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DARBOUX PROBLEM FOR IMPLICIT IMPULSIVE PARTIAL
HYPERBOLIC FRACTIONAL ORDER DIFFERENTIAL
EQUATIONS

SAID ABBAS, MOUFFAK BENCHOHRA

ABSTRACT. In this article we investigate the existence and uniqueness of solu-
tions for the initial value problems, for a class of hyperbolic impulsive fractional
order differential equations by using some fixed point theorems.

1. INTRODUCTION

Fractional calculus is a generalization of the ordinary differentiation and inte-
gration to arbitrary non-integer order. The subject is as old as the differential
calculus since, starting from some speculations of Leibniz (1697) and Euler (1730),
it has been developed up to nowadays. The idea of fractional calculus and frac-
tional order differential equations and inclusions has been a subject of interest not
only among mathematicians, but also among physicists and engineers. Indeed, we
can find numerous applications in rheology, control, porous media, viscoelasticity,
electrochemistry, electromagnetism, etc. [I4, [I6] 20, 2T, 23]. There has been a
significant development in ordinary and partial fractional differential equations in
recent years; see the monographs of Kilbas et al. [I7], Miller and Ross [22], Pod-
lubny [24], Samko et al. [20], the papers of Abbas and Benchohra [2] 3] [4], Abbas
et al. [T, B 6], Belarbi et al. [8], Benchohra et al. [9] 10, 12], Diethelm [13], Kilbas
and Marzan [I8], Mainardi [20], Podlubny et al. [25], Vityuk and Golushkov [2§],
Yu and Gao [31], Zhang [32] and the references therein.

The theory of impulsive differential equations have become important in some
mathematical models of real processes and phenomena studied in physics, chemical
technology, population dynamics, biotechnology and economics. There has been a
significant development in impulse theory in recent years, especially in the area of
impulsive differential equations and inclusions with fixed moments; see the mono-
graphs of Benchohra et al. [I1], Lakshmikantham et al. [19], the papers of Abbas
and Benchohra [3] 4], Abbas et al. [T, 5] and the references therein.

The Darboux problem for partial hyperbolic differential equations was studied
in the papers of Abbas and Benchohra [2, 3], Abbas et al. [7], Vityuk [27], Vityuk
and Golushkov [28], Vityuk and Mykhailenko [29] [30] and by other authors.
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In the present article we are concerned with the existence and uniqueness of
solutions to fractional order initial-value problem (IVP) for the system

E;u(xay) = f(x,y,u(a:,y),ﬁgu(x,y)); for ($7y) € Ja €z 7& Lk, k= ]-a cee, M,
(1.1)

u(zf,y) = u(zy,y) + I(u(zy, ,y)); fory€[0,b], k=1,...,m, (1.2)
u(z,0) = p(x); x€l0,d],
u(0,y) =v¢(y); y €[00, (1.3)
¢(0) = 1(0),

where J := [0,a] x [0,0], a,b > 0, § = (0,0), D, is the mixed regularized derivative
of order r = (ry,7m2) € (0,1] x (0,1], 0 = o < 71 < +++ < Ty < Tpg1 = 4,
fiJIJxR*"XR" - R, I, : R" - R", k =1,....m, ¢ : [0,a] — R" and
1 :[0,b] — R™ are given absolutely continuous functions.

We present two results for the problem —, the first one is based on
Banach’s contraction principle and the second one on the nonlinear alternative of
Leray-Schauder type [15].

2. PRELIMINARIES

In this section, we introduce notation, definitions, and preliminary facts which
are used throughout this paper. By C(J) we denote the Banach space of all con-
tinuous functions from J into R™ with the norm

[wlleo = sup [lw(z,y)l|,
(z:y)ed
where | - || denotes a suitable complete norm on R™. As usual, by AC(J) we denote

the space of absolutely continuous functions from .J into R™ and L!(.J) is the space
of Lebegue-integrable functions w : J — R™ with the norm

a b
el = / / (e, )| dy da.
0 0

Definition 2.1 ([17, 26]). Let a € (0,00) and u € L'(J). The partial Riemann-
Liouville integral of order a of u(x,y) with respect to x is defined by the expression
1 x
V5 — _ a—1 d
San(e9) = o [ (@ =9 uts ),

for almost all x € [0,a] and all y € [0,b], where T'(.) is the (Euler’s) Gamma
function defined by T'(¢) = [;* t<"te " dt; ¢ > 0.
Analogously, we define the integral
1 y
T _ _ Na—1 d
O,yu(x,y) F(O{) /O' (y S) u(mvs) S,
for almost all x € [0, a] and almost all y € [0, b].

