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LINEAR DIFFERENTIAL EQUATIONS WITH ENTIRE
COEFFICIENTS HAVING THE SAME ORDER AND TYPE

NACERA BERRIGHI, SAADA HAMOUDA

Abstract. In this article, we study the growth of solutions to the differential
equation

fk + (Ak−1(z)ePk−1(z)eλzm
+ Bk−1(z))fk−1 + . . .

+ (A0(z)eP0(z)eλzm
+ B0(z))f = 0,

where λ ∈ C∗, m ≥ 2 is an integer and maxj=0,...,k−1{deg Pj(z)} < m, Aj , Bj

(j = 0, . . . , k − 1) are entire functions of orders less than m.

1. Introduction and statement of results

Throughout this paper, we assume that the reader is familiar with the fun-
damental results and the standard notation of the Nevanlinna value distribution
theory (see [8]). In addition, we use the notation σ2(f) to denote the hyper-order
of nonconstant entire function f ; that is,

σ2(f) = lim sup
r→+∞

log log T (r, f)
log r

= lim sup
r→+∞

log log log M(r, f)
log r

,

where T (r, f) is the Nevanlinna characteristic of f and M(r, f) = max|z|=r |f(z)|
(see [11]).

We define the linear measure of a set E ⊂ [0, 2π) by m(E) =
∫ +∞
0

χE(t)dt and
the logarithmic measure of a set F ⊂ [1,+∞) by lm(F ) =

∫ +∞
1

χF (t)
t dt, where

χH(t) is the characteristic function of a set H.
Several authors have studied the particular differential equations

f ′′ + e−zf ′ + Q(z)f = 0, (1.1)

(see [1, 4, 6, 9]). Gundersen [6] proved that if deg Q(z) 6= 1, then every nonconstant
solution of (1.1) is of infinite order. Chen considered the case Q(z) = h(z)ebz, where
h(z) is nonzero polynomial and b 6= −1, see [2]; more precisely, he proved that
every nontrivial solution f of (1.1) satisfies σ2(f) = 1. The same paper contains a
discussion about more general equations of the type

f ′′ + A1(z)eazf ′ + A0(z)ebzf = 0, (1.2)
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where A1 6≡ 0, A0 6≡ 0, are entire functions of order less than 1, and a, b are complex
constants. He proved that if ab 6= 0 and arg a 6= arg b or a = cb (0 < c < 1), then
every solution f(z) 6≡ 0 of (1.2) is of infinite order. He also proved the following
result.

Theorem 1.1 ([2]). Let Aj(z) ( 6≡ 0), Dj(z) (j = 0, 1) be entire functions with
σ(Aj) < 1, σ(Bj) < 1 (j = 0, 1), a, b be complex constants such that ab 6= 0 and
arg a 6= arg b or a = cb (0 < c < 1). Then every solution f(z) 6≡ 0 of

f ′′ + (A1(z)eaz + D1)f ′ + (A0(z)ebz + D0)f = 0,

is of infinite order.

In another paper, Chen and Shon [3] Proved the following result.

Theorem 1.2. Let P (z) =
∑n

i=0 aiz
i and Q(z) =

∑n
i=0 biz

i be nonconstant poly-
nomials where ai, bi (i = 0, 1, . . . , n) are complex numbers, an 6= 0, bn 6= 0. Let
A1(z) 6≡ 0 and A0(z) 6≡ 0 be entire functions. Suppose that either (i) or (ii) below,
holds:

(i) arg an 6= arg bn or an = cbn (0 < c < 1) σ(Aj) < n (j = 0, 1)
(ii) an = cbn (c > 1) and deg(P − cQ) = m ≥ 1, σ(Aj) < m (j = 0, 1).

Then every solution f(z) 6≡ 0 of the differential equation

f ′′ + A1(z)eP (z)f ′ + A0(z)eQ(z)f = 0,

is of infinite order with σ2(f) = n.

