})(1 - k_1(s)) - \sigma := \hat{K}(s). \end{split}$$

It follows from $\psi(s) > 0$ that

$$\frac{1}{\psi(s)}g(\rho_n\psi(s)+v_n(s)) \ge \frac{1}{\psi(s)}\hat{K}(s), s \in [0,T].$$

Thus, applying Fatou's lemma to (2.25), we have

$$\begin{aligned} \tau &\geq \frac{1}{T} \liminf_{n \to \infty} \int_0^T \frac{g(\rho_n \psi(s) + v_n(s))}{\psi(s)} ds \\ &\geq \frac{1}{T} \int_0^T \liminf_{n \to \infty} \frac{g(\rho_n \psi(s) + v_n(s))}{\psi(s)} ds \\ &\geq \frac{1}{T} \int_0^T \frac{g_{+\infty}}{\psi(s)} ds. \end{aligned}$$

This contradicts with (H4).

Lemma 2.5. Assume that (H1), (H2), (H3'), (H4') hold, and λ satisfies

$$0 \le \lambda \le \eta_1 := \frac{1}{2 \|K\|_{\operatorname{Im} L \to X_1}}$$

Then there exists constant $R_0 > 0$ such that any solution u of (1.1) (1.2) satisfy $||u|| < R_0$.

3. The Proof of the Main Result

Lemma 3.1. Assume that (H1)–(H4) hold. Then there exists $R_1 : R_1 \ge R_0$ such that for $0 \le \lambda \le \delta$, and $R \ge R_1$ one has

$$\deg(L + \lambda I + N - h, B(R), 0) = \deg(L + \delta I, B(R), 0) = \pm 1,$$

where $B(R) = \{u \in C[0,T] : ||u|| < R\}$, and the deg denotes Leray-Schauder degree when $\lambda \neq 0$ and coincidence degree when $\lambda = 0$. Then (1.1),(1.2) has a solution in $\overline{B}(R)$ for $0 \le \lambda \le \delta$.

Proof. From Lemma 2.4 and the definition of L, if $\lambda \in [0, \delta]$,

$$\deg(L+\delta I, B(R), 0)$$

is defined and depends on λ . Let $(\mu, u) \in [0, 1] \times X$ be a solution of (2.3). Then $Lu + \delta u + \mu (Nu - h) = 0.$

 So

$$\|u\| = \mu \|(L+\delta)^{-1}(h-Nu)\| \le \|(L+\delta)^{-1}\|_{Y\to X}(\|h\|_1 + p\|u\|^{\alpha} + q).$$

Therefore there exists $R'_0 > 0$ such that $||u|| < R'_0$. Choosing $R_1 = \max\{R'_0, R_0\}$, then for arbitrary $R > R_1$,

$$\deg(L + \lambda I + N - h, B(R), 0) = \deg(L + \delta I, B(R), 0) = \pm 1.$$

Lemma 3.2. Assume that (H1), (H2), (H3'), (H4') hold. Then there exists $R_1 : R_1 \ge R_0$ such that for $0 \le \lambda \le \delta$, and $R \ge R_1$ one has

$$\deg(L+\lambda I+N-h, B(R), 0) = \deg(L+\delta I, B(R), 0) = \pm 1$$

where $B(R) = \{ u \in C[0, T] : ||u|| < R \}.$

Lemma 3.3. Assume that (H1)–(H4) hold. Then there exists $\mu \ge 0$ such that for $-\mu \le \lambda \le 0$ one has

$$\deg(L + \lambda I + N - h, B(R), 0) = \deg(L + \delta I, B(R), 0) = \pm 1,$$

where R be defined in Lemma 3.1. Then (1.1),(1.2) has a solution in B(R) for $-\mu \leq \lambda \leq \delta$.

Proof. Let

$$\tau_0 = \inf_{u \in \partial B(R) \cap X} \|Lu + Nu - h\|.$$

It is easy to verify that $\tau_0 > 0$. Choosing sufficiently small $\mu > 0$ such that $\mu R < \tau_0$, then if $\lambda \in [-\mu, \mu]$,

$$\deg(L + \lambda I + N - h, B(R), 0) = \deg(L + N - h, B(R), 0).$$

Combined with Lemma 3.1, the result can be proved. That is to see that if $\lambda \in [-\mu, \delta]$, (2.3) has at least one solution in $\overline{B}(R)$.

Lemma 3.4. Assume that (H1), (H2), (H3')(H4') hold. Then there exists $\mu \ge 0$ such that for $-\mu \le \lambda \le 0$, one has

$$\deg(L + \lambda I + N - h, B(R), 0) = \deg(L + \delta I, B(R), 0) = \pm 1,$$

where R be defined in Lemma 3.1. Then (1.1), (1.2) has a solution in B(R) for $-\mu \leq \lambda \leq \delta$.

