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SOLUTION TO A NONLINEAR BLACK-SCHOLES EQUATION

MARIA CRISTINA MARIANI, EMMANUEL K. NCHEUGUIM, INDRANIL SENGUPTA

Abstract. Option pricing with transaction costs leads to a nonlinear Black-
Scholes type equation where the nonlinear term reflects the presence of transac-
tion costs. Under suitable conditions, we prove the existence of weak solutions
in a bounded domain and we extend the results to the whole domain using a
diagonal process.

1. Introduction

In a complete financial market without transaction costs, the celebrated Black-
Scholes model (1973) [4] provides not only a rational option pricing formula, but
also a hedging portfolio that replicates the contingent claim. In the Black-Scholes
analysis, it is assumed that hedging takes place continuously, and therefore, in a
market with proportional transaction costs, it tends to be infinitely expensive. So
the requirement of replicating the value of the option continuously has to be relaxed.
The first model in that direction was presented by Leland (1985) [14]. He assumes
that the portfolio is rebalanced at a discrete time δt fixed and that the transaction
costs are proportional to the value of the underlying; that is the costs incurred at
each step is κ|ν|S, where ν is the number of shares of the underlying bought (ν > 0)
or sold (ν < 0) at price S and κ is a constant depending on individual investors.
Leland derived an option price formula that is the Black-Scholes formula with an
adjusted volatility

σ̂ = σ
(
1 +

√
2
π

κ

σ
√

δt

)1/2

.

Hoggard, Whalley and Wilmott [10] derived a model for portfolios of options in the
presence of transaction costs in 1994. We will outline the steps that they followed.

Let C(S, t) be the value of the option and Π be the value of the hedge portfolio.
Assume that the value of the underlying follows the random walk

δS = µSδt + σSφδt1/2,

where φ is drawn from a normal distribution, µ is a measure of the average rate
of growth of the asset price also known as the drift, and σ is a measure of the
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fluctuation (risk) in the asset prices, it corresponds to the diffusion coefficient.
Then the change in the value of the portfolio over the time step δt is given by

δΠ = σS
(∂C

∂S
−∆

)
φδt1/2 +

(1
2
σ2S2 ∂2C

∂S2
φ2 + µS

∂C

∂S
+

∂C

∂t
− µ∆S

)
δt− κS|ν|

Let us consider the delta hedging strategy; that is choose the number of assets held
short at time t to be ∆ = ∂C

∂S (S, t). Therefore the number of assets to be traded
after δt is given by

ν =
∂C

∂S
(S + δS, t + δt)− ∂C

∂S
(S, t) ' ∂2C

∂S2
σSφδt1/2.

So the expected transaction cost over a time step is

E[κS|ν|] =

√
2
π

κσS2
∣∣∂2C

∂S2

∣∣δt1/2,

and the expected change in the value of the portfolio is

E(δΠ) =
(∂C

∂t
+

1
2
σ2S2 ∂2C

∂S2
− κσS2

√
2

πδt

∣∣∂2C

∂S2

∣∣)δt.

If the holder of the option expects to make as much from his portfolio as from a
bank account at a riskless interest rate r (no arbitrage), then

E(δΠ) = r
(
C − S

∂C

∂S

)
δt.

Hence the Hoggard, Whalley and Wilmott model for option pricing with transaction
costs is given by

∂C

∂t
+

1
2
σ2S2 ∂2C

∂2S
+ rS

∂C

∂S
− rC − κσS2

√
2

πδt

∣∣∂2C

∂S2

∣∣ = 0, (1.1)

for (S, t) ∈ (0,∞)× (0, T ), and the final condition

C(S, T ) = max(S − E, 0), S ∈ (0,∞)

for European call options with strike price E.
Note that equation (1.1) contents the usual Black-Scholes terms with an addi-

tional nonlinear term modelling the presence of transaction costs. Setting

x = log(S/E), t = T − τ/
1
2
σ2, C = EV (X, τ),

equation (1.1) becomes

− ∂V

∂τ
+

∂2V

∂x2
+ (k − 1)

∂V

∂x
− kV = κ∗

∣∣∂2V

∂x2
− ∂V

∂x

∣∣, (1.2)

for (x, τ) ∈ R× (0, T ∗), with the initial condition

V (x, 0) = max(ex − 1, 0), x ∈ R,

where k = r/(σ2/2), κ∗ = κ
√

8/(πσ2δt) and T ∗ = σ2T/2. Next set

V (x, τ) = exU(x, τ).

