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OSCILLATION CRITERIA FOR DAMPED QUASILINEAR
SECOND-ORDER ELLIPTIC EQUATIONS

TADIE

Dedicated to my mother Meguem Ghomsi Mabou and all her Meguems

Abstract. In 2010, Yoshida [13] stated that oscillation criteria for the superlinear-
sublinear elliptic equation equation

∇ ·
`
A(x)Φ(∇v)

´
+ (α + 1)B(x) · Φ(∇v) + C(x)φβ(v) + D(x)φγ(v) = f(x)

were not known. In this article, we provide some answers to this question using
boundedness conditions on the coefficients of half-linear quasilinear elliptic
equations. This is obtained by using some comparison methods and Picone-
type formulas.

1. Introduction

In [13], for A ∈ C1(Rn, R), C,D, f ∈ C(Rn, R) and B ∈ C(Rn, Rn), the equation

∇ ·
(
A(x)Φ(∇v)

)
+ (α + 1)B(x) · Φ(∇v) + C(x)φβ(v) + D(x)φγ(v) = f(x) (1.1)

was given. Here the central dot denotes the Euclidean scalar product between
elements of Rn. Let α be a positive fixed number. We define the following functions
for (t, ζ) ∈ R× Rn and ν > 0,

φ(t) := |t|α−1t; Φ(ζ) := |ζ|α−1ζ, φν(t) := |t|ν−1t; Φν(ζ) := |ζ|ν−1ζ.

Recall that for any α > 0, the function φ = φα has the following properties:

∀t, s ∈ R, φ(t)φ(s) = φ(ts), tφ′(t) = αφ(t), tφ(t) = |t|α+1;

∀(s, ζ) ∈ R× Rn, φ(s)Φ(ζ) = Φ(sζ); ζΦ(ζ) = |ζ|α+1.

The quest is to investigate oscillation criteria for equations similar to (1.1), following
some different process but still based on Picone-type formulae.

2. One-dimensional and radially symmetric equations

First, we consider the simple equation

{a(t)φ(y′)}′ + c(t)φ(y) + h(t, y, y′) = 0 (2.1)

where {.}′ denotes the derivative with respect to the variable t. In the sequel, we
assume

2000 Mathematics Subject Classification. 34C10, 34K15, 35J70.
Key words and phrases. Picone; oscillation criteria for half-linear elliptic equations.
c©2011 Texas State University - San Marcos.
Submitted July 21, 2011. Published November 8, 2011.

1



2 TADIE EJDE-2011/151

(H0) a is a positive constant or a ∈ C1(R, (0,∞)) and is non decreasing; the
other coefficients are continuous in all their arguments.

Also we need some definitions:
A function u will be said to be a (regular) solution of (2.1) if there exists T > 0

such that u is locally piecewise C2 and u, φ(u′) are C1 in DT := (T,∞).
This indicates that our focus is on the behaviour of the solutions in exterior

domains.

Definition 2.1. Let u ∈ C(R, R).
(1) A nodal set of u, is any bounded open and connected set D = D(u) 6= ∅

such that u|∂D = 0 and u 6= 0 in D.
(2) A function u is said to be (weakly) oscillatory (in R) if it has a zero in any

DT and is strongly oscillatory if it has a nodal set in any DT .
(3) An equation will be said to be oscillatory if any of its non-trivial solutions

is oscillatory.
(4) An equation will be said to be homogeneous if whenever u is a solution so

is also λu for all λ ∈ R \ {0}. When this holds only for λ = −1 or 1 the
equation is said to be odd.

Remark 2.2. When h ≡ 0, equation (2.1) is homogeneous and odd. From the
definitions above, a function u would be non-oscillatory if it is eventually non zero;
i.e., there exists T > 0 and u(t) 6= 0 for all t ∈ DT . If such a non-oscillatory
function happens to be a solution of an odd equation, we can freely chose it to be
eventually positive or eventually negative.