Remark 3.5. Since g is L-completely continuous and satisfies (H2) and since $\lambda = 0$ is a simple eigenvalue of L, it follows from bifurcation results of [4] that there exist two connected sets $\mathcal{C}_+, \mathcal{C}_- \subset \mathbb{R} \times X$ of solutions of (1.1), (1.2) such that for all sufficiently small $\epsilon > 0$,

$$\mathcal{C}_+ \cap U_\epsilon \neq \emptyset, \quad \mathcal{C}_- \cap U_\epsilon \neq \emptyset.$$

where $U_{\epsilon} := \{(\lambda, u) \in \mathbb{R} \times X, |\lambda| < \epsilon, ||u|| > 1/\epsilon\}.$

Proof of Theorem 1.1. Set $\lambda^+ = \delta$, then it follows from Lemma 3.1 and Lemma 3.3 that (1.1), (1.2) has at least one solution in B(R) for $\lambda \in [-\mu, \lambda_+]$. On the other hand, Remark 3.5 shows that there exists two connected sets C_+ and C_- of solutions of (1.1), (1.2) bifurcating from infinity at $\lambda = 0$. Hence by Lemma 2.4, the connected sets C_+ and C_- of Remark 3.5 must satisfy

$$\mathcal{C}_+, \mathcal{C}_- \subset \{(\lambda, u) : \|u\| \ge 1/\epsilon, -\mu < \lambda < 0\}.$$

and hence, if $1/\epsilon \ge R$; i.e., $\epsilon \le 1/k$. Choosing $\lambda_{-} = \max\{-\mu, -1/k\}$, we obtain two solutions $u_1, u_2 : u_1 \in \mathcal{C}_+, u_2 \in \mathcal{C}_-$, and $||u_i|| \ge R$ (i = 1, 2).

Theorem 1.2 can be proved by a similar method.

References

- R. P. Agarwal, Jinhai Chen; Periodic solutions for first order differential systems. Appl. Math. Lett. 23 (2010), no. 3, 337-341.
- [2] S. Cheng, G. Zhang; Existence of positive periodic soutions for non-autonomous functional differential equations, Electronic J. Differential Equations, 59 (2001) 1-8.
- [3] W. S. Gurney, S. P. Blythe, R. N. Nisbet; Nicholson's blowflies revisited, Nature 287 (1980) 17-21.
- [4] R. Iannacci, M. N. Nkashama; Unbounded perturcations of forced second order at resonace, J. Diff. Eqns., 69(1987), 289-309.
- [5] Z. Jin, H. Wang; A note on positive periodic solutions of delayed differential equations, Appl. Math. Lett., 23(5)(2010) 581-584.
- [6] R. Ma, R. Chen, T. Chen; Existence of positive periodic solutions of nonlinear first-order delayed differential equations, J. Math. Anal. Appl., 384 (2011) 527-535.
- [7] R. Ma; Bifurcation from infinity and multiple solutions for periodic boundary value problems, Nonlinear Analysis: TMA, 42 (2000), 27-39.
- [8] M. C. Mackey, L. Glass; Oscillations and chaos in physiological control systems, Science 197 (1977) 287-289.
- J. Mawhin, K. Schmitt; Landesman-Lazer type problems at an eigenvalue of odd multiplicity, Result in Math. 14(1988), 138-146.
- [10] S. Padhi, S. Srivastava; Multiple periodic solutions for nonlinear first order functional differential equations with applications to population dynamics, Appl. Math. Comput. 203(1) (2008) 1-6.
- [11] S. Padhi, S. Srivastava; Existence of three periodic solutions for a nonlinear first order functional differential equation, Journal of the Franklin Institute, 346(2009), 818-829.
- [12] P. Rabinowitz; On bifurcation from infinity, J. Diff. Eqns., 14(1973) 462-475.
- [13] A. Wan, D. Jiang, X. Xu; A new existence theory for positive periodic solutions to functional differential equations, Comput. Math. Appl., 47 (2004) 1257-1262.

- [14] H. Wang; Positive periodic solutions of functional differential equations, J. Diff. Eqns., 202 (2004) 354-366.
- [15] M. Wazewska-Czyzewska, A. Lasota; Mathematical problems of the dynamics of a system of red blood cells, Mat. Stos. 6 (1976) 23-40 (in Polish).
- [16] G. Zhang, S. Cheng; Positive periodic solutions of nonautonomuous functional differential equations depending on a parameter, Abstr. Appl. Anal. 7(2002) 279-286.

Zhenyan Wang

DEPARTMENT OF MATHEMATICS, NORTHWEST NORMAL UNIVERSITY, LANZHOU 730070, CHINA *E-mail address:* wangzhenyan86714@163.com

Chenghua Gao

DEPARTMENT OF MATHEMATICS, NORTHWEST NORMAL UNIVERSITY, LANZHOU 730070, CHINA *E-mail address:* gaokuguo@163.com