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CUBIC AND QUARTIC PLANAR DIFFERENTIAL SYSTEMS
WITH EXACT ALGEBRAIC LIMIT CYCLES

AHMED BENDJEDDOU, RACHID CHEURFA

Abstract. We construct cubic and quartic polynomial planar differential sys-
tems with exact limit cycles that are ovals of algebraic real curves of degree
four. The result obtained for the cubic case generalizes a proposition of [9]. For
the quartic case, we deduce for the first time a class of systems with four alge-
braic limit cycles and another for which nested configurations of limit cycles
occur.

1. Introduction

In this article, we consider the autonomous planar polynomial system of ordinary
differential equations

ẋ =
dx

dt
= P (x, y),

ẏ =
dx

dt
= Q(x, y),

(1.1)

where P and Q are two polynomials of R[x, y] with no common factor, the deriva-
tives are performed with respect to the time variable t. By definition, the degree
of the system (1.1) is n = max(deg(P ),deg(Q)).

In the qualitative theory of planar dynamical systems see [5, 11], one of the most
important topics is related to the second part of the unsolved Hilbert 16th problem:
what is the maximum number H(n) of limit cycles that system (1.1) can have for a
given degree n and what are their disposition in the x, y? There is a huge literature
about limit cycles, most of them deal essentially with their detection, their number
and their stability and rare are papers concerned by giving them explicitly. In
the last years however, some papers on planar systems with one or more exact
non trivial limit cycles of higher degrees were written (see for instance [1, 2, 9]
and references therein). We recall that in the phase plane, a limit cycle of system
(1.1) is a closed periodic orbit in the set of all its periodic orbits. A limit cycle is
stable if all other solutions approach the limit cycle either from its interior or from
exterior asymptotically as t → +∞ and when the limit cycle is unique and stable
it dominates the global behavior of the system.
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An algebraic limit cycle is a non-singular compact component (or an oval) of a
real algebraic curve. Also, according to Harnack theorem, the maximum number of
ovals that an algebraic real curve of degree n, can have is at most 1

2 (n−1)(n−2)+1
and when this bound is reached, the corresponding curve is called an M -curve. It
is strongly expected [5, 7, 10] that a polynomial planar system of degree n has at
most 1

2 (n − 1)(n − 2) + 1 algebraic limit cycles and generally we look for them as
non-singular compact components of invariant algebraic curves.

For U ∈ R[x, y], the algebraic curve U = 0 is called an invariant curve of the
polynomial system (1.1), if for some polynomial K ∈ R[x, y] called the cofactor of
the algebraic curve, we have

P
∂U

dx
+ Q

∂U

dy
= KU. (1.2)

Simple analysis of equation (1.2) shows that the degree of the cofactor is at most
n−1 and that the curve U = 0 is formed by trajectories of the system (1.1). Also, if
the curve U = 0 is non-singular, the equilibrium points of the system are contained
either in its non-bounded components or are located on the curve K = 0.

This paper is concerned by systems with maximum number of algebraic limit
cycles, we show that this is possible for n = 3 and n = 4 by giving their exact
analytic expressions. More precisely, we prove that the cubic class admits two
algebraic limit cycles of degree four, by the way a result obtained in citel1 becomes
a particular case. Concerning the quartic case, we present a class of systems with
four exact limit cycles and an other one with two nested limit cycles, this classes
are new in the literature. This work is organized as follows:

In the second section, we construct a class of cubic systems admitting two alge-
braic limit cycles of degree four analytically given. This generalizes the example in
[9].

Section three is devoted to an effective construction of classes of quartic systems
with one, two and four exact algebraic limit cycles. To obtain the result, we use a
theorem by Christoffer [4].

2. Cubic Systems

Consider the class of cubic systems

ẋ = P (x, y)

= a00 + a10x + a01y + a20x
2 + a11xy

+ a02y
2 + a30x

3 + a21x
2y + a12xy2 + a03y

3,

ẏ = Q(x, y)

= b00 + b10x + b01y + b20x
2 + b11xy

+ b02y
2 + b30x

3 + b21x
2y + b12xy2 + b03y

3.

(2.1)

For a sub-class of (2.1), we prove the existence of two algebraic limit cycles, more-
over these limit cycles are explicitly given.

