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BIFURCATIONS FOR A PHYTOPLANKTON MODEL WITH
TIME DELAY

CHANGJIN XU

Abstract. Applying a frequency domain approach, we investigate a phyto-
plankton model with time delay. We use the delay as a bifurcation parameter;
as it passes through a sequence of critical values, Hopf bifurcation occurs. A
family of periodic solutions bifurcate from the equilibrium when the bifurca-
tion parameter exceeds a critical value. Some numerical simulations illustrate
our theoretical results.

1. Introduction

Phytoplankton and Zooplankton are a single celled organisms that drift with the
currents on the surface of open oceans. They play an important role in stabilizing
the environment; for example, they are the staple item for the food web and they are
recyclers of most of energy that flows through the ocean ecosystem. Phytoplankton
systems have received much attention from biologists and mathematicians [2, 4]. In
2010, Dhar and Sharma [3] investigated the stability of the phytoplankton system

dPs(t)
dt

= rPs[1−
Ps

K
]− αPsPi + γPi,

dPi(t)
dt

= αPsPi − βPi,

(1.1)

where Ps, Pi are the population densities of susceptible and infected phytoplankton
at any instant of time t. r is the intrinsic growth rate of the population of sus-
ceptible phytoplankton, K is the carrying capacity of the population of susceptible
phytoplankton, α is the disease contact rate of the disease phytoplankton popula-
tion, β is the removal rate of the disease phytoplankton population, out of which γ
fraction of infected phytoplankton rejoin the susceptible phytoplankton population.
In details, one can see [3]. Taking into account that there is a certain time delay
during the process of reproduction(for example, egg formation will take τ units of
time before hatching), the dynamic behavior of the system not only is affected by
the current state of the system, but also the past state of the system, i.e., there
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exists inherent lag in the system. Based on this view of point, in this paper, we
will revise system (1.1) as follows:

dPs(t)
dt

= rPs[1−
Ps(t− τ)

K
]− αPsPi + γPi,

dPi(t)
dt

= αPsPi − βPi.

(1.2)

In this article, we investigate Hopf bifurcation for system (1.2). It is worth point-
ing out that many early work on Hopf bifurcation of the delayed differential equa-
tions is used the state-space formulation for delayed differential equations, known
as the “time domain” approach. But there exists another approach that comes from
the theory of feedback systems known as frequency domain method which was ini-
tiated and developed by Allwright [1], Mees and Chua [7] and Moiola and Chen
[8, 9] and is familiar to control engineers. This alternative representation applies
the engineering feedback systems theory and methodology: an approach described
in the “frequency domain”–the complex domain after the standard Laplace trans-
forms having been taken on the state-space system in the time domain. This new
methodology has some advantages over the classical time-domain methods [5, 6]. A
typical one is its pictorial characteristic that utilizes advanced computer graphical
capabilities thereby bypassing quite a lot of profound and difficult mathematical
analysis.

In this paper, we will devote our attention to finding the Hopf bifurcation point
for models (1.2) by means of the frequency-domain approach. We found that if
the coefficient τ is used as a bifurcation parameter, then Hopf bifurcation occurs
for the model (1.2). That is, a family of periodic solutions bifurcates from the
equilibrium when the bifurcation parameter exceeds a critical value. Some numer-
ical simulations are carried out to illustrate the theoretical analysis. We believe
that it is the first time to investigate Hopf bifurcation of the model (1.2) using the
frequency-domain approach.

The remainder of the paper is organized as follows: in Section 2, applying the
frequency-domain approach formulated by Moiola and Chen [9], the existence of
Hopf bifurcation parameter is determined and shown that Hopf bifurcation occurs
when the bifurcation parameter exceeds a critical value. In Section 3, some nu-
merical simulation are carried out to verify the correctness of theoretical analysis
result. Finally, some conclusions and discussions are included in Section 4.

2. Stability of the equilibrium and local Hopf bifurcations

In model (1.2), we assume that the condition

(H1) (Kα− β)(β − γ) > 0.

It is obvious that system (1.2) has a unique positive equilibrium E∗(P ∗
s , P ∗

i ),
where,

P ∗
s =

β

α
, P ∗

i =
rβ(Kα− β)
Kα2(β − γ)

.