Hamouda and Belaidi [7] investigated the linear differential equation

w(n) + eazm

w′ + Q(z)w = 0

and some related extensions.
In this paper, we investigate the differential equation

fk + (Ak−1(z)ePk−1(z)eλzm

+ Bk−1(z))fk−1 + . . .

+ (A0(z)eP0(z)eλzm

+ B0(z))f = 0,
(1.3)

where λ ∈ C∗, m ≥ 2 is an integer and maxj=0,...,k−1{deg Pj(z)} < m. We obtain
the following results.

Theorem 1.3. Let λ ∈ C∗, m ≥ 2 is an integer and P0(z), . . . , Pk−1(z) be non
constant polynomials such that maxj=0,...,k−1{deg Pj(z)} < m; Aj(z) ( 6≡ 0), Bj(z)
(j = 0, . . . , k − 1) be entire functions such that σ(Aj) < deg Pj(z), σ(Bj) < m
(j = 0, . . . , k − 1). Suppose that there exist θ1 < θ2 such that δ(λzm, θ) > 0,
δ(P0, θ) > 0 and δ(Pj , θ) < 0 (j = 1, . . . , k − 1) for all θ ∈ (θ1, θ2). Then every
non trivial solution f of (1.3) is of infinite order with n ≤ σ2(f) ≤ m, where
n = deg P0.

Corollary 1.4. Let Pj(z) =
∑n

i=0 ai,jz
i (j = 0, . . . , k − 1) be non constant poly-

nomials where ai,j are complex numbers such that an,j 6= 0 (j = 0, . . . , k − 1),
arg an,j = arg an,1 (j = 2, . . . , k − 1) and arg an,1 6= arg an,0; Aj(z) (6≡ 0), Bj(z),
(j = 0, . . . , k − 1) be entire functions such that σ(Aj) < n, σ(Bj) < m (j =
0, . . . , k − 1). Then every non trivial solution f of (1.3) is of infinite order with
n ≤ σ2(f) ≤ m.

Now we give examples for Theorem 1.3 for cases other than Corollary 1.4.
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Example 1.5. From Theorem 1.3, every non trivial solution f of the differential
equation

f ′′′ + (A2(z)ez3
ez4

+ B2(z))f ′′ + (A1(z)ez2
ez4

+ B1(z))f ′

+ (A0(z)ezez4
+ B0(z))f = 0,

is of infinite order with 1 ≤ σ2(f) ≤ 4. We cane take (θ1, θ2) ⊂ (π/3, π/2) ∪
(3π/2, 5π/3)

Example 1.6. Every non trivial solution f of the differential equation

f ′′′ + (A2(z)ezez3
+ B2(z))f ′′ + (A1(z)e(i+1)z2

ez3
+ B1(z))f ′

+ (A0(z)ez2
ez3

+ B0(z))f = 0,

is of infinite order with 2 ≤ σ2(f) ≤ 3. Here we can take (θ1, θ2) ⊂ (3π/4, 5π/6).

Theorem 1.7. Let Pj(z) =
∑n

i=0 ai,jz
i (j = 0, . . . , k − 1) be non constant poly-

nomials where ai,j are complex numbers such that an,0 6= 0 and an,j = cjan,0

(0 < cj < 1) (j = 1, . . . , k − 1); Aj(z) (6≡ 0), Bj(z), (j = 0, . . . , k − 1) be entire
functions such that σ(Aj) < n, σ(Bj) < m (j = 0, . . . , k − 1). Then every non
trivial solution f of (1.3) is of infinite order with n ≤ σ2(f) ≤ m.

By combining Corollary 1.4 and Theorem 1.7, we can obtain the following corol-
lary.

Corollary 1.8. Let Pj(z) =
∑n

i=0 ai,jz
i (j = 0, . . . , k− 1) be non constant polyno-

mials where ai,j are complex numbers such that an,0 6= 0. Suppose that there exists
s ∈ {1, . . . , k − 1} such that arg an,s 6= arg an,0 and for all j 6= 0, s, an,j satisfies
either an,j = cjan,0 (0 < cj < 1) or arg an,j = arg an,s. Then every non trivial
solution f of (1.3) is of infinite order with n ≤ σ2(f) ≤ m.