We introduce the quartic curve U = 0 where

U(x, y) = y2 + δ(x2 − α2)(x2 − β2), (2.2)

and α, β, γ and δ are real constants such that δ > 0, 0 < α < β. To formulate and
prove the main result of this section, we need to establish some auxiliary lemmas.
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Lemma 2.1. The curve U = 0 is a non-singular quartic formed by two ovals.

Proof. Let δ > 0, α, β such that α < β. We observe that the curve U = 0 exits
only when x ∈ [−β,−α]∪ [α, β] and is formed by the union of the two arcs (C1) an
(C2), where

(C1) : {(x, y) : x ∈ [−β,−α] ∪ [α, β] ∧ y = y1(x)},
(C2) : {(x, y) : x ∈ [−β,−α] ∪ [α, β] ∧ y = y2(x)},

y1(x) = −
√

δ
√

(x2 − α2)(x2 − β2), y2(x) = −y1(x).

Since y2(x) − y1(x) = 2
√

δ
√

(x2 − α2)(x2 − β2) ≥ 0, the second arc is always
above the first one with the common points (−β, 0), (−α, 0), (α, 0), (β, 0) as points
of meeting, hence U = 0 is composed of the two closed curves

{(x, y) : x ∈ [−β,−α] ∧ y = y2(x)} ∪ {(x, y) : x ∈ [−β,−α] ∧ y = y1(x)},
{(x, y) : x ∈ [α, β] ∧ y = y1(x)} ∪ {(x, y) : x ∈ [α, β] ∧ y = y2(x)}.

By construction of the curve U = 0, the problem of smoothness can occur only at
the points of meeting (−β, 0), (−α, 0), (α, 0), (β, 0) of (C1) and (C2), but this is not
the case since at this points the tangent to the curve is just parallel to the y-axis
according to the simple fact that

dy

dx
= ±x

√
δ√

(α2 − x2)(β2 − x2)
(−2x2 + α2 + β2).

�

Lemma 2.2. The most general cubic planar polynomial system admitting the curve
U = 0 as invariant curve is the system:

ẋ = −1
2
((α2 + β2)a21 +

1
δ
b21)y + a11xy + a21x

2y + a12xy2,

ẏ = 2δα2β2a11 −
1
2
(δ(α2 − β2)2a21 + (α2 + β2)b21)x

+ 2δα2β2a12y − δ(α2 + β2)a11x
2 + 2a11y

2

+ b21x
3 − δ(α2 + β2)a12x

2y + 2a21xy2 + 2a12y
3.

(2.3)

Proof. Considering system (2.1), we perform an Euclidean division of the polyno-
mial P (x, y)∂U

dx (x, y) + Q(x, y)∂U
dy (x, y) over the polynomial U(x, y) with respect

to the y variable. The curve U = 0 is invariant for this system if and only if the
remainder vanishes identically. We are lead to a linear system of sixteen equations
of the twenty unknowns aij and bij , i + j = 0, 1, 2, 3. Using Maple, we obtain

a00 = a10 = a20 = a02 = a30 = a03 = b11 = 0;

a01 = −1
2
((α2 + β2)a21 +

1
δ
b21); b00 = 2δα2β2a11;

b10 = −1
2
(δ(α2 − β2)2a21 + (α2 + β2)b21); b01 = 2δα2β2a12;

b20 = −δ(α2 + β2)a11; b02 = 2a11; b12 = b30; b21 = b03 = 2a12.

After the substitution of these solution into system (2.1) and rewriting it in the
standard form, we obtain the system (2.3). Then straightforward computations
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show that

P (x, y)
∂U

dx
(x, y) + Q(x, y)

∂U

dy
(x, y) = (4a12y

2 + (4a11 + 4xa21)y)U(x, y),

which implies that the curve U = 0 is an invariant curve and the associated cofactor
is K(x, y) = 4a12y

2 + 4(a11 + a21x)y. �

Since we are interested by limit cycles rather than by invariant curves, we are
constrained to impose additional conditions in order that system (2.3) admits the
ovals of the curve U = 0 as periodic solutions. If we put a21 = a11 = 0, this system
reduces to

ẋ = − 1
2δ

b21y + a12xy2,

ẏ = −1
2
(α2 + β2)b21x + 2δα2β2a12y

+ b21x
3 − δ(α2 + β2)a12x

2y + 2a12y
3.