We can rewrite the nonlinear system (1.2) as a matrix form

dx(t)
dt

= Ax(t) + H(x), (2.1)
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where x = (Ps(t), Pi(t))T ,

A =
(

r 1
0 −β

)
, H(x) =

(
− rPsPs(t−τ)

K − αPsPi

αPsPi

)
.

Choosing the coefficient τ as a bifurcation and introducing a “state-feedback con-
trol” u = g[y(t− τ); τ ], where y(t) = (y1(t), y2(t))T , we obtain a linear system with
a non-linear feedback as follows

dx

dt
= Ax + Bu,

y = −Cx,

u = g[y(t− τ); τ ],

(2.2)

where

B = C =
(

1 0
0 1

)
, u = g[y(t− τ), τ ] =

(
− ry1y1(t−τ)

K − αy1y2

αy1y2

)
.

Next, taking Laplace transform on (2.2), we obtain the standard transfer matrix of
the linear part of the system:

G(s; τ) = C[sI −A]−1B.

Then

G(s; τ) =

(
1

s−r
r

(s−r)(s+β)

0 1
s+β

)
. (2.3)

If this feedback system is linearized about the equilibrium y = −C(P ∗
s , P ∗

i )T , then
the Jacobian of (2.3) is

J(τ) =
∂g

∂y

∣∣∣
y=ỹ=−C(P∗s ,P∗i )T

=

(
r(P∗s +P∗s e−sτ )

K + αx∗2 αx∗1
−αx∗2 −αx∗1

)
.

Let

h(λ, s; τ) = det |λI −G(s; τ)J(τ)|

= λ2 +
[ αP ∗

s

s + β
+

rαP ∗
i

(s− r)(s + β)
− 1

s− r

(rP ∗
s (1 + e−sτ )

K
+ αP ∗

i

)]
λ

+
αP ∗

i

s + β

[ αP ∗
s

s− r
− rαP ∗

s

(s− r)(s + β)
]

= 0.

Applying the generalized Nyquist stability criterion with s = iω, we obtain the
following results.

Lemma 2.1 (Moiola, Chen, 1996). If an eigenvalue of the corresponding Jacobian
of the nonlinear system, in the time domain, assumes a purely imaginary value iω0

at a particular τ = τ0, then the corresponding eigenvalue of the constant matrix
G(iω0; τ0)J(τ0) in the frequency domain must assume the value −1 + i0 at τ = τ0.

To apply Lemma 2.1, let λ̂ = λ̂(iω; τ) be the eigenvalue of G(iω; τ)J(τ) that
satisfies λ̂(iω0; τ0) = −1 + 0i. Then

h(−1, iω0; τ0) = 0.

Separating the real and imaginary parts and rearranging, we obtain

E cos ω0τ0 + F sinω0τ0 = S, (2.4)
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F cos ω0τ0 + E sinω0τ0 = T, (2.5)

where
E = rP ∗

s (β2 − ω2
0), F = −2rβω0P

∗
s ,

S = Kr(ω2
0 − β2)− 2Kβω2

0 + KαP ∗
s (βr + ω2

0)

− rKαβP ∗
i − (β2 − ω2

0)(rP ∗
s + KαP ∗

i ),

T = Krαω0P
∗
i −Kω0(β2 − ω2

0) + 2Krβω0

+ KαP ∗
s ω0(β − r) + 2βω0(rP ∗

s + αKP ∗
i ).

(2.6)

It follows from (2.4) and (2.5) that

E2 + F 2 = S2 + T 2. (2.7)

Then
K2ω6

0 + θ1ω
4
0 + θ2ω

3
0 + θ3ω

2
0 + θ4 = 0, (2.8)

where

θ1 = (Kr − 2Kβ + KαP ∗
s + rP ∗

s + KαP ∗
i )2 − r2(P ∗

s )2,

θ2 = 2K[KrαP ∗
i −Kβ2 + 2Krβ + KαP ∗

s (β − r) + 2β(rP ∗
s + KαP ∗

i )],

θ3 = 2(Kr − 2Kβ + KαP ∗
s + rP ∗

s + KαP ∗
i )(KrαβP ∗

s −Krβ2 −KrαβP ∗
i ),

− 2r2β2(P ∗
s )2,

θ4 = (KrαβP ∗
s −Krβ2 −KrαβP ∗

i )2 + θ2
3 − r2β4(P ∗

s )2 +
[
KrαP ∗

i −Kβ2

+ 2Krβ + KαP ∗
s (β − r) + 2β(rP ∗

s + KαP ∗
i )]2 − r2β∗(P ∗

s )2.
(2.9)