Definition 2.2 ([17, 26]). Let o € (0,1] and u € L'(J). The Riemann-Liouville
fractional derivative of order « of u(x,y) with respect to x is defined by

« a -
(DO,xu)($7y> = (9713[3790 u(amy),

for almost all z € [0, a] and all y € [0, b].
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Analogously, we define the derivative
Da _ a Ilfa
( O,yu)(xay) - 87?/ 0,y u(xay)v

for almost all = € [0, a] and almost all y € [0, b].

Definition 2.3 ([17, 26]). Let a € (0,1] and u € L'(J). The Caputo fractional
derivative of order a of u(z,y) with respect to x is defined by the expression

0 0
CD&IU(.%‘,Q) = Iol,m %u(x/y%
for almost all z € [0, a] and all y € [0, b].

Analogously, we define the derivative

co —a 0
DO,yu('rvy) = I&,ya@u(x7y)a

for almost all x € [0, a] and almost all y € [0, b].
Definition 2.4 ([28]). Let r = (r1,72) € (0,00) x (0,00), 8 = (0,0) and u € L*(J).
The left-sided mized Riemann-Liouville integral of order r of u is defined by

() (z,y) = m /Or /Oy(g; )My — )7 (s, 1) dt ds.

In particular,

(I§u)(z,y) = u(z,y), (I§u)(z,y) = /Om /Oy u(s, t) dt ds;

for almost all (z,y) € J, where ¢ = (1,1). For instance, Iju exists for all r,7rp €
(0,00), when w € L'(J). Note also that when u € C(J), then ([ju) € C(J),

moreover
(Iju)(z,0) = (Iyu)(0,y) =0; =z €10,a], y €[0,].
Example 2.5. Let \,w € (—1,00) and r = (r1,72) € (0,00) X (0,00), then

— F(l + )‘)F(l + w) m)\—&-rl w+Tr2
FA+A+r)F(1+w+7rg) ’

Iyt
for almost all (z,y) € J.

By 1 — 7 we mean (1 —r1,1 —r2) € (0,1] x (0,1]. Denote by D2 := the

mixed second order partial derivative.

52
Oxdy’

Definition 2.6 ([28]). Let r € (0,1] x (0,1] and v € L'(J). The mixed frac-
tional Riemann-Liouville derivative of order r of u is defined by the expression
Dyu(z,y) = (chyf(}*’“u) (z,y) and the Caputo fractional-order derivative of order

r of u is defined by the expression *Dju(x,y) = (I;_TDiyu) (z,9).
The case 0 = (1,1) is included and we have
(Dfu)(z,y) = (‘Dfu)(z,y) = (D7,u)(z,y),

for almost all (z,y) € J.
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Example 2.7. Let \,w € (—=1,00) and r = (r1,72) € (0,1] x (0, 1], then

Drl)\yw —_ F(l + )‘)F(l + OJ) A—7r1, Ww—"T2
o D1+ A—r)D(1+w—ry) ’

for almost all (z,y) € J.
Definition 2.8 ([30]). For a function v : J — R", we set

By the mixed regularized derivative of order r = (r1,72) € (0, 1] % (0, 1] of a function
u(x,y), we name the function

Dyu(z,y) = Dyq(z,y).
The function
Dy u(x,y) = Dyt Ju(z,y) — u(0,y)],

is called the partial r1 —order regularized derivative of the function u(z,y) : J — R
with respect to the variable x. Analogously, we define the derivative

ngyu(:my) = Dg'fy [u(z,y) — u(z,0)].

Let a; € [0,al, 27 = (a1,0) € J, J, = [a1,a] x [0,b], r1,72 > 0 and 7 = (r1,ra).
For u € L*(J,,R™), the expression

(I 00) = i / / Y@ )y — 1) (s, 1) dt ds,

is called the left-sided mixed Riemann-Liouville integral of order r of u.