Now we investigate cases when an,j have distinct arguments or an,j = cjan,0

(cj > 1) and obtain the following results.

Theorem 1.9. Let Pj(z) =
∑n

i=0 ai,jz
i (j = 0, . . . , k − 1) be non constant polyno-

mials where ai,j are complex numbers such that an,0 6= 0. Suppose that there exists
s ∈ {1, . . . , k − 1} such that

arg(an,j − an,s) = ϕ 6= arg(an,0 − an,s) for all j 6= 0, s. (1.4)

Then every non trivial solution f of (1.3) is of infinite order with n ≤ σ2(f) ≤ m.

Theorem 1.10. Let Pj(z) =
∑n

i=0 ai,jz
i (j = 0, . . . , k−1) be non constant polyno-

mials where ai,j are complex numbers such that an,0 6= 0. Suppose that there exists
s ∈ {1, . . . , k − 1} such that

an,j − an,s = cj(an,0 − an,s) (0 < cj < 1) (1.5)

for all j 6= 0, s. Then every non trivial solution f of (1.3) is of infinite order with
n ≤ σ2(f) ≤ m.

By combining Theorem 1.9 and Theorem 1.10, we obtain the following corollary.

Corollary 1.11. Let Pj(z) =
∑n

i=0 ai,jz
i (j = 0, . . . , k−1) be non constant polyno-

mials where ai,j are complex numbers such that an,0 6= 0. Suppose that there exists
s ∈ {1, . . . , k − 1} such that arg(an,j − an,s) 6= arg(an,0 − an,s) and for j 6= 0, s we
have either (1.4) or (1.5). Then every non trivial solution f of (1.3) is of infinite
order with n ≤ σ2(f) ≤ m.
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Theorem 1.12. If Pj(z) and Aj(z) (j = 0, . . . , k− 1) satisfy the conditions of one
of our previous theorems or corollaries, then every non trivial solution f of

fk + An−1(z)ePk−1(z)eλzm

fk−1 + · · ·+ A0(z)eP0(z)eλzm

f = 0, (1.6)

is of infinite order with σ2(f) = n or σ2(f) = m.

2. Preliminary lemmas

We need the following lemmas for our proofs.

Lemma 2.1 ([5]). Let f(z) be a transcendental meromorphic function and α > 1.
There exist a set E ⊂ [0, 2π) that has linear measure zero and a constant M > 0
that depends only on α such that for any θ ∈ [0, 2π)\E there exists a constant
R0 = R0(θ) > 1 such that for all z satisfying arg z = θ and |z| = r > R0, we have

|f
(k)(z)
f(z)

| ≤ M
[
T (αr, f)

(logα r)
r

log T (αr, f)
]k

, k ∈ N.

Lemma 2.2 ([5]). Let f(z) be a transcendental meromorphic function of finite
order σ, and let ε > 0 be a given constant. Then there exists a set E ⊂ [0, 2π)
of linear measure zero such that for all z = reiθ with |z| sufficiently large and
θ ∈ [0, 2π)\E, and for all k, j, 0 ≤ j ≤ k, we have

|f
(k)(z)

f (j)(z)
| ≤ |z|(k−j)(σ−1+ε).

Using the Wiman-Valiron theory, we can easily prove the following lemma (see
[2]).

Lemma 2.3. Let A,B be entire functions of finite order. If f is a solution of the
differential equation

f (k) + Ak−1f
(k−1) + · · ·+ A1f

′ + A0f = 0,

then σ2(f) ≤ maxj=0,...,k−1{σ(Aj)}.