The main strategy in this work is to use some comparison methods via Picone-
type formulae to obtain oscillation criteria of some general equations. Of course
for some of the simpler equations, the oscillation criteria will be obtained through
direct investigations as in [1]. As examples of simple strongly oscillatory equations,
for α > 0, we have

{φα(u′)}′ + αφα(u) = 0 (2.2)
whose solutions are the generalized sine functions S := Sα [1, 3] with the following
properties:

|Sα(t)|α+1 + |S′α(t)|α+1 = 1, Sα(t + πα) = −Sα(t),

where πα =
2π

(α + 1) sin{ π
α+1}

.
(2.3)

When α = 1 the above functions are the usual trigonometric functions.
Easy calculations show that for k ∈ R\{0}, the function W (t) := Sα(ekt) satisfies

{e−kαtφα(W ′)}′ + |k|α+1αektφα(W ) = 0, (2.4)

and the function Y (t) := Sα(tk) with t ≥ 0 satisfies

{t(1−k)αφα(Y ′)}′ + |k|α+1tk−1αφα(Y ) = 0. (2.5)

A one-dimensional equation associated to (1.1), for some β, γ > 0, is

{a(t)φ(y′)}′ + c(t)φβ(z) + d(t)φγ(z) = f(t) (2.6)

where the coefficients satisfy (H0). Also assume that
(H1) there exists T > 0 such that c, d > 0 and f ≤ 0 on DT .
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Lemma 2.3. Assume that (H1) holds and there is a bounded non-trivial solution
z of (2.6).

(1) If the coefficient a is a positive constant and z is eventually positive, then
the derivative z′ is also eventually positive and decreases to 0 at ∞.

(2) If a′ > 0 and decreases to 0 at ∞, and c is unbounded, then the conclusion
in still (1) holds if f 6≡ 0 in some DT . However, if f(t) ≡ 0 in some DT , then
conclusion in (1) holds provided that the solution z is eventually greater than a
positive constant.

Proof. (1) If a ≡ 1, from (2.6) for a large T and t > s > T ,

φ(z′(t))− φ(z′(τ)) = −
∫ t

τ

{c(s)φβ(z) + d(s)φγ(z)− f(s)}ds

whose second member is strictly negative. So z′ is eventually decreasing and tends
to 0 since z is bounded.

(2) Also from (2.6),

a′(t)φ(z′) + a(t)
z′′

z′
z′φ′(z′) = a′(t)φ(z′) + a(t)αz′′

φ(z′)
z′

= −{c(t)φβ(z) + d(t)φγ(z)− f(t)}.

As a′ decays to 0, the last member is eventually negative while the one before last
has the same sign as z′′ eventually, if φ(z) > m > 0 eventually. We then have the
same conclusion as in (1). �

Theorem 2.4. Let z be a bounded non-trivial solution of (2.6).
Under the hypotheses of (1), and (H1) of Lemma 2.3, z is oscillatory in R.
Under the hypotheses of (2), and (H1) of lemma 2.3, z is oscillatory if f 6≡ 0 in

any DT ; otherwise it will be oscillatory unless

lim inf
t↗∞

|z(t)| = 0 . (2.7)

It is easy to verify that under the conditions that |f(t)| is eventually bounded
and the functions c and d are eventually positive and unbounded, the conclusions
of the theorem still hold.

Proof of Theorem 2.4. Assume that there is such a non-oscillatory solution z; i.e.,
z > 0 in some DT . Then the non-negative function

H(t) :=
a(t)φ(z′)

φ(z)
= a(t)φ(

z′

z
)

satisfies, eventually,

H ′(t) = −{c(t)|z|β−α + d(t)|z|γ−α}+
f(t)
φ(z)

− αa(t)
φ(z)

|z′|α+1 ≤ f(t)
φ(z)

. (2.8)

Therefore, H(t) ≤ H(T ) +
∫ t

T
f(s)
φ(z)ds which is invalid for large T > 0 as the right

hand side is eventually negative. Such a solution cannot be non-oscillatory unless
(2.7) holds for the case 2. �
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3. Some Picone-type formulae and results in one-dimensional
equations

We consider the equations

{a(t)φ(y′)}′ + c(t)φ(y) = 0,

{a1(t)φ(z′)}′ + c1(t)φ(z) + h(t, z, z′) = 0
(3.1)

and define the two-form ζ on C1(R, R) for γ > 0 and u, v ∈ C1(R), by

ζγ(u, v) := |u′|γ+1 − (γ + 1)φγ(
u

v
v′)u′ + γ|u

′

v
v′|γ+1 (3.2)

which is non negative and null only if there exists k ∈ R such that u = kv. (see e.g.
[3]). Easy verifications show that if y and z are solutions of (3.1), then wherever
z 6= 0,