Definition 2.9 ([28]). For u € L'(J.,R") where D2 u is Lebesque integrable on
[k, Tr+1] x [0,0], & =0,...,m, the Caputo fractional-order derivative of order r
of u is defined by the expression (°D7, f)(x,y) = (I;;"D?yf)(x, y). The Riemann-

xT
Liouville fractional-order derivative of order 7 of w is defined by (DI, f)(z,y) =

(D2, 157 (. y).
Analogously, we define the derivatives
Du(z,y) = Diq(z,y),
Doy pulz,y) = Dyt 4[u(z,y) —u(0,9)),
D u(x,y) = D% [u(x,y) — u(z,0)].

a1,y a1,y
3. EXISTENCE OF SOLUTIONS
In what follows set
Jk = (ik,xk+1} X [O,b]
To define the solutions of (|1.1f)-(|1.3]), we shall consider the space
PC(J)={u:J—R":ueC(Jy,R"); k=0,1,...,m, and
there exist u(z) ,y) and u(xz,y); k=1 m

geeey B

with u(z; ,y) = u(zy,y) for each y € [0,0]}.
This set is a Banach space with the norm

[ullpc = sup |lu(z,y).
(z,y)eT
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Set
J’ = J\{($17y)a ceey (Im,y), ye [O7b]}

Definition 3.1. A function v € PC(J) such that u, E LDy, EZU' k=

Tk,Y
,m, are contlnuous on J' and I'7"u € AC(J') is Sald to be a solutlon of

. if u satisfies on J' and conditions ., are satisfied.

For the existence of solutions for (|1.1)-(1.3) we need the following lemmas.

Lemma 3.2 ([30]). Let the function f: J x R" x R" — R"™ be continuous on its
variables. Then the problem

Dyu(z,y) = f(z,y,u(z,y), Dyu(z,y)); if (z,y) € J:=[0,a] x [0,0],  (3.1)
0

u(z,0) = p(z); = €]0,d]
U(O, y) = ’(/}(y)v Yy e [07 b]a (32)
©(0) = (0),

is equivalent to the problem

g(z,y) = f(x,y, u(x,y) + Ig(z,y), 9(x,y)),

and if g € C(J) is the solution of this equation, then u(x,y) = p(z,y) + Ijg(z,y),
where

wz,y) = o(x) + ¥(y) — (0).

Lemma 3.3 ([5]). Let 0 < r1,70 <1 andlet h: J — R™ be continuous. A function
u s a solution of the fractional integral equation

1(,y) + oy o o (@ — )7y — )7 (s, t) dt ds;
Zf (x7y) € [val] X [Oab]7

u(a,y) = { @) + X ((ula 9) — L(u(a7,0))) 53)
7 +F(r1)11“7(r2) S fy . lfo (z; — )My —t)"2 " h(s,t) dtds
e do Jo (2= ) y = )7 s, ) de ds;

if (x,y) € (g, Try1] X [0,0], k=1,...,m
if and only if u is a solution of the fractional initial-value problem
CDZ;u(x,y) =h(z,y), (z,y)eJ, k=1,...,m, (3.4)
u(x;cﬂy) =u(x,,y) + Ie(u(z,,y), yel0b], k=1,...,m. (3.5)
By Lemmas [3.2] and we conclude the following statement.

Lemma 3.4. Let the function f: J xR" x R™ — R"™ be continuous. Then problem
(1.1)-(1.3) is equivalent to the problem

g(x,y) = flz,y,&(x,y), 9(x,y)), (3.6)
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where

1z, y) + torres Jo Jo (@ —=s) My = 1)~ (s, t) dt ds;
if (x,y) € [0,21] x [0, ],

_ mmw+§jﬂ<<<;w» Ii(u(z; ,0)))
€($7y) 1 k r1—1 ro—1
AT it Sy, Jo (@i =) Ty — )72 g(s, 1) dt ds
+m f;k fo (x —s) Yy — )27 Lg(s,t) dt ds;
Zf (l‘,y) € (mkaxk+l] X [O7b]a k= la“-am

w(z,y) = (@) + ¥ (y) — ¢(0).
And if g € C(J) is the solution of , then u(z,y) = &(x,y).

Further, we present conditions for the existence and uniqueness of a solution of
problem ([1.1))-(1.3). We will us the following hypotheses.

(H1) The function f:.J x R™ x R™ — R™ is continuous;
(H2) For any w,v,w,z € R™ and (z,y) € J, there exist constants [ > 0 and
0 < I, < 1 such that

1y, 2) — f, o0, 0)] < Ul — o + L)z — w],
(H3) There exists a constant {* > 0 such that
i (w) — I(@)|| < U*||ju—1|, foru,meR" k=1,....,m
Theorem 3.5. Assume (H1)-(H3) are satisfied. If

a2
2ml* <1, 3.7
M T+ DT (e + 1) (3:7)

then there exists a unique solution for IV P (1.1)-(1.3) on J.