(2.4)

Lemma 2.3. Suppose that a12 6= 0, b21 6= 0 and( b21

a12

)2
> 8

27δ3((α2 + β2)(α4 − 5
2α2β2 + β4)− (α4 − β2α2 + β4)3/2). (2.5)

Then the ovals of the curve U = 0 are periodic solutions of (2.4).

Proof. The singular points at finite distance of system (2.4) are the origin (0, 0),
the points (±

√
2

2

√
α2 + β2, 0), and for y 6= 0, the others that can probably lie on

the curve U = 0 are the points (x0,
1
2δ

b21
a12x0

) where x0 is solution of the equation
4δ3a2

12(x
2−β2)(x2−α2)x2+b2

21 = 0. Thanks to condition (2.5), this equation has no
real solutions. Consequently, these ovals are periodic solutions, one oval surrounds
the point (−

√
2

2

√
α2 + β2, 0), the other surrounds the point (

√
2

2

√
α2 + β2, 0). �

We recall that our goal is to show that the ovals of the curve U = 0 are if fact
limit cycles. The main result of this section is as follows.

Theorem 2.4. If the constants α, β, γ and δ are such that δ > 0, 0 < α < β and
the constants a12 6= 0 and b21 satisfy the inequality (2.5), the system (2.4) admits
as limit cycles the two ovals of the algebraic curve U = 0.

Proof. From the preceding lemmas, the cofactor is K(x, y) = 4a12y
2, the two ovals

of the algebraic curve U = 0 are periodic orbits of (2.4).
If we denote by Ti, i = 1, 2, their corresponding periods, then since a12 6= 0,∫ Ti

0

K(x(t), y(t))dt = 4a12

∫ Ti

0

y2(t)dt 6= 0.

By [6, Theorem 1] we conclude. The hyperbolicity of the two limit cycles depends
on the sign of a12. �

2.1. Nature of the singular points. It is useful to discuss the nature of the
singular points of the system (2.4) in order to draw its phase portrait near this
points. We just outline the situation for the interesting cases:

• For b21 6= 1
3 , 4( b21

a12
)2(3b21 − 1) < δ3(α2−β2)4

(α2+β2) and a12 < 0, the points

(±
√

2
2

√
α2 + β2, 0) are stable foci;
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• For b21 6= 1
3 , 4( b21

a12
)2(3b21 − 1) < δ3(α2−β2)4

(α2+β2) and a12 > 0, the points

(±
√

2
2

√
α2 + β2, 0) are unstable foci.

Finally, the origin is always a saddle and as the line y = 0 is an invariant curve, no
other orbit can cross the y-axis.

Figure 2.1. Limit cycles and the null-clines

2.2. Example. This example shows that [9, proposition 19] is a particular result
of Theorem 2.4. In fact if we take δ = 1

2 , a12 = 2, b21 = −20, α2β2 = 1
2 and

α2 + β2 = 2, the system (2.3) reads

ẋ = 20y + 2xy2,

ẏ = 20x + y − 20x3 − 2x2y + 4y3,
(2.6)

which is nothing but system [8, (50)]. It is easy to see that Theorem 2.4 applies,
and that the two ovals of the curve y2 + 1

2x4 − x2 + 1
4 = 0 are the corresponding

algebraic limit cycles enclosing the unstable foci (±1, 0) (see the disposition of the
limit cycles in figure 2.1, where the vertical isocline dx

dt = 0 is composed of the
straight line y = 0 and the hyperbola y = −10/x, while the horizontal isocline
y = 0 is the cubic 20x + y − 20x3 − 2x2y + 4y3 = 0). Inside the limit cycles,
all solutions recede from the foci and spiral clockwise approaching the limit cycles
asymptotically as t → +∞.

3. Quartic System

In this section, we give a feasible construction of quartic systems admitting exact
hyperbolic algebraic limit cycles of degree four. In fact, since nested configurations
of ovals can occur for an algebraic curve of degree equal or greater than 4, this allow
us to present for the first time a class of quartic systems with nested configuration of
algebraic limit cycles and also an other class with four exact algebraic limit cycles.
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Moreover this limit cycles are explicitly given. For that, we consider the well known
planar system

ẋ = P (x, y) = af(x, y)−D(x, y)fy(x, y),

ẏ = Q(x, y) = bf(x, y) + D(x, y)fx(x, y),
(3.1)

where f ∈ R[x, y] is a polynomial of degree m and D(x, y) = ux + vy +w. This
planar system belongs to a more general class of systems intervening in the inverse
approach of dynamical systems. Christoffer [4] has proved that if the line D(x, y) =
0 lies outside all non-singular compact components (ovals) of the algebraic curve
f = 0 and the constants a and b are chosen such that au+ bv 6= 0, then this system
admits all the bounded components of the curve f = 0 as hyperbolic limit cycles.
Furthermore, the vector field (3.1) has no other limit cycles.