{ya(t)φ(y′)− yφ(
y

z
)a1(t)φ(z′)}′ = a1(t)ζα(y, z) + [a(t)− a1(t)]|y′|α+1

+ [c1(t)− c(t)]|y|α+1 + |y|α+1 h(t, z, z′)
φ(z)

(3.3)

Given the importance of the half-linear equations (when h ≡ 0 in (3.1)) in our
investigation, we have the following result.

Theorem 3.1. Assume that a ∈ C1(R, (0,∞)) is non-decreasing and c ∈ C(R, R)
is strictly positive in some DT . Then for any α > 0 the half-linear equation

{a(t)φα(z′)}′ + c(t)φα(z) = 0, t > 0 (3.4)

is strongly oscillatory. Moreover, if M is a positive constant, then

{a(t)φα(u′)}′ + c(t)φα(u) + a(t)M = 0, t > 0 (3.5)

is strongly oscillatory.

In case where M < 0 but large enough, we have the same conclusion unless

lim inf
t↗∞

|u(t)| = 0.

Proof of Theorem 3.1. Assume that there is a solution z of (3.4) which is strictly
positive in DT . From (2.4), {a0(t)φα(y′)}′ + c0(t)φα(y) = 0 is strongly oscillatory
where for some k0 ≤ 0, a(t) ≤ exp{−k0αt} := a0(t) and c(t) ≥ |k0|α+1α exp{k0t} :=
c0(t) in some DT .

substituting a and c in (3.3) (where h ≡ 0), we obtain, in DT ,

{ya0(t)φ(y′)− yφ(
y

z
)a(t)φ(z′)}′

= a(t)ζα(y, z) + [a0(t)− a(t)]|y′|α+1 + [c(t)− c0(t)]|y|α+1 > 0.

The integration over any nodal set D(y) ⊂ DT of the above equation leads to an
absurdity as the right-hand side will be strictly positive. The solution z cannot be
eventually positive.

Let u be a bounded and non-trivial solution of (3.5). Wherever it is non-null,
(3.3) applied to (3.4) and (3.5) gives

{azφ(z′)− zφ(
z

u
)aφ(u′)}′ = a(t)ζα(z, u) + |z|α+1a(t)

M

φ(u)
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and the conclusion follows as before if M ≥ 0. If M is a negative but large enough
and u > µ > 0 in DT for some µ > 0 then in some DT , a(t){ζα(z, u)+|z|α+1 M

φ(u)} <

0 and we reach the same conclusion. �

Remark 3.2. The result of Theorem 3.1 includes the case where a(t) ≡ c(t) is an
increasing function and positive in some DT .

Theorem 3.1 shows that besides some well known oscillation criteria for half-
linear elliptic equations [13, 5, 10], (H0) and (H1) provide some other important
criteria.

Now we consider the equation

{a(t)φ(z′)}′ + c(t)φ(z) + q(t)φ(z′) = f(t); t > 0. (3.6)

Theorem 3.3. Assume that
(i) a ∈ C1(R, (0,∞)) is non decreasing with decaying a′ and c ∈ C(R, R)) is

strictly positive in some DT ;
(ii) q ∈ C(R) is bounded and f ∈ C(R, R) is non positive.

(a) If q is eventually positive then any non-trivial and bounded solution z of (3.6)
is oscillatory .
(b) But if q is not eventually positive, z is oscillatory unless

lim inf
t↗∞

|z(t)| = 0. (3.7)

Proof. As before, from the hypotheses, eventually from (3.6),

a′(t)φ(z′) + αa(t)z′′
φ(z′)

z′
= −{c(t)φ(z) + q(t)φ(z′)− f(t)} < 0

with |a′(t)φ(z′)| decaying to 0. As for Lemma 2.3, z and z′ are both positive with
z′ decreasing to 0. Let M be a very large positive number and y an oscillatory
solution of

{a(t)φα(y′)}′ + c(t)φα(y) + a(t)M = 0.