Proof. Transform the problem (1.1})-(1.3) into a fixed point problem. Consider the
operator N : PC(J) — PC(J) defined by

N(u)(a,y) = ple,y) + Y Unluley,y)) = I(u(z;,0)))

O<zp <z
/ / Y1y — )2 g(s, t) dt ds
O<zk<m

/ / Y1ty — )2 Yg(s, t) dt ds,
7"2

where g € C(J) such that

9(x,y) = f(z,y,u(z,y), 9(z,y)),

By Lemma the problem of finding the solutions of (1.1))-(1.3) is reduced to
finding the solutions of the operator equation N(u) = u. Let v,w € PC(J). Then,

+ F(’I"l
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for (z,y) € J, we have

IN(0)(,y) = N(w)(@,y)]l

Z Ik(o(zyv)) — Ie(w(z )| + k(g 0) — L(w(zg, 0)])
) (3.9
T / / 2k — )" Y (y — )72 |lg s, 1) — h(s, 1)|| dt ds

+7 xr— 8 r1—1 —t ro—1 S,t —h S’t dtd87
L(r)T(r2) Lk/o (@ —5)" " (y =) llg(s,t) = h(s, 1)
where g, h € C(J) such that

g(:v,y) = f(x,y,v(x,y),g(x,y)%
h(x,y) = f(xava(xvy)7 h(l‘,y))
By (H2), we obtain

l9(z,y) — h(z,y)|| < Uv(z,y) —w(@,y)l| + Llg(z,y) — bz, y)|.
Then

lg(z,y) — h(z,y)|| <

Thus, (H3) and (3.9)) imply
[N (v) = N(w)llpc

Z (o), y) = wlag Yl + vz, 0) — wlz, 0)]))

T 1 ro—1

Ty — )" v — w||po dtds
= > PYAACS

$)" Ny =) o — dt ds.
+ e // 2o wl e d ds

However,

—s5)" T 1 2 Yy —w dt ds
e // e (v =)o — wllpo
l
< — v —w|| pc / — Tl_lds
0= LTGT0 ) Lol Z

l Tpy
< — |V —w
=0- l*)F(rl)F(TQ) ro A ”PC,; 1

l
= loe,y) — w(e,y)ll < T llv = wllpe.

_|_

Ly T
= —lv —w
(1= 1)T(r)T(r2) 72 P
l "2 a™
S Ao LT () 1 1V~ Ve
la™ b2

T A=)+ )T+ 12
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Then

IN(v) = N(w)| pc

< (2mi* + a7 b + la™b" Yo —w]

= (1—1)C(r + DT(ra +1) (1= 1L)0(ry + 1)D(ry + 1) re
2lam b’

< (2ml* — .

= ( ml+ g fz*)r(mﬂ)r(mﬂ))“” wlee

Hence
2la™ b2
(1 — l*)F<’I"1 + 1)F(7"2 —|— 1)

By (3.7), N is a contraction, and hence N has a unique fixed point by Banach’s
contraction principle. ([

[N(v) = N(w)|lpc < (2ml*+ )”’U*U)”PCM

Theorem 3.6 (Nonlinear alternative of Leray-Schauder type [15]). Let X be a
Banach space and C' a nonempty convex subset of X. Let U a nonempty open
subset of C with 0 € U and T : U — C' continuous and compact operator. Then
etther

(a) T has fized points. Or
(b) There exist u € U and X € [0,1] with u = AT (u).

For the next theorem, we use the following assumptions:

(H4) There exist p,q,d € C(J,R) such that

ILf(z,y,u, 2)|| < p(z,y) + q(z,y)||ul] +d(z,y)|z]

for (x,y) € J and each u, z € R™,
(H5) There exists ¢* : [0,00) — (0, 00) continuous and nondecreasing such that

1 Te(w)|| < ¥*(ull); k=1,...,m, forallueR",
(H6) There exists a number M > 0 such that
2ar1b7“2(p* +q*||ﬂ||oo+2mq*¢*(ﬁ)) o

* 2g*a”1bm2
(1 —d* — 7F(1frl)r(l+r2))l“(l + rl)F(l + ’I"Q)

ll ]l oo + 2m1/1*(M) +

where p* = sup, ,ye; P(T,Y), ¢° = Sup(, e ¢(,y) and
d* = supy ey AT, y)-

Theorem 3.7. Assume (H1), (H4), (H5), (H6) hold. If

2q*a7"1b7‘2
d* + <1, 3.10
L(1+7)T(1+r2) (8.10)

then (1.1)-(L.3) has at least one solution on J.