We introduce the real algebraic curve f = 0 given analytically for γ 6= 0 by

f(x, y) = y4 + x4 + αy2 + βx2 + γ = 0. (3.2)

The main result of this section is as follows.

Theorem 3.1. Let the planar differential system

ẋ = aγ − 2wαy + aβx2 − 2uαxy + (a− 2v)αy2

− 4wy3 + ax4 − 4uxy3 + (a− 4v)y4,

ẏ = bγ + 2wβx + (b + 2u)βx2 + 2vβxy + bαy2

+ 4wx3 + (b + 4u)x4 + 4vx3y + by4,

(3.3)

where the real constants α, β, γ 6= 0, a, b, u, v and w are such that au + bv 6= 0 and
the line ux + vy +w = 0 do not intersect the algebraic curve (3.2). If we assume
additionally the conditions:

(α, β, γ) ∈ R3 \ R+ × R+ × R∗+ (3.4)

α2 + β2 − 4γ > 0; (3.5)

α2 − 4γ 6= 0; (3.6)

β2 − 4γ 6= 0; (3.7)

this system possesses exactly:
• Four limit cycles each located strictly in one of the four quarter of the plane

and having the four points (±
√

2
2

√
−β,±

√
2

2

√
−α) as centers if α < 0, β < 0

and max{α2, β2} < 4γ;
• a nested configuration of two limit cycles with the origin as center for α < 0,

β < 0 and 0 < 4γ < min{α2, β2};
• two limit cycles symmetric with respect to the y-axis and centered at

(±
√

2
2

√
−β, 0) if α > 0, β < 0 and α2 < 4γ < β2;

• two limit cycles symmetric with respect to the x-axis and centered at
(0,±

√
2

2

√
−α) for α < 0, β > 0 and β2 < 4γ < α2;

• one limit cycle centered at the origin if α ≤ 0, β ≤ 0 and γ < 0.
• Moreover, these limit cycles are hyperbolic and analytically given as the

ovals of the curve (3.2).

To prove this theorem, we need some lemmas.

Lemma 3.2. The curve (3.2) is composed only by ovals.
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Proof. We recall that the curve (3.2) is non-singular if and only if the following
system has no solutions:

∂f

∂x
(x, y) = 0,

∂f

∂y
(x, y) = 0,

f(x, y) = 0.

Taking into account the symmetries of this curve, we are just lead to examine
the following possible critical points of the function f(x, y): (0, 0), (0,

√
2

2

√
−α) for

α ≤ 0, ( 1
2

√
2
√
−β, 0) for β ≤ 0 and the last one is (

√
2

2

√
−β,

√
2

2

√
−α) for α ≤ 0 and

β ≤ 0. But from the assumptions of Theorem 3.1,

f(0, 0) = −γ 6= 0,

f(0,

√
2

2
√
−α) = −1

4
(α2 − 4γ) 6= 0,

f(
√

2
2

√
−β, 0) = −1

4
(β2 − 4γ) 6= 0,

f(
√

2
2

√
−β,

√
2

2
√
−α) = −1

4
(α2 + β2 − 4γ) < 0,

so this curve is non-singular.

Since y = ±
√

2
2

√
−α±

√
−4x4 − 4βx2 + α2 − 4γ cannot approach ±∞, the

curve remains at finite distance from the origin, it is then bounded and conse-
quently composed just by ovals. We can also deduce that this curve is bounded if
we put (3.4) on the form:

(y2 +
α

2
)2 + (x2 +

β

2
)2 =

1
4
(α2 + β2 − 4γ),

which shows by the same that conditions (3.4) and (3.5) are necessary and sufficient
for the curve to be non-empty and not formed by a finite set of points. This complete
the proof. �

The following lemma enumerates the number of ovals.

