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KRASNOSEL’SKII FIXED POINT THEOREM FOR DISSIPATIVE
OPERATORS

TIAN XIANG

Abstract. In this note, a sufficient condition guaranteing the existence of
fixed points in a nonempty, closed convex K for T +S is given, where T : K ⊂
E → E is dissipative and S : K → E is condensing. This may indicate a new
direction of the Krasnoselskii type fixed point theorem.

1. Introduction

In 1955, Krasnoselskii [8] proved a fixed point theorem for the sum of two op-
erators. The theorem was motivated by an observation that the inversion of a
perturbed differential operator may yield the sum of a compact and contraction
operator. Krasnoselskii’s theorem actually combines the Banach contraction map-
ping principle and the Schauder [12] fixed point theorem. It asserts that the sum
T + S has at least one fixed point in a nonempty, closed convex subset K of a
Banach space E, where S and T verify:

(i) T is a contraction with constant α < 1;
(ii) S is continuous and S(K) resides in a compact subset of E;
(iii) any x, y ∈ K imply Tx+ Sy ∈ K.
The theorem is useful in establishing the existence theorems for perturbed op-

erator equations. The importance of this kind of results relies on, among other
things, its many applications in nonlinear analysis. For instance, it has a wide
range of applications to nonlinear integral equations of mixed type for proving the
existence of solutions. Thus the existence of fixed points for the sum of two opera-
tors has been focus of tremendously interest and their applications are frequent in
nonlinear analysis. For example, O’regan [10] proved a kind of such results with ap-
plications to boundary-value problems of second-order with nonlinearities. Several
improvements of Krasnosel’skii Theorem have been established in the literature in
the course of time by modifying assumption (i), (ii) or (iii). See [4, 6, 13, 14]. It
was mentioned in [4] that the condition (iii) is too stringent and can be replaced
by a mild one, in which Burton proposed the following improvement for (iii): if
x = Tx+ Sy with y ∈ K, then x ∈ K. Subsequently, Dhage [6] replaced (i) by the
following requirement: T is a bounded linear operator on E, and T p is a nonlinear
contraction for some p ∈ N. In [13], the authors firstly replaced the contraction
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map by an expansion and then replaced the compactness of the operator S by a
k−set contractive one, and obtained some new fixed point results, which extend
and develop some previous related fixed point results. More recently, a pretty uni-
versal compact-type and noncompact-type Krasnoselskii fixed point theorem were
established in [9] and [14], respectively.

So far, for the sum of two operators, many kinds of generalizations and variants
of Krasnoselskii’s fixed point theorem have been obtained, see for example [4, 5, 6,
9, 10, 13, 14] and the references therein.

The fixed point results obtained in [14] facilitate the application of Krasnosel’skii
Theorem to another kind of operator, namely, dissipative operator. We thus con-
sider in this note the fixed point of the sum T + S in a nonempty, closed convex
K, where T : K ⊂ E → E is dissipative and S : K → E is condensing. Since
dissipative operators may not be continuous, the assumption on T lessens the usual
continuity assumption on T . Thus, this may indicate a new direction of the Kras-
noselskii type fixed point theorem. In a special case with K = Bρ, under mild
condition S(Bρ) ⊂ R(I − T ), it is shown that T + S has at least one fixed point in
Bρ, where Bρ is the closed ball with radius ρ > 0 and center at origin.

2. A Fixed point theorem for the sum of dissipative and condensing
operators

Throughout this note, we denote by (E, ‖ ·‖) a Banach space. Define the duality
set of x ∈ E, a subset of the dual space E∗ of E, by

J(x) =
{
x∗ ∈ E∗ : ‖x∗‖2

E∗ = ‖x‖2
E = 〈x∗, x〉

}
.

Let T : D(T ) ⊂ E → E be a (possibly) nonlinear operator. Then T is said to be
dissipative if for each x, y ∈ D(T ) there exists f ∈ J(x− y) such that

Re〈f, Tx− Ty〉 ≤ 0. (2.1)

This notion is a nonlinear version of linear dissipative operators, introduced in [3]
and [7] independently. Dissipative or accretive operators play a significant role in
the study of nonlinear semigroups, differential equations in Banach spaces, and
fully nonlinear partial differential equations.

For a Hilbert space H, it is clear that (2.1) is equivalent to (x− y, Tx−Ty) ≤ 0
for all x, y ∈ D(T ). Using this equivalent characterization, one can easily show that
the Laplacian operator, ∆, defined on the dense subspace of compactly supported
smooth functions on the domain Ω ⊂ Rn, is a dissipative operator. The following
proposition is useful in our further purpose, we may provide all the details for
completeness.

Proposition 2.1. Assume that T : D(T ) ⊂ E → E is a dissipative operator. Then
(i) (I − T ) is one-to-one;
(ii) T is closed if and only if R(λI − T ) = (λI − T )(D(T )) is closed for any

λ > 0.

