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EXISTENCE OF THREE POSITIVE SOLUTIONS FOR A
SYSTEM OF NONLINEAR THIRD-ORDER ORDINARY

DIFFERENTIAL EQUATIONS

NEMAT NYAMORADI

Abstract. In this work, we use the Leggett-Williams fixed point theorem,
we prove the existence of at least three positive solutions of a boundary-value
problem for system of third-order ordinary differential equations.

1. Introduction

Third-order differential equations arise in a variety of different areas of applied
mathematics and physics. In recent years, boundary-value problems (BVPs for
short) have included, as special cases, multi-point BVPs considered by many au-
thors (see [1, 2, 4, 9, 11, 12] and references therein). Naturally, further study in this
specific field is on BVPs for systems of ordinary differential equations. However,
to our knowledge, various results for systems of second and third order differential
equations have been established (see [5, 8, 10] and references therein). Guo et al.
[4] obtained some existence results for positive solutions for the BVP

u′′′(t) + a(t)f(u(t)) = 0 0 < t < 1

u(0) = u′(0) = 0, u′(1) = αu′(η),

by using the well-know Guo-Krasnoselshkii and Leggett-Williiams fixed point the-
orems [3, 6, 7] when f is superlinear or sublinear. Hu et al. [5] established some
results on the existence and multiplicity of positive solution for the BVP

−u′′(t) = f(x, v)

−v′′(t) = g(x, u),

αu(0)− βu′(0) = 0, γu(1) + σu′(1) = 0,

αv(0)− βv′(0) = 0, γv(1) + σv′(1) = 0.

Li et al. [8], considered the existence of positive solutions for the boundary-value
problem

−u′′′(t) = a(t)f(t, v(t))

−v′′′(t) = b(t)h(t, u(t)),
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u(0) = u′(0) = 0, u′(1) = αu′(η),

v(0) = v′(0) = 0, v′(1) = αv′(η) = 0.

Motivated by the above-mentioned works, in this article, we prove the existence of
at least three positive solutions for the boundary-value problem

u′′′(t) + a(t)f(t, u(t), v(t)) = 0, 0 < t < 1,

v′′′(t) + b(t)h(t, u(t), v(t)), 0 < t < 1,

u(0) = u′(0) = 0, u′(1) = βu′(η),

v(0) = v′(0) = 0, v′(1) = βv′(η),

(1.1)

where f, h : [0, 1] × [0,∞) × [0,∞) → [0,∞) are continuous and 0 < η < 1,
1 < β < 1/η, a(t), b(t) ∈ C([0, 1], [0,∞)) and are not identically zero on [η/β, η].

A pair of functions (u, v) ∈ C3((0, 1), R+)×C3((0, 1), R+) is said to be a positive
solution of (1.1) if (u, v) satisfies (1.1) and u(t) ≥ 0, v(t) > 0, or u(t) > 0, v(t) ≥ 0,
for all t ∈ (0, 1).

For the convenience of the reader, we present here the Leggett-Williams fixed
point theorem.

Given a cone K in a real Banach space E, a map α is said to be a nonnegative
continuous concave (resp. convex) functional on K provided that α : K → [0,+∞)
is continuous and

α(tx + (1− t)y) ≥ tα(x) + (1− t)α(y),

(resp. α(tx + (1− t)y) ≤ tα(x) + (1− t)α(y)),

for all x, y ∈ K and t ∈ [0, 1]. Let 0 < a < b be given and let α be a nonnegative
continuous concave functional on K. Define the convex sets Pr and P (α, a, b) by

Pr = {x ∈ K|‖x‖ < r}, P (α, a, b) = {x ∈ K|a ≤ α(x), ‖x‖ ≤ b}.

Theorem 1.1 (Leggett-Williams fixed point theorem). Let A : Pc → Pc be a com-
pletely continuous operator and let α be a nonnegative continuous concave functional
on K such that α(x) ≤ ‖x‖ for all x ∈ Pc. Suppose there exist 0 < a < b < d ≤ c
such that

(A1) {x ∈ P (α, b, d) : α(x) > b} 6= ∅, and α(Ax) > b for x ∈ P (α, b, d);
(A2) ‖Ax‖ < a for ‖x‖ ≤ a; and
(A3) α(Ax) > b for x ∈ P (α, b, c) with ‖Ax‖ > d.