Lemma 3.3. The curve (3.2) is composed of:
• Four ovals strictly located each strictly in one of the four quarters of the

plane and having the four points (±
√

2
2

√
−β,±

√
2

2

√
−α) as centers if α < 0,

β < 0 and max{α2, β2} < 4γ;
• a nested configuration of two ovals centered at the origin for α < 0, β < 0

and 0 < 4γ < min{α2, β2};
• two ovals symmetric with respect to the y-axis with the points (±

√
2

2

√
−β, 0)

as centers if α > 0, β < 0 and α2 < 4γ < β2;
• two ovals symmetric with respect to the x-axis with the points (0,±

√
2

2

√
−α)

as centers for α < 0, β > 0 and β2 < 4γ < α2;
• one oval centered at the origin if α ≤ 0, β ≤ 0 and γ < 0.

Proof. The symmetries of the curve f = 0 allow us to avoid a cumbersome proof.
Let N1 (resp. N2) be the number of intersecting points of this curve with the x-axis
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(resp. the y-axis). To compute N1 and N2, we consider respectively the equations

x4 + βx2 + γ = 0, (3.8)

y4 + αy2 + γ = 0, (3.9)

and let ∆(x) = −4x4 − 4βx2 + α2 − 4γ.
Case 1: α2 − 4γ < 0 and β2 − 4γ < 0. Equations (3.8) and (3.9) have no

solutions so N1 = 0 and N2 = 0. Restricted to x > 0 and y > 0, the curve f = 0 is
composed of an oval centered at the point (

√
2

2

√
−β,

√
2

2

√
−α) and formed by the

union of the arcs

x 7→ y(x) =
√

2
2

√
−α +

√
∆(x), x 7→ y(x) =

√
2

2

√
−α−

√
∆(x),

and x ∈ [x1, x2], with

x1 =
√

2
2

√
−β −

√
α2 + β2 − 4γ, x2 =

√
2

2

√
−β +

√
α2 + β2 − 4γ.

The same statement holds in the remaining quarters of the plan.
Case 2: These conditions α < 0, β < 0 and 0 < 4γ < min{α2, β2} imply that

the equations (3.8) and (3.9) admit four solutions each, so N1 = N2 = 4. Let us
denote increasingly by −x2 < −x1 < x1 < x2 and −y2 < −y1 < y1 < y2 these
solutions. In this case, the curve f = 0 is composed by two nested ovals centered
both at the origin, the outer one passes through the points (x2, 0), (0, y2), (−x2, 0)
and (0,−y2), and the inner one passes through the points (x1, 0), (0, y1), (−x1, 0)
and (0,−y2). For y > 0, the union of the two arcs

x 7→ y(x) =
√

2
2

√
−α +

√
∆(x), x 7→ y(x) =

√
2

2

√
−α−

√
∆(x)

forms the two halves located above the x-axis of the two nested ovals, while the
union of the arcs

x 7→ y(x) = −
√

2
2

√
−α +

√
∆(x), x 7→ y(x) = −

√
2

2

√
−α−

√
∆(x)

composes the remaining parts of these ovals located below the x-axis.
Case 3: α > 0, β < 0 and α2 < 4γ < β2. Equation (3.8) possesses four solutions

−x2 < −x1 < x1 < x2 and (3.9) no solutions, so N1 = 4 and N2 = 0. The curve
f = 0 is composed by two ovals symmetric with respect to the y-axis, the first one is
centered at (−

√
2

2

√
−β, 0) and passes through the points (−x2, 0) and (−x1, 0) and

the second centered at (
√

2
2

√
−β, 0) passes through the points (x1, 0) and (x2, 0).

Case 4: α < 0, β > 0 and β2 < 4γ < α2: The arguments are similar to those
in the third case. The curve f = 0 is composed by two ovals where the first one
passes through the points (0,−y2) and (0,−y1) and the second through the points
(0, y1) and (0, y2).

Case 5: α ≤ 0, β ≤ 0 and γ < 0. Equations (3.8) and (3.9) have two solutions
each denoted by −x1, x1 and −y1, y1 so N1 = N2 = 2 and the curve f = 0 admits
the origin as center and is formed by a single oval passing through the points
(x1, 0), (0, y1), (−x1, 0) and (0,−y1). �

We can now give the proof of the main result of this section.
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Proof of Theorem 3.1. If we choose f(x, y) = y4 + x4 + αy2 + βx2 + γ in system
(9), we obtain system (3.3) and of course the curve f = 0 is an invariant curve of
the later, we can see that