Assume that there is such a solution z of (3.6) which is eventually positive. Then
as in (3.3), wherever z > 0,

{ya(t)φ(y′)− yφ(
y

z
)a(t)φ(z′)}′

= a(t)ζα(y, z) + a(t)y{M + q(t)φ(
y

z
z′)} − |y|α+1 f(t)

φ(z)
.

(3.8)

If we integrate over a nodal set D(y) ⊂ DT , where elements are positive, the above
equation yields

0 =
∫

D(y)

{a(t)ζα(y, z) + a(t)y{M + q(t)φ(
y

z
z′)} − |y|α+1 f(t)

φ(z)
}dt. (3.9)

(a) As in the proof of Lemma 2.3, if a is a positive constant then if z′ is eventually
positive, so is z′ and (even without the help of M) the right-hand side of (3.8) is
strictly positive which is a contradiction.

(b) In this case, if M > 0 is large enough, we obtain the same conclusion provided
that eventually z > µ > 0 for some µ > 0; in fact M+q(t)φ(y

z z′) needs to be positive
for a fixed large M . �
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For a ∈ C1(Rn, (0,∞)) and c ∈ C(R, R) such that for some T > 0, c, a′ > 0 in
DT and a large M , we consider a strongly oscillatory solution y of

{a(t)φ(y′)}′ + c(t)φ(y)− a(t)M = 0. (3.10)

Consider the equation

{a(t)φ(z′)}′ + c(t)φ(z) + q(t)φ(z′) = 0 (3.11)

where there exists Q ∈ C1(R, R) and k ∈ C(R, R); Q′(t) = q(t) + k(t).
For a solution z of (3.11) and y that of (3.10), wherever z 6= 0,{

a(t)yφ(y′)− yφ(
y

z
)a(t)φ(z′)− yφ(

y

z
)a(t)Q(t)φ(z′)

}′
= a(t)ζα(y, z) + a(t)y{M − k(t)φ(

y

z
z′)} −Q(t)

(
ya(t)φ(

y

z
z′)

)′
.

(3.12)

We then have the following result.

Theorem 3.4. Assume that there are
(i) Q ∈ C1(R, R); q, k ∈ C(R, R) such that Q′(t) = q(t) + k(t);
(ii) a ∈ C1(R, (0,∞)) and c ∈ C(R, R) such that c, a′ > 0 in some DT .

Then any non-trivial and bounded solution z of

{a(t)φ(z′)}′ + c(t)φ(z) + q(t)φ(z′) = 0 (3.13)

(a) is oscillatory if k ≡ 0;
(b) is oscillatory if k 6≡ 0 and bounded in DT , unless lim inft↗∞ |z(t)| = 0.

Proof. If in (3.11) we replace Q by Q + µ with µ ∈ R, (3.12) remains valid with
Q+µ. If there is a solution z of (3.13) which is positive in some DT , the integration
of (3.12) over any nodal set D(y+) ⊂ DT gives

0 =
∫

D(y+)

a(t)
(
ζα(y, z) + y{M − k(t)φ(

y

z
z′)}

)
dt

−
∫

D(y+)

(
Q(t) + µ

)
[a(t)yφ(

y

z
z′)]′ dt, ∀µ ∈ R.

(3.14)

The formula (3.14) can only hold if each integrand in the formula in null in DT ; in
particular only if

a(t)[ζα(y, z) + y{M − k(t)φ(
y

z
z′)}] = 0

in any D(y+) ⊂ DT .
(a) If k ≡ 0 this is absurd for M ≥ 0. Therefore, the assumption is false; z

cannot be eventually positive.
(b) If k 6≡ 0 but bounded with z > ν for some ν > 0 in DT , the same conclusion

holds by choosing a large enough M > 0. �

4. Multidimensional case

If w ∈ C1(Rn, R) is radially symmetric; i.e., w(x) := W (r) := W (|x|) for some
W ∈ C1(R) then easy but elaborate calculations show that

∇w(x) = W ′(r)
X

|X|
and ∇ · {a(r)Φ(∇w)} =

1
rn−1

{rn−1a(r)φ(W ′)}′
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and for B ∈ C(Rn, Rn), B(x) · Φ(∇u) = B(x) · X
|X|φ(U ′), where a ∈ C1(R) say,