It is easy to that that if θ4 < 0, then (2.8) has at least one positive root (say ω0).
By (2.8), we can compute the value of ω0 by means of Matlab software. Then from
(2.4) and (2.5), we obtain

τ0 =
1
ω0

[arccos
ES − FT

E2 − F 2
+ 2kπ](k = 0, 1, 2, . . . ). (2.10)

In the sequel, we will consider the transversality condition for Hopf bifurcation of
system (1.2).

In view of the definition of h(λ, s; τ), we have

[
dλ

dτ
]−1 =

2K3(s− r)λ + rP ∗
s (1 + e−sτ )(s + β) + KαP ∗

i (s + β)
K2rP ∗

s (e−sτ )λ(s + β)

− K3(s− r)αP ∗
s + KrαP ∗

i

K2rP ∗
s (e−sτ )λ(s + β)

.

Thus we obtain

[
dλ

dτ
]−1 =

C + iD

A + iB
,

which leads to

Re[
dλ

dτ
]−1
τ=τ0

=
AC + BD

A2 + B2
,

where

A = −K2rP ∗
s (βω0 sinω0τ0 − ω2

0 cos ω0τ0), (2.11)

B = −K2rP ∗
s (ω2

0 sinω0τ0 + βω0 cos ω0τ0), (2.12)
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C = 2K3(rβ − ω2
0)−K3rαP ∗

s + KrαP ∗
i −KαβP ∗

i

− rP ∗
s [β(1 + cos ω0τ0) + ω0 sinω0τ0],

(2.13)

D = 2K3(β + r) + K3ω0 − rP ∗
s [ω0(1 + cos ω0τ0)− β sinω0τ0]−Kω0αP ∗

i . (2.14)

To obtain our main result, we assume
(H2) AC + BD 6= 0.

Theorem 2.2 (Existence of Hopf bifurcation parameter). Let θ4, A, B,C,D be
defined by (2.9), (2.11), (2.12), (2.13), (2.14), respectively. For (1.2), if θ4 < 0 and
conditions (H1)–(H2) hold, then Hopf bifurcation point of system (1.2) is

τ0 =
1
ω0

[arccos
ES − FT

E2 − F 2
+ 2kπ](k = 0, 1, 2, . . . ),

where ω0 is positive real roots of (2.8), and E,F, S, T are defined by (2.6).

3. Numerical Examples

In this section, we shall carry out numerical simulations for supporting our the-
oretical analysis. As an example, We consider system (1.2) with r = 0.5, K = 2,
α = 2, γ = 0.4β = 2; that is,

dPs(t)
dt

= 0.5Ps[1−
Ps(t− τ)

2
]− 2PsPi + 0.4Pi,

dPi(t)
dt

= 2PsPi − 2Pi.

(3.1)

By Theorem 2.2, we obtain τ0 ≈ 2.17. Numerical simulations for τ = 2.1 are
shown in Figure 1. Thus we conclude that when τ < τ0 ≈ 2.17, system (3.1)
is asymptotically stable. Numerical simulations for τ = 2.4 are shown in Figure
2. Thus we conclude that when τ > τ0 ≈ 2.17, system (3.1) undergoes a Hopf
bifurcation that occurs near the positive equilibrium. Therefore τ0 ≈ 2.17 is a
supercritical Hopf bifurcation point.

Conclusions and discussions. In this paper, we investigated a class of phyto-
plankton model with time delay. By choosing the coefficient τ as a bifurcating
parameter and analyzing the associating characteristic equation. It is found that a
Hopf bifurcation occurs when the bifurcating parameter τ passes through a critical
value. Considering computational complexity, the direction and the stability of the
bifurcating periodic orbits for system (1.2) have not been investigated. It is beyond
the scope of the present paper and will be further investigated elsewhere in the near
future.
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