K(x, y) = a
∂f

∂x
+ b

∂f

∂y
= 4ax3 + 2aβx + 4by3 + 2bαy

is the associated cofactor.
From Lemma 3.2, no equilibrium point of the system (3.3) can lie on the curve

f = 0, so the ovals of this curve are periodic orbits. Since we have assumed that the
line ux + vy +w = 0 do not intersect the algebraic curve f = 0, from the theorem
by Christoffer [4] we deduce that these ovals are the only hyperbolic limit cycles
of system (3.3). Their number is discussed in Lemma 3.3 and this completes the
proof. �

Figure 3.1. Four limit cycles for system (3.10)

Example 3.4. Let a = b = 1, u = w = 0, v = 1. The system

ẋ =
5
2
− 3x2 + 2y2 + x4 − 3y4,

ẏ =
5
2
− 3x2 − 6xy − 2y2 + x4 + 4x3y + y4,

(3.10)

admits exactly four hyperbolic limit cycles that are the ovals of the algebraic curve
y4 + x4 − 2y2 − 3x2 + 5

2 = 0, each oval encloses one of the four equilibrium points
approximately given by (x = ±1.29, y = ±0.89). See Figure 3.1.

Example 3.5. Let a = b = 1, u = 0, v = 1, w = −3: the system

ẋ = 1− 36y − 6x2 + 6y2 + 12y3 + x4 − 3y4,

ẏ = 1 + 36x− 6x2 − 12xy − 6y2 − 12x3 + x4 + 4x3y + y4,
(3.11)
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Figure 3.2. A nested configutation of two limit cycles for system (3.11)

admits two hyperbolic limit cycles that are the ovals of the algebraic curve y4+x4−
6y2−6x2+1 = 0. The inner oval contains the equilibrium points (x = −2.78×10−2,
y = 2.78× 10−2), and the set

(x = 1.62, y = −0.21), (x = −1.87, y = −1.56), (x = −1.83, y = −0.21),

(x = −2.15, y = 2.15), (x = 0.15, y = −1.65), (x = 1.56, y = −1.56)

of equilibrium points lie between the two ovals. See Figure 3.2.

Remark 3.6. The class of bounded non-singular quartic curves defined by (3.2)
is the simplest one with all possible configurations of ovals and regular transforms
of the plane or slight deformation directly operated on its equation do not alter its
topology. We can illustrate this by the next example.

Example 3.7. The system

ẋ = −3
2

+ 40x− 5y − 66x2 + 30xy − 12y2 − 88x3 − 252x2y

− 66xy2 − 21y3 + 40x4 − 24x3y − 144x2y2 − 68xy3 − 13y4,

ẏ = −5− 8x− 62y − 84x2 + 108xy − 30y2 + 176x3 − 72x2y

+ 132xy2 − 6y3 − 64x4 + 32x3y − 48x2y2 + 24xy3,

(3.12)

admits the nested asymmetric configuration of ovals composing the curve given by
the full term equation:

17y4 − 24xy3 + 48x2y2 + 24x3y + 17x4 + 32y3 − 48xy2

+ 24x2y − 4x3 − 6y2 − 24xy − 24x2 − 16y + 8x− 4 = 0

as the only hyperbolic limit cycles. This result is derived from the preceding exam-
ple when we perform the regular change of variables x → 2x + y, y → x − 2y − 1
on system (3.11). See Figure 3.3.
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Figure 3.3. A nested configuration of limit cycles for system (3.12)

Conclusion and perspectives. The elementary method used in this paper seems
to be fruitful to investigate more general planar dynamical systems in order to
obtain explicitly some or all their limit cycles at least when it is question of the
algebraic ones. In the spirit of the inverse approach to dynamical systems, we look
for them as the ovals of suitably chosen invariant algebraic curves. The following
questions can be raised:

- Does system (2.4) admits additional limit cycles? Can one transforms it into
another cubic system with two algebraic limit cycles of degree greater than four?

- Are there quartic systems with three algebraic limit cycles?
- Is it right that the number (n−2)(n−1)

2 + 1 is the upper bound of algebraic
limit cycles for system (1.1) in general and for system for which this bound is
reached (as for the cubic and quartic classes studied in this paper), do we have
H(n)− [ (n−2)(n−1)

2 + 1] = 0?
- Finally, we know (see [3]) that nested configurations of algebraic limit cycles

are not possible in quadratic systems, we claim that they are not possible in cubic
systems to.
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