Proof. (i). Since T : D(T ) ⊂ E → E is a dissipative operator, we obtain (cf. [7,
Lemma 1.1])

‖x− y‖ ≤ ‖x− y − λ(Tx− Ty)‖ (2.2)

for all λ > 0 and x, y ∈ D(T ). Setting λ = 1 in (2.2), we see that (I−T ) is injective.
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(ii) “if part”: Take yn = (λI − T )xn ∈ R(λI − T ) with yn → y. One can readily
deduce from (2.2) that

‖xn − xm‖ ≤
1
λ
‖yn − ym‖,

which illuminates that {xn} is a Cauchy sequence, and therefore converges to some
x in E. This in turn gives Txn = λxn − yn → λx − y. The closedness of T then
implies that x ∈ D(T ) and λx− y = Tx; i.e., y = (λI − T )x ∈ R(λI − T ).

“only if part”: Since T is dissipative, it follows from (2.2) that

(λI − T )−1 : R(λI − T ) → D(T )

is Lipschitz continuous, and

‖(λI − T )−1x− (λI − T )−1y‖ ≤ 1
λ
‖x− y‖ (2.3)

for all λ > 0 and all x, y ∈ R(λI − T ).
Let now xn ∈ D(T ) with xn → x and Txn → y. Set yn = (λI−T )xn then yn →

λx−y. Since R(λI−T ) is closed, it follows that λx−y ∈ R(λI−T ). Consequently,
the continuity of (λI − T )−1 gives xn = (λI − T )−1yn → (λI − T )−1(λx− y). The
uniqueness of limit yields that x ∈ D(T ) and y = Tx. �

Theorem 2.2. Let K be a nonempty, closed convex subset E and let T : K → E
be a dissipative operator and let S : K → E be condensing. Assume that there
exists R > 0 such that ‖Sx + T0‖ ≤ R whenever x ∈ K and ‖x‖ = R. Assume
additionally that either one of the following holds.

(i) T is closed and linear, and there exists λ0 > 0 such that K ∪ S(K) ⊂
R(λ0I − T ).

(ii) T is nonlinear and K ∪ S(K) ⊂ R(I − T ).
Then S + T has at least one fixed point in K.

Proof. It is sufficient to give the proof for the linear case. Since T is a linear and
dissipative, we know from (2.3) that (λI − T )−1 : R(λI − T ) → D(T ) is bounded
and ‖(λI − T )−1‖ ≤ 1/λ for each λ > 0.

We next show that R(λI−T ) = R(λ0I−T ) whenever |λ−λ0| < ‖(λ0I−T )−1‖,
which makes sense by (2.3). Observe that in such case, we have

λI − T = λ0I − T + λI − λ0I = [I − (λ0 − λ)(λ0I − T )−1](λ0I − T ). (2.4)

Note that T is linear. It then follows easily from K ⊂ R(λ0I − T ) that I − (λ0 −
λ)(λ0I − T )−1 transforms R(λ0I − T ) into itself. Now for any y ∈ R(λ0I − T ),
define Ty : R(λ0I − T ) → R(λ0I − T ) by

Tyx = (λ0 − λ)(λ0I − T )−1x+ y.

In light of (ii) of proposition 2.1, R(λ0I−T ) is closed. Note now that |λ−λ0| <
‖(λ0I − T )−1‖−1. Then an application of Banach contraction mapping principle
shows that

[I − (λ0 − λ)(λ0I − T )−1] R(λ0I − T ) = R(λ0I − T ). (2.5)

Joining (2.4) and (2.5) we confirm the said assertion.
Proceeding in this manner, we finally deduce that R(λ0I − T ) = R(λI − T ) for

all λ > 0. Consequently, S(K) ⊂ R(λ0I − T ) = R(I − T ). We now define the
mapping of K → K by

x→ (I − T )−1Sx.



4 T. XIANG EJDE-2011/147

We claim that ψ((I −T )−1S(A)) < ψ(A) for all A ⊂ K with ψ(A) > 0, where ψ
denotes the Kuratowskii measure of non-compactness or the Hausdorff measure of
non-compactness. Indeed, take any bounded A ⊂ K with ψ(A) > 0, it follows from
(2.3), the basic properties of measure of non-compactness [1, 2] and the assumption
that S is condensing that

ψ((I − T )−1S(A)) ≤ ψ(S(A)) < ψ(A).

Now, if K is bounded, then the well-known Sadovskii fixed point theorem finishes
the proof. If K is unbounded, we need to verify that (I − T )−1S : K → K satisfies
the Leray-Schauder condition. As a matter of fact, let R > 0 be as given in our
assumption and suppose that there exist λ > 1 and x ∈ K with ‖x‖ = R such that
(I − T )−1Sx = λx. Then (I − T )(λx) = Sx. Since T is dissipative, we obtain from
(2.2) and our hypothesis that

λR = ‖λx− 0‖ ≤ ‖λx− (T (λx)− T0)‖ = ‖Sx+ T0‖ ≤ R,

which is a contradiction since λ > 1.
Now, according to the results in [11], (I −T )−1S admits at least one fixed point

in K. �

Rechecking the proof, it can be seen that the crucial point is to ensure that
R(λ0I −T ) = R(λI −T ) for all λ > 0 if λ0 6= 1. But, if λ0 happens to be one, then
it suffices to require S(K) ⊂ R(λ0I − T ) to make the theorem true. Thus we have
the following corollary.

Corollary 2.3. Let T : Bρ → E be dissipative and let S : Bρ → E be condensing
for some ρ > 0. Assume S(Bρ) ⊂ R(I − T ). Then S + T has at least one fixed
point in Bρ.
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