X =t (x1, x2, . . . , xn) denotes the position-vector and r := |X| =
√
{
∑n

i=1 x2
i } its

module.
Consider the operators

P (u) := ∇ · {A(x)Φ(∇u)}+ C(x)φ(u) + B1(x) · Φ(∇u); (4.1)

R(u) := ∇ · {a(r)Φ(∇u)}+ c(r)φ(u) + B2(x) · Φ(∇u) + F (x) (4.2)

where the real functions a,A are positive and continuously differentiable, c, C, F
are continuous in all their arguments and Bi ∈ C(Rn, Rn). If a function u in (4.2)
is radially symmetric; i.e.m u(x) := U(|x|) = U(r), then, in terms of U , (4.2) reads

R1(U) = {rn−1 a(r)φ(U ′)}′ + rn−1 c(r)φ(U)

+ rn−1
(
B2(x) · X

|X|
φ(U ′) + F (x)

)
.

(4.3)

If the regular functions u and v satisfy Pu = Rv = 0 in Rn, then a Picone formula
reads

∇ · {uA(x)Φ(∇u)− uφ(
u

v
)a(r)Φ(∇v)}

= a(r)Zα(u, v) +
(
A(x)− a(r)

)
|∇u|α+1 +

(
c(r)− C(x)

)
|u|α+1

+ |u|α+1[B2(x) · Φ(
∇v

v
)−B1(x) · Φ(

∇u

u
)] + |u|α+1 F (x)

φ(v)

(4.4)

where for all γ > 0 and all u, v ∈ C1(Rn),

Zγ(u, v) := |∇u|γ+1 − (γ + 1)Φγ(
u

v
∇v) · ∇u + γ|u

v
∇v|γ+1.

If the coefficients a and c were not radially symmetric, but a1(x) and c1(x) are,
then (4.1) would be the same with a1(x) and c1(x) replacing them.

We recall that for all γ > 0 the two-form Zγ(u, v) ≥ 0 and is null only if either
uv = 0 or there exist k ∈ R with u = kv. (see e.g. [5, 8, 10]).

For easy writing we define for h ∈ C(Rn, R) and H ∈ C(Rn, Rn)

h+(r) := max
|x|=r

h(x), H+(r) := max
|x|=r

H(x) · X

|X|
,

h−(r) := min
|x|=r

h(x), H−(r) := min
|x|=r

H(x) · X

|X|
.

(4.5)

In [13], we have the equation

∇ ·
(
Φα(∇v)

)
+ φβ(v) + φγ(v) = 0

where 0 < γ < α < β. Here we consider the more general equation

∇ ·
(
Φα(∇v)

)
+ φβ(v) + φγ(v) + B(x) · Φα(∇v) + F (x) = 0 (4.6)

where B ∈ C(Rn, Rn). If v(x) := z(r) is a radially symmetric solution of (4.6),
then(

rn−1φα(z′)
)′

+ rn−1{φβ(z) + φγ(z) + B(x) · X

|X|
φα(z′) + F (x)} = 0. (4.7)

Let y be a strongly oscillatory solution of (see Remark 3.2 and Theorem 3.1)(
rn−1φα(y′)

)′
+ rn−1

(
φα(y)−M

)
= 0.
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Then

{yrn−1φα(y′)− rn−1yφα(
y

z
)φα(z′)}′

= rn−1[ζα(y, z) + |y|α+1
(
|z|β−α + |z|γ−α − 1

)
+ y{M + B(x) · X

|X|
φα(

yz′

z
) + F (x)φ(

y

z
)}]

= rn−1
[
ζα(y, z) + |y|α+1

(
|z|β−α + |z|γ−α

)
+ y{M − φα(y) + B(x) · X

|X|
φα(

yz′

z
) + F (x)φ(

y

z
)}

]
.

(4.8)

For R > 0, define ΩR := {x ∈ Rn : |x| > R}.