Then A has at least three fixed points x1, x2 and x3 and such that ‖x1‖ < a,
b < α(x2) and ‖x3‖ > a, with α(x3) < b.

Inspired and motivated by the works mentioned above, in this work we consider
the existence of positive solutions to (1.1). We shall first give a new form of the
solution, and then determine the properties of the Green’s function for associated
linear boundary-value problems; finally, by employing the Leggett-Williams fixed
point theorem, some sufficient conditions guaranteeing the existence of a positive
solution. The rest of the article is organized as follows: in Section 2, we present
some preliminaries that will be used in Section 3. The main results and proofs will
be given in Section 3. Finally, in Section 4, we shall give an example to illustrate
our main result.
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2. Preliminaries

In this section, we present some notations and preliminary lemmas that will be
used in the proof of the main result. Obviously, (u(t), v(t)) ∈ C3([0, 1], (0,+∞))×
C3([0, 1], (0,+∞)) is a solution of (1.1) if and only if (u(t), v(t)) is a solution of the
system of integral equations

u(t) =
∫ 1

0

G(t, s)a(s)f(s, u(s), v(s))ds, (2.1)

v(t) =
∫ 1

0

G(t, s)b(s)h(s, u(s), v(s))ds, (2.2)

where G(t, s) is the Green’s function [3] defined as follows:

G(t, s) =
1

2(1− βη)


(2ts− s2)(1− βη) + t2s(β − 1), s ≤ min{η, t}
t2(1− βη) + t2s(β − 1), t ≤ s ≤ η

(2ts− s2)(1− βη) + t2(βη − s), η ≤ s ≤ t,

t2(1− s), max{η, t} ≤ s .

We need some properties of function G(t, s) in order to discuss the existence of
positive solutions. For convenience, we define

g(s) =
1 + α

1− βη
s(1− s) s ∈ [0, 1]. (2.3)

For the Green’s function G(t, s), we have the following two lemmas [3].

Lemma 2.1. Let 0 < η < 1 and 1 < β < 1/η. Then for any (t, s) ∈ [0, 1]× [0, 1],
we have 0 ≤ G(t, s) ≤ g(s).

Lemma 2.2. Let 0 < η < 1 and 1 < β < 1/η. Then for any (t, s) ∈ [η/β, η]× [0, 1],
we have

λg(s) ≤ G(t, s),
where 0 < λ = η2 min{β − 1, 1}/(2β2(1 + β)) < 1.

In this article, we assume that the following conditions are satisfied

0 <

∫ 1

0

g(s)a(s)ds < +∞, 0 <

∫ 1

0

g(s)b(s)ds < +∞. (2.4)

Also, we use the following notation

M1 = max
0≤t≤1

∫ 1

0

G(t, s)a(s)ds, M2 = max
0≤t≤1

∫ 1

0

G(t, s)b(s)ds,

m1 = min
η/β≤t≤η

∫ η

η/β

G(t, s)a(s)ds, m2 = min
η/β≤t≤η

∫ η

η/β

G(t, s)b(s)ds.

Clearly, we see that 0 < mi < Mi; for i = 1, 2.
Let E = C([0, 1], R)×C([0, 1], R) endowed with the norm ‖(u, v)‖ := ‖u‖+ ‖v‖,

where ‖u‖ = max0≤t≤1 |u(t)|, ‖v‖ = max0≤t≤1 |v(t)|, and define

K = {(u, v) ∈ E;u(t) ≥ 0, v(t) ≥ 0, t ∈ [0, 1], min
η/β≤t≤η

(u(t) + v(t)) ≥ γ‖(u, v)‖}.