Lemma 2.4 ([2]). Let P (z) = anzn + . . . , (an = α + iβ 6= 0) be a polynomial
with degree n ≥ 1 and A(z) ( 6≡ 0) be entire function with σ(A) < n. Set f(z) =
A(z)eP (z), z = reiθ, δ(P, θ) = α cos nθ − β sinnθ. Then for any given ε > 0,
there exists a set H ⊂ [0, 2π) that has linear measure zero, such that for any θ ∈
[0, 2π)\H, where H = {θ ∈ [0, 2π) : δ(P, θ) = 0} is a finite set, there is R > 0 such
that for |z| = r > R, we have

(i) if δ(P, θ) > 0, then

exp{(1− ε)δ(P, θ)rn} ≤ |f(z)| ≤ exp{(1 + ε)δ(P, θ)rn},
(ii) if δ(P, θ) < 0, then

exp{(1 + ε)δ(P, θ)rn} ≤ |f(z)| ≤ exp{(1− ε)δ(P, θ)rn}.

Lemma 2.5 ([3]). Let f(z) be a entire function with σ(f) = +∞ and σ2(f) = α <
+∞, let a set E2 ⊂ [1,+∞) has finite logarithmic measure. Then there exists a
sequence {zp = rpe

iθp} such that f(zp) = M(rp, f), θp ∈ [0, 2π), limp→∞ θp = θ0 ∈
[0, 2π), rp /∈ E2, and for any given ε > 0, as rp →∞, we have

exp{rα−ε
p } ≤ ν(rp) ≤ exp{rα+ε

p },
where ν(r) is the central index of f .
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3. Proofs of theorems

Proof of theorem 1.3. From (1.3), we obtain

|A0(z)eP0(z) + B0(z)e−λzm

|

≤ |e−λzm

||f
(k)

f
|+

k−1∑
j=1

|Aj(z)ePj(z) + Bj(z)e−λzm

| |f
(j)

f
|.

(3.1)

Since δ(λzm, θ) > 0, δ(P0, θ) > 0 and δ(Pj , θ) < 0 (j = 1, . . . , k − 1) for all
θ ∈ (θ1, θ2), by Lemma 2.4, for any θ ∈ (θ1, θ2) there is R0(θ) > 0 such that for
|z| = r > R0, we have

exp{(1− ε)δ(P0, θ)rn} ≤ |A0(z)eP0(z) + B0(z)e−λzm

|, (3.2)

|Aj(z)ePj(z) + Bj(z)e−λzm

| ≤ C1 (j = 1, . . . , k − 1). (3.3)

From Lemma 2.1, there exist a set E ⊂ [0, 2π) that has linear measure zero and
a constant M > 0 such that for any θ ∈ [0, 2π)\E there exists a constant R1 =
R1(θ) > 1 such that for all z satisfying arg z = θ and |z| = r > R1, we have

|f
(j)

f
| ≤ C2[T (2r, f)]2k (j = 1, . . . , k). (3.4)

By using (3.2)-(3.4) in (3.1), for r > max{R0, R1}, we obtain

exp{(1− ε)δ(P0, θ)rn} ≤ C3[T (2r, f)]2k,

which implies that σ2(f) ≥ n. By Lemma 2.3, we obtain n ≤ σ2(f) ≤ m. �

Proof of Corollary 1.4. In these conditions, there exist θ1, θ2 such that θ1 < θ2,
δ(λzm, θ) > 0, δ(P0, θ) > 0 and δ(Pj , θ) < 0 (j = 1, . . . , k−1) for all θ ∈ (θ1, θ2). �

Proof of Theorem 1.7. Since m > n and an,j = cjan,0 (0 < cj < 1) (j = 1, . . . , k −
1), there exist θ1 < θ2 such that δ(λzm, θ) > 0 and δ(Pj , θ) > 0 (j = 0, . . . , k − 1)
for all θ ∈ (θ1, θ2). In this case from Lemma 2.4, for sufficiently large r, we have

exp{(1− ε)δ(P0, θ)rn} ≤ |A0(z)eP0(z) + B0(z)e−λzm

|, (3.5)

|Aj(z)ePj(z) + Bj(z)e−λzm

| ≤ exp{(1 + ε)cδ(P0, θ)rn}, (3.6)

where c = max{cj}. Using (3.5), (3.6) and (3.4) in (3.1), for r large enough,

exp{(1− ε)δ(P0, θ)rn} ≤ C4 exp{(1 + ε)cδ(P0, θ)rn}[T (2r, f)]2k, (3.7)

and thus
exp{(1− ε− (1 + ε)c)δ(P0, θ)rn} ≤ C4[T (2r, f)]2k. (3.8)