Theorem 4.1. Assume that The functions B(x) · X/|X| and F (x) are radially
symmetric and bounded in some ΩR. Then any non-trivial and bounded radially
symmetric solution z of

∇ ·
(
Φα(∇z)

)
+ φβ(z) + φγ(z) + B(x) · Φα(∇z) + F (x) = 0 (4.9)

is oscillatory, unless
lim inf

r↗∞
|z(r)| = 0. (4.10)

Proof. It is sufficient to note that in (4.8), if |z| > µ > 0 in ΩR, as

|{B(x) · X

|X|
φα(

yz′

z
) + F (x)φ(

y

z
)− φ(y)}|

is uniformly bounded under the hypotheses, for M > 0 large enough,

{M − φ(y) + B(x) · X

|X|
φα(

yz′

z
) + F (x)φ(

y

z
)} > 0.

So such a solution z cannot be eventually positive, unless (4.10) holds. �

5. Main results

We start with an important link between multi-dimensional and one-dimensional
oscillation criterion for half-linear operators, and some oscillation criteria by means
of the comparison method.

Theorem 5.1. (1) For any regular functions a, c ∈ C(Rn, R), if the equation

{rn−1 a+(r)φ(y′)}′ + rn−1c−(r)φ(y) = 0

is oscillatory in R, then so is ∇ · {a(x)Φ(∇u)} + c(x)φ(u) = 0 in Rn. (see [5,
Theorem 3.1])

(2) If ∇ · {a(x)Φ(∇u)}+ c(x)φ(u) = 0 is strongly oscillatory, then any bounded
solution v of the equation

∇ · {a(x)Φ(∇v)}+ c(x)φ(v) + M = 0 (5.1)

is oscillatory: (i) for all M ≥ 0; (ii) for all M < 0, provided that it is large enough,
unless lim inf |x|↗∞ |v(x)| = 0.
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Proof. (1) As in (4.4),

∇ · {a+(r)yΦ(∇y)− yφ(
y

u
)a(x)Φ(∇u)}

= a(x)Z(y, u) + (a+ − a)|∇y|α+1 + (c− c−)|y|α+1
(5.2)

which for non-null and distinct u and y is strictly positive. If u is assumed to be
eventually strictly positive in some ΩT , then the integration of (5.2) over any nodal
set D(y) ⊂ ΩT would lead to a contradiction. Thus u cannot be eventually positive.

(2) In this case, with µ ∈ {M,−M}, if we assume that ∇ · {a(x)Φ(∇v)} +
c(x)φ(v)+µ = 0 has a non-trivial and bounded solution v which is strictly positive
in some ΩT then in application of (4.4),

∇ · {ua(x)Φ(∇u)− uφ(
u

v
)a(x)Φ(∇v)} = a(x)Z(u, v) + µuφ(

u

v
).

If µ ≥ 0 then the right-hand side of the above equation is strictly positive; but if
µ < 0 but very large, a(x)Z(u, v) + µuφ(u

v ) < 0 provided that v > ν in ΩT for
some ν > 0. In both cases, integration over any nodal set D(u) ⊂ ΩT leads to a
contradiction. �

It is important to mention that for the above result, M can be replaced by
a(x)M , a being that in the concerning equation ∇ · {a(x)Φ(∇u)} + c(x)φ(u) = 0
which is assumed bounded below in some ΩT by a positive constant in the case
where the result is based on “big M”. In fact in this case the right hand side of the
equation above reads a(x){Z(u, v) + Muφ(u

v )}.
Now we go back to the equation

∇ ·
(
A(x)Φ(∇v)

)
+ A(x)B(x) ·Φ(∇v) + C(x)φβ(v) + D(x)φγ(v) + f(x) = 0 (5.3)

where as said before, A ∈ C1(Rn, (0,∞)), f, C,D ∈ C(Rn, R);B ∈ C(Rn, Rn) and
β, γ > 0. We suppose that there exists b ∈ C1(Rn, R) such that

∇b(x) = B(x) + K(x), (5.4)

where K ∈ C(Rn, Rn) is bounded.
Let u be a strongly oscillatory solution of

∇ ·
(
A(x)Φ(∇u)

)
+ C1(x)φβ(u)−A(x)M = 0 (5.5)

where M > 0 and C1
A bounded.

Developments as those give for v in (5.3) (formally) lead to

∇ · {uA(x)Φ(∇u)− uφ(
u

v
)A(x)Φ(∇v)}

= A(x)Zα(u, v) + |u|α+1
(
C(x)|v|β−α − C1(x)|u|β−α + D(x)|v|γ−α

)
+ u[A(x){B(x) · Φ(

u

v
∇v) + M}+ f(x)φ(

u

v
)].