It is obvious that E is a Banach space and K is a cone in E. Define operator
T : E → E as

T (u, v)(t) = (A(u, v)(t), B(u, v)(t)), ∀t ∈ (0, 1), (2.5)
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where

A(u, v)(t) =
∫ 1

0

G(t, s)a(s)f(s, u(s), v(s))ds, (2.6)

B(u, v)(t) =
∫ 1

0

G(t, s)b(s)f(s, u(s), v(s))ds. (2.7)

Lemma 2.3. For T and K as above, T (K) ⊂ K.

Proof. For any (u, v) ∈ K, from properties of G(t, s), A(u, v)(t) ≥ 0, B(u, v)(t) ≥
0, t ∈ [0, 1], and it follows from (2.6), (2.7) and Lemma 2.1 that

‖A(u, v)‖ ≤
∫ 1

0

g(s)a(s)f(s, u(s), v(s))ds,

‖B(u, v)‖ ≤
∫ 1

0

g(s)b(s)f(s, u(s), v(s))ds,

(2.8)

Thus, for any (u, v) ∈ K, by Lemma 2.2 and the above inequality,

min
η/β≤t≤η

A(u, v)(t) = min
η/β≤t≤η

∫ 1

0

G(t, s)a(s)f(s, u(s), v(s))ds,

≥ λ

∫ 1

0

g(s)a(s)f(s, u(s), v(s))ds

≥ λ‖A(u, v)‖.

In the same way, for any (u, v) ∈ K, we have

min
η/β≤t≤η

B(u, v)(t) ≥ λ‖B(u, v)‖.

Therefore,

min
η/β≤t≤η

(A(u, v)(t) + B(u, v)(t) ≥ λ‖A(u, v)‖+ λ‖B(u, v)‖)

= λ‖(A(u, v), B(u, v))‖.

From the above, we conclude that T (u, v) = (A(u, v), B(u, v)) ∈ K, that is, T (K) ⊂
K. The proof is complete. �

It is clear that the existence of a positive solution for (1.1) is equivalent to the
existence of a nontrivial fixed point of T in K.

3. Main results

In this section, we discuss the existence of a positive solution (1.1). We define
the nonnegative continuous concave functional on K by

α(u, v) = min
η/β≤t≤η

(u(t), v(t)).

It is obvious that, for each (u, v) ∈ K, α(u, v) ≤ ‖(u, v)‖. In this section, we
assume that pi, i = 1, 2, are two positive numbers satisfying 1

p1
+ 1

p2
≤ 1. Also, we

use the following assumptions: There exist nonnegative numbers a, b, c such that
0 < a < b ≤ min{λ, m1

p1M1
, m2

p2M2
}c, and f(t, u, v), h(t, u, v) satisfy the following

conditions:
(H1) f(t, u, v) < 1

p1
· c

M1
, h(t, u, v) < 1

p2
· c

M2
, for all t ∈ [0, 1], u + v ∈ [0, c];

(H2) f(t, u, v) < 1
p1
· a

M1
, h(t, u, v) < 1

p2
· a

M2
, for all t ∈ [0, 1], u + v ∈ [0, a];
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(H3) f(t, u, v) > b/m1 or h(t, u, v) > b/m2, for all t ∈ [0, 1], u + v ∈ [b, b/λ].

Theorem 3.1. Assume (2.4) and (H1)–(H3). Then (1.1) has at least three positive
solutions (u1, v1), (u2, v2), (u3, v3) such that ‖(u1, v1)‖ < a, b < min[η/β,η](u2(t) +
v2(t)), and ‖(u3, v3)‖ > a, with minη/β≤t≤η(u3(t) + v3(t)) < b.

Proof. First, we show that T : Pc → Pc is a completely continuous operator. If
(u, v) ∈ Pc, by condition (H1), we have

‖T (u, y)‖ = max
0≤t≤1

|A(u, v)(t)|+ max
0≤t≤1

|B(u, v)(t)|

= max
0≤t≤1

∫ 1

0

G(t, s)a(s)f(s, u(s), v(s))ds

+ max
0≤t≤1

∫ 1

0

G(t, s)b(s)h(s, u(s), v(s))ds

≤ 1
p1

· c

M1
max
0≤t≤1

∫ 1

0

G(t, s)a(s)ds +
1
p2

· c

M2
max
0≤t≤1

∫ 1

0

G(t, s)b(s)ds

≤ 1
p1

· c

M1
·M1 +

1
p2

· c

M2
·M2 ≤ c.