Taking 0 < ε < 1−c
1+c , we obtain, from (3.8) and Lemma 2.3, the desired estimate

n ≤ σ2(f) ≤ m. �

Proof of Corollary 1.8. In this case also there exist θ1 < θ2 such that δ(λzm, θ) > 0,
δ(P0, θ) > 0 and δ(Ps, θ) < 0 for all θ ∈ (θ1, θ2). We have

|As(z)ePs(z) + Bs(z)e−λzm

| ≤ C5 (3.9)

and also for j such that arg an,j = arg an,s

|Aj(z)ePj(z) + Bj(z)e−λzm

| ≤ C6. (3.10)
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Now for j such that an,j = cjan,0 (0 < cj < 1), we have (3.6). By combining
(3.6), (3.9), (3.10) with (3.1) we obtain n ≤ σ2(f), and by Lemma 2.3 we obtain
n ≤ σ2(f) ≤ m. �

Proof of Theorem 1.9. There exist θ1 < θ2 such that δ(λzm, θ) > 0, δ(P0−Ps, θ) >
0 and δ(Pj −Ps, θ) > 0 for every θ ∈ (θ1, θ2). Thus for r sufficiently large, we have

exp{(1− ε)δ(P0 − Ps, θ)rn} ≤ |A0(z)eP0(z)−Ps(z) + B0(z)e−λzm−Ps(z)|, (3.11)

|As(z) + Bs(z)e−λzm−Ps(z)| ≤ exp{rσ(As)+ε}, (3.12)

|A0(z)ePj(z)−Ps(z) + B0(z)e−λzm−Ps(z)| ≤ C7. (3.13)

From (1.3), we obtain

|A0(z)eP0(z)−Ps(z) + B0(z)e−λzm−Ps(z)|

≤ |e−λzm−Ps(z)||f
(k)

f
|+

k−1∑
j=1

|Aj(z)ePj(z)−Ps(z) + Bj(z)e−λzm−Ps(z)||f
(j)

f
|.

(3.14)

Substituting (3.11)-(3.13) and (3.4) in (3.14), we obtain

exp{(1− ε)δ(Q− P, θ)rn} ≤ C8 exp{rσ(As)+ε}[T (2r, f)]2k.

Which implies n ≤ σ2(f), and by Lemma 2.3, we obtain n ≤ σ2(f) ≤ m. �

Proof of Theorem 1.10. There exist θ1 < θ2 such that δ(λzm, θ) > 0 and δ(Pj , θ) >
0 (j = 0, . . . , k− 1) for all θ ∈ (θ1, θ2). In this case from Lemma 2.4, for sufficiently
large r, we have

exp{(1− ε)δ(P0 − Ps, θ)rn} ≤ |A0(z)eP0(z)−Ps(z) + B0(z)e−λzm−Ps(z)|, (3.15)

|As(z) + Bs(z)e−λzm−Ps(z)| ≤ exp{rσ(As)+ε} (3.16)

and for j 6= 0, s

|Aj(z)ePj(z)−Ps(z) + Bj(z)e−λzm−Ps(z)| ≤ exp{(1 + ε)cδ(P0 − Ps, θ)rn}, (3.17)

where c = max{cj}. Using (3.15)-(3.17) and (3.4) in (3.14), for r large enough, we
obtain

exp{(1− ε)δ(P0, θ)rn} ≤ C9 exp{rσ(As)+ε} exp{(1 + ε)cδ(P0, θ)rn}[T (2r, f)]2k,

and thus

exp{(1− ε− (1 + ε)c)δ(P0, θ)rn} ≤ C9 exp{rσ(As)+ε}[T (2r, f)]2k (3.18)

By taking 0 < ε < 1−c
1+c , from (3.18) and Lemma 2.3, we obtain n ≤ σ2(f) ≤ m. �

Proof of Theorem 1.12. By taking Bj(z) ≡ 0 (j = 0, . . . , k − 1) in previous the-
orems, we obtain that every solution f(z) 6≡ 0 of (1.6) is of infinite order with
n ≤ σ2(f) ≤ m. It remains to show that σ2(f) = m or σ2(f) = n. For that
we suppose the contrary, i.e. n < σ2(f) < m and we prove that this implies a
contradiction.