As

∇ · {uφ(
u

v
)b(x)A(x)Φ(∇v)}

= b(x){A(x){|∇u|α+1 − Zα(u, v)} − u
(
A(x)B(x) · Φ(

u∇v

v
) + f(x)φ(

u

v
)
)

− |u|α+1[C(x)|v|β−α + D(x)|v|γ−α]}+ uA(x)(B(x) + K(x)) · Φ(
u∇v

v
),
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we have

∇ · {uA(x)Φ(∇u)− uφ(
u

v
)A(x)Φ(∇v)− uφ(

u

v
)b(x)A(x)Φ(∇v)}

= A(x)Zα(u, v) + |u|α+1
[
C(x)|v|β−α − C1(x)|u|β−α + D(x)|v|γ−α

]
+ A(x)u

(
M −K(x).Φ(

u∇v

v
)
)

+ uf(x)φ(
u

v
)

+ b(x){A(x)[Zα(u, v)− |∇u|α+1] + uA(x)B(x) · Φ(
u∇v

v
)

+ uf(x)φ(
u

v
) + |u|α+1{C(x)|v|β−α + D(x)|v|γ−α}}

and

∇ · {uA(x)Φ(∇u)− uφ(
u

v
)A(x)Φ(∇v)− uφ(

u

v
)b(x)A(x)Φ(∇v)}

= A(x)Zα(u, v) + |u|α+1[C(x)|v|β−α + D(x)|v|γ−α]

+ A(x)u
(
M −K(x) · Φ(

u∇v

v
)− C1(x)

A(x)
φβ(u)

)
+ uf(x)φ(

u

v
)

+ b(x){A(x)[Zα(u, v)− |∇u|α+1] + uA(x)B(x) · Φ(
u∇v

v
)

+ uf(x)φ(
u

v
) + |u|α+1{C(x)|v|β−α + D(x)|v|γ−α}}.

(5.6)

Theorem 5.2. Consider the equation (5.3) where
(i) A ∈ C1(Rn, (0,∞));
(ii) f, C,D ∈ C(Rn, R) are positive in some ΩR;
(iii) there exist b ∈ C1(Rn, R), K ∈ C(Rn, Rn) with b(x) := B(x) + K(x) such

that K is eventually bounded.
If v is a bounded non-trivial solution of (5.3), then (a) (5.3) is strongly oscillatory
if K ≡ 0; (b) (5.3) is strongly oscillatory if K 6≡ 0, unless

lim inf
|x|↗∞

|v(x)| = 0.

Proof. Assume that there is a solution v of (5.3) which is not oscillatory; e.g., There
exists ρ ≥ R such that v > 0 in Ωρ.

In (5.5) the function b can be replaced by a b1 := b + µ, for any constant µ ∈ R.
So after such a replacement the integration of the resulting equation over any nodal
set D(u+) ⊂ Ωρ (u > 0 in D(u+) and u|∂D(u+) = 0), we obtain that for all µ ∈ R,

0 =
∫

D(u+)

[A(x)Zα(u, v) + |u|α+1
(
C(x)|v|β−α + D(x)|v|γ−α

)
+ A(x)u

(
M −K(x) · Φ(

u∇v

v
)− C1(x)

A(x)
φβ(u)

)
+ uf(x)φ(

u

v
)]dx

+
∫

D(u+)

{b(x) + µ}{A(x)[Zα(u, v)− |∇u|α+1 ] + uA(x)B(x) · Φ(
u∇v

v
)

+ uf(x)φ(
u

v
) + |u|α+1{C(x)|v|β−α + D(x)|v|γ−α}}dx

(5.7)

which could hold only if each integrand is null; in particular that in the first integral.
In that integrand, all terms are non negative except for(

M −K(x) · Φ(
u∇v

v
)− C1(x)

A(x)
φβ(u)

)
.
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But from the hypotheses, this formula is positive.
(a) if K ≡ 0 and M > 0 big enough. Then v cannot be eventually positive;
(b) if K 6≡ 0 the same conclusion prevails unless, because of the term Φ(u∇v

v ),
lim inf |x|↗∞ |v(x)| = 0. �
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