Proof. Transform problem (1.1))-(1.3)) into a fixed point problem. Consider the
operator N defined in (3.8]). We shall show that the operator N is continuous and
compact.
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Step 1: N is continuous. Let {u,}nen be a sequence such that w, — w in
PC(J). Let n > 0 be such that ||u,||pc < n. Then for each (z,y) € J we have

IN (un) (2, y) = N(u)(@,y)]|

NE

< D Mk (un(zy, ) — Te(w(zg s w) + [k (un (2, 0)) — T (ulzy, 0))])

E
I

1
1 . o v ri1—1 ro—1 _
+ T / / (25— )"y — )7 gu(s.1) — g(s.1)]| dt ds

1 T ry ri—1¢,  g\r2—1 s —als <
t et @ 0 s~ ) deas,

(3.11)
where g,,, g € C(J) such that
gn(@,y) = f(2,y,un(@,9), gn (2, y)),
9(@,y) = f(z,y,ulz,y), g(z,y)).

Since u,, — u as n — oo and f is a continuous function, we obtain

gn(x,y) — g(x,y) as n — oo, for each (z,y) € J.
Hence, gives

[N ()~ N(w)lpe < 2 —ullpe + e g — gl — 0

(1 +7r)T(1 + 7o)
as n — 0o.

Step 2: N maps bounded sets into bounded sets in PC(J). Indeed, it is suf-
ficinet show that for any n* > 0, there exists a positive constant M™ such that,
for each u € B,» = {u € PC(J) : |lul|pc < n*}, we have ||N(u)||pc < M*. For
(z,y) € J, we have

[V (u) (2, y)|

< et )l + D (Hk(uzy y) |+ 1k (ulz, 0))])

k=1
1 D [Te Y - - (3.12)
+ T / / (25— ) (g — 172 lg(s, ]| di ds

1 Y r1—1 _ p\r2—1 s S
*iporn L ] @ 0 et s,

where g € C(J) such that g(z,y) = f(z,y,u(z,y),9(z,y)). By (H4), for each
(x,y) € J, we have

lg(z, Il < p(z,y) + q(z, Y@, y)|| + dz,y)llg(z, y)I|-
On the other hand, for each (z,y) € J,

€ )| < e, y)ll+ D (ulay )l + i (ulzy ,0)])

k=1
o S [ [ w0 s
- Ty — S y— q(s, s
C(r)T(r2) = Jo,_, Jo "
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rl 1 _ p\r2—1
el AUACE 0 lgsu0) | e ds

< Nitlloo + 20 () + 22207
= WHlloo 2B ) T DA )T + 1o

)”g”oo-

Hence, for each (z,y) € J, we have
2a"1b"?
L(1+r)D(1+ 7o

l9lloe <p* +q" (IluHoo + 2myp* (n*) +

Then, by (3.10), we have

fllgle ) + gl

p* + ¢ (il oo + 2me* (%))

||g||00 S 20*ar1br2 = M
1= d* = st
Thus, (3.12)) implies
. OMar b .
IN(W)llpc < [|lplloc +2my™(n*) + = M*.

F(l + Tl)F(l + 7‘2)

Step 3: N maps bounded sets into equicontinuous sets in PC(J). Let
(T1,91), (T2,y2) € J, 71 < 72 and y1 < ya2, By~ be a bounded set of PC(J) as in
Step 2, and let u € B,-. Then for each (z,y) € J, we have

|V (w)(72,92) — N(u)(m1,91)]|

< e, 1) = w72, w2l +Z Mk (u(zy 91)) = Te(u(zg s 2)))

)1F( /mk ) /yl ) (g — )2 — (y1 — )27

( ,t) dtds
1 r1—1 ro—1
L(r1)[(ra) Z/mk 1/ - ) (y2 —t) llg(s, )| dt ds
crorg L e =0 = =
F(Tl)F(TQ
x g(s,t)dtd
1 71 1 _ p\re—1
+ T(r)C(ry) /71 /y 72 9) (2= 1) lg(s, )| dt ds
1 " 7"1_1 ro—1
oore b e 0ot s
j / /y $)" 7z =)™ g (s, 1) dtd
rl)l" T9) Y2 g(s, S,
where g € C(J) such that g(z,y) = f(z,y,u(z,y), 9(x,y)). However, ||g|lcc < M.