Recall the Wiman-Valiron theory [10], there is a set E1 ⊂ [1,+∞) that has finite
logarithmic measure, such that for |z| = r /∈ [0, 1] ∪ E1 and |f(z)| = M(r, f), we
have

f (j)(z)
f(z)

= (
ν(r)
z

)j(1 + o(1)) (j = 1, . . . , k − 1), (3.19)

where ν(r) is the central index of f(z).



EJDE-2011/157 ENTIRE COEFFICIENTS HAVING THE SAME ORDER AND TYPE 7

Set σ2(f) = γ. From Lemma 2.5, we can take a sequence of points {zp = rpe
iθp}

such that f(zp) = M(rp, f), θp ∈ [0, 2π), limp→∞ θp = θ0 ∈ [0, 2π), rp /∈ [0, 1] ∪
E1 ∪ E2, and for any given ε > 0, as rp →∞, we have

exp{rγ−ε
p } ≤ ν(rp) ≤ exp{rγ+ε

p }. (3.20)

From (1.6), we can write

− f (k)

f
=

(
Ak−1(z)ePk−1(z) f

(k−1)

f
+ · · ·+ A0(z)eP0(z)

)
eλzm

. (3.21)

Using (3.19) in (3.21), we obtain

−νk(rp)(1 + o(1)) = (zpAk−1e
Pk−1νk−1(rp)(1 + o(1)) + . . .

+ zk−1
p A1e

P1ν(rp)(1 + o(1)) + zk
pA0e

Q)eλzm
p .

(3.22)

Now we prove three cases separately.
Case 1. δ(λzm, θ0) =: δ > 0. From (3.20), for p sufficiently large, we obtain

| − νk(rp)(1 + o(1))| ≤ 2 exp{krγ+ε
p }. (3.23)

From Lemma 2.4 and by taking account γ + ε < m, for p large enough, we have

exp{(1− ε)δrm
p } ≤ (zpAk−1e

Pk−1νk−1(rp)(1 + o(1)) + . . .

+ zk−1
p A1e

P1ν(rp)(1 + o(1)) + zk
pA0e

Q)eλzm
p .

(3.24)

By combining (3.23) and (3.24) with (3.22), a contradiction follows.
Case 2. δ(λzm, θ0) =: δ < 0. From (3.20), for p large enough, we have

1
2

exp{krγ−ε
p } ≤ | − νk(rp)(1 + o(1))|, (3.25)

and from Lemma 2.4, we obtain

(zpAk−1e
Pk−1νk−1(rp)(1 + o(1)) + . . .

+ zk−1
p A1e

P1ν(rp)(1 + o(1)) + zk
pA0e

Q)eλzm
p ≤ exp{(1− ε)δrm

p }.
(3.26)

Also a contradiction follows from the combination of (3.25) and (3.26) with (3.22)
as p →∞.

Case 3. δ(λzm, θ0) = 0. Since limp→∞ θp = θ0, then for p large enough, we
obtain

1
e
≤ |eλzm

p | ≤ e.

By Lemma 2.4, there exists α > 0 such that

(zpAk−1e
Pk−1νk−1(rp)(1 + o(1)) + · · ·+ zk−1

p A1e
P1ν(rp)(1 + o(1)) + zk

pA0e
Q)eλzm

p

≤ exp{αrn
p }νk−1(rp).

Combining this with (3.22), we obtain

1
2
|ν(rp)| ≤ exp{αrn

p };

and with
exp{rγ−ε

p } ≤ |ν(rp)|,
and by taking account n < γ − ε, provided ε small enough, a contradiction follows.

�
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