Therefore, ‖T (u, y)‖ ≤ c, that is, T : Pc → Pc. The operator T is completely
continuous by an application of the Ascoli-Arzela theorem.

In the same way, the condition (H2) implies that the condition (A2) of Theorem
1.1 is satisfied. We now show that condition (A1) of Theorem 1.1 is satisfied.
Clearly, {(u, v) ∈ P (α, b, b/λ)|α(u, v) > b} 6= ∅. If (u, v) ∈ P (α, b, b/λ), then
b ≤ u(s) + v(s) ≤ b

λ , s ∈ [η/β, η].
By condition (H3), we obtain

α(T (u, v)(t)) = min
η/β≤t≤η

(A(u, v)(t) + B(u, v)(t))

≥ min
η/β≤t≤η

∫ η

η/β

G(t, s)a(s)f(s, u(s), v(s))ds

+ min
η/β≤t≤η

∫ η

η/β

G(t, s)b(s)h(s, u(s), v(s))ds

≥ b

m1
min

η/β≤t≤η

∫ η

η/β

G(t, s)a(s)ds =
b

m1
·m1 = b.

Therefore, condition (A3) of Theorem 1.1 is satisfied.
Finally, we show that the condition (A3) of Theorem 1.1 is satisfied. If (u, v) ∈

P (α, b, c), and ‖T (u, v)‖ > b
λ , then

α(T (u, v)(t)) = min
η/β≤t≤η

(A(u, v)(t) + B(u, v)(t)) ≥ λ‖T (u, v)‖ > b.

Therefore, the condition (A3) of Theorem 1.1 is also satisfied. By Theorem 1.1,
there exist three positive solutions (u1, v1), (u2, v2), (u3, v3) such that ‖(u1, v1)‖ <
a, b < minη/β≤t≤η(u2(t) + v2(t)), and ‖(u3, v3)‖ > a, with minη/β≤t≤η(u3(t) +
v3(t)) < b. �
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4. Application

Consider the system of nonlinear third-order ordinary differential equations

u′′′(t) + f(t, u(t), v(t)) = 00 < t < 1,

v′′′(t) + h(t, u(t), v(t)), 0 < t < 1,

u(0) = u′(0) = 0, u′(1) =
3
2
u′(

1
2
),

v(0) = v′(0) = 0, v′(1) =
3
2
v′(

1
2
),

(4.1)

where

f(t, u, v) = h(t, u, v)

=


t

100 + 1
200 (u + v)2, t ∈ [0, 1], 0 ≤ u + v ≤ 1,

t
100 + 240[(u + v)2 − (u + v)] + 1

200 , t ∈ [0, 1], 1 < u + v < 2,
t

100 + 30[10 log2 (u + v) + 3(u + v)] + 1
200 , t ∈ [0, 1], 2 ≤ u + v ≤ 4

t
100 +

√
u+v
2 + 191801

200 , t ∈ [0, 1], 4 < u + v < +∞.

It is easy to check that g(s) = 10s(1− s), for all s ∈ [0, 1], 0 <
∫ 1

0
g(s)a(s)ds <

+∞, 0 <
∫ 1

0
g(s)b(s)ds < +∞ hold. Choose p1 = p2 = 2. Then by direct calcu-

lations, we can obtain that M1 = M2 = 5/3, m1 = m2 = 13/2916. So we choose
a = 1, b = 2, c = 3500. It is easy to check that f, h satisfy the conditions (H1)–
(H3). So system (4.1) has at least three positive solutions (u1, v1), (u2, v2), (u3, v3)
such that ‖(u1, v1)‖ < 1, 2 < min 1

3≤t≤ 1
2
(u2(t) + v2(t)), and ‖(u3, v3)‖ > 1, with

min 1
3≤t≤ 1

2
(u3(t) + v3(t)) < 2.
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