Thus
[N (u)(z2,y2) — N(u)(@1,y1)||

< Nulray 1) =z y2)ll+ D (el 91) = Teu(ey, y2)|)
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M Tk Y1 . - -
+72/m /O (zr—8)" " Hya =) = (y1 — )™= '] dtds

L(r)0(r2) £ Jay s
M m Tk Y2 L -
NS ,;/ / (o0 = &)™ g — )7 dbds
M T YL _ gl — el _ (g — g)1—1  yra—1 <
+ F(T1)F(T2) /0 /0 [(TQ ) (y2 t) ( 1 ) (y1 t) }dtd

+ To — ) " Hyy — )27 L dt ds.
rt) Sy 7Y

As 7 — 15 and y; — ¥o, the right-hand side of the above inequality tends to zero.
As a consequence of Steps 1 to 3, together with the Arzela-Ascoli theorem, we can
conclude that N is continuous and completely continuous.

Step 4: A priori bounds. We now show there exists an open set U C PC(J)
with u # AN(u), for A € (0,1) and uw € 9U. Let u € PC(J) and u = AN (u) for
some 0 < A < 1. Thus for each (z,y) € J, we have

lulz, y)| < Iwule, )|+ D Ak (ulzy )+ e (ulay, 0))]1)

k=1
+)\§:/mk /y(x _S)m—l(y_t)rg—lug(s t)HdtdS
F(Tl)F(TQ) i1z Jo k ’

# i Yy I — s ri—1 _ \ra—1 s s
T () /w/o (@—s)" " (y—1)"""lg(s, )l dtd

2a" b
F(l + Tl)F(l + T2

< itlloo + 2mp* (|Ju(z, y||) + )Ilglloo-

However,

p* + ¢ (llloo + 2me* (|ull o))
”gHoo S 2g*a”1b"2 :

1 - d* - F(lJr’l‘l)F(lJr’l"Q)

Thus, for each (x,y) € J, we have

200" (p* + ¢* ||l oo + 2mg*v* (Jul pc))

. 2qvaribr2 ‘
(1 —d* — m)r(l +7r)T(1+7r2)

lullpe < llulloo +2my™ (Jullpe) +

Hence

207572 (p* + ¢* | tloc + 2" (Ju] )

« 2g*a”1b"2 !

lullpe < (Il + 2mg™ ™ (lullpc) +

By (H6), there exists M such that ||ul|pc # M. Let
U={ue PC(J):|ullpc <M+ 1}.
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By our choice of U, there is no u € U such that u = AN (u), for A € (0,1). As a
consequence of Theorem we deduce that N has a fixed point % in U which is a

solution to (|1.1))-(L.3). O

4. AN EXAMPLE

As an application of our results we consider the following impulsive implicit
partial hyperbolic differential equations

. 1
DQU(z7y) = 2 —T )
10e*+v+2(1 + |u(z, y)| + [Dyu(z,y)|) (4.1)
for (z,y) € [0,1] x [0,1], £z, k=1,...,m;
_ 1
u(;piﬁg) = u((pk ,y) + 66I+y+4(]_ n |u(gj;7y)|), for RS [0, 1], k=1,...,m; (42)
u(z,0) ==z, u(0,y) = y*;for z,y € [0,1]. (4.3)
Set
1
f(x7y7 u7 v) = (x,y) 6 [07 1} X [0? ]‘]7

- 10e T2 (1 + ful + [v])’

- 1
Ik(u(il?k 7y)) = 6€x+y+4(1 + |’U,($;;7y)|)7

Clearly, the function f is continuous. For each u,v,%,7 € R and (x,y) € [0, 1] x
[0, 1], we have

y € [0,1].

|f(z,y,u,v)ff(z,y,ﬂ,@)|§ (|u—ﬂ|+|’07§|)7

10e2
_ 1 _
() — 1u()| < g7,

Hence condition (H2) and (H3) are satisfied with | = I, = gz and I* = ;. We
shall show that (3.7)) holds with a = b = 1. Indeed, if we assume, for instance, that
the number of impulses m = 3, then we have

2la" b 1, 2
(1—=1)0(r + D(rg +1) et (10e2 — DT(ry + 1)0(ry + 1)
which is satisfied for each (r1,72) € (0,1]x (0,1]. Consequently Theorem 3.5]implies
that (4.1)-(4.3) has a unique solution defined on [0, 1] x [0, 1].

2ml* +

<1,
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