Then (1.2) yields

− ∂U

∂τ
+

∂2U

∂x2
+ (k + 1)

∂U

∂x
= κ∗

∣∣∂2U

∂x2
+

∂U

∂x

∣∣, (x, τ) ∈ R× (0, T ∗) (1.3)
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with the initial condition

U(x, 0) = max(1− e−x, 0).

The previous discussion motivates us to consider the following problem that
includes cost structures that go beyond proportional transaction costs

− ∂U

∂t
+

∂2U

∂x2
+ α

∂U

∂x
= βF

(∂U

∂x
,
∂2U

∂x2

)
, (x, t) ∈ R× (0, T ) (1.4)

and
U(x, 0) = U0(x), x ∈ R, (1.5)

where α and β are nonnegative constants.
Publications related to the above problem can be found in [2, 6, 16]. It is also

worth noting that such problems can be solved using the techniques used in [18, 19].
The goal of this paper is to show that the theoretical problem (1.4)-(1.5) has a strong
solution where the derivatives are understood in the distribution sense. We use the
following assumptions:

(H1) F : R× R → R+ is a continuous function,
(H2) F (p, q) ≤ |p|+ |q|,
(H3) For U ∈ H2

loc(R), ∂
∂xF (U, ∂U

∂x ) ∈ L2(0, T ;L2
loc(R)). Let BR = {x ∈ R :

|x| < R}. Then if wk → w in L2(0, T ;H1
0 (BR)), then ∂

∂xF (wk, ∂wk

∂x ) →
∂
∂xF (w, ∂w

∂x ) in L2(0, T ;L2(BR)).
(H4) U0 ∈ H1

loc(R),
(H5) β < 1.
This work is organized as follows: In section 2 we review some notions of func-

tional analysis that will be used later, then in section 3 we solve a similar problem
in a ball and finally in section 4 we construct a solution in the whole domain using
a diagonal process.

2. Definitions and notion

Function Spaces. Let Ω ∈ Rp, p ∈ N, be an open subset.

Definition 2.1. Suppose u and v ∈ L1
loc(Ω), and α is a multi-index constant. v is

said to be the αth-weak partial derivative of u, denoted Dαu = v, if∫
Ω

uDαφdx = (−1)|α|
∫

Ω

vφ dx

for any test function φ ∈ C∞
c .

Note that a weak partial derivative of u, when it exists, is unique up to a set of
measure zero. The Sobolev space

Hm(Ω) = {u ∈ L2(Ω) : Dαu ∈ L2(Ω), for any multiindex α with |α| ≤ m},

where the derivatives are taken in the weak sense, is a Hilbert space when endowed
with the inner product

(u, v)Hm(Ω) =
∑
|α|≤m

(Dαu, Dαv)L2(Ω).

Let H1
0 (Ω) = {u ∈ H1 such that u = 0 on ∂Ω} be the closure of C∞

c in H1(Ω). Let
the space H−1(Ω) is the topological dual of H1

0 (Ω).
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Let X be a Banach space and let T be a nonnegative integer. The space
L2(0, T ;X) consists of all measurable functions u : (0, T ) → X with

‖u‖L2(0,T ;X) :=
( ∫ T

0

‖u(t)‖2Xdt
)1/2

< ∞.

Note that L2(0, T ;X) is a Banach space endowed with the norm ‖u‖L2(0,T ;X).
The space C([0, T ];X) consists of all continuous functions u : [0, T ] → X with

‖u‖C([0,T ];X) := max
0≤t≤T

‖u(t)‖X < ∞.

Note that C([0, T ];X) is a Banach space endowed with the norm ‖u‖C([0,T ];X).

Schaefer’s fixed point theorem. Let X be a real Banach space.

Definition 2.2. A nonlinear mapping A : X → X is said to be compact if for each
bounded sequence {uk}∞k=1, the sequence {A[uk]}∞k=1 is precompact; that is, there
exists a subsequence {ukj}∞j=1 such that {A[ukj ]}∞j=1 converges in X.

Theorem 2.3 (Schaefer’s fixed point Theorem). Suppose A : X → X is a contin-
uous and compact mapping. Assume further that the set

{u ∈ X such that u = λA[u] for some 0 ≤ λ ≤ 1}
is bounded. Then A has a fixed point.

We will use the Schaefer’s fixed point theorem in order to show the existence of
a solution in a ball.

3. Solutions in bounded domains

Let BR = {x ∈ R : |x| < R} be the open ball centered at the origin with radius
R. Assume that U0 is suitable cut into bounded functions defined on BR and such
that (H1)-(H5) are satisfied in BR × [0, T ]. Set w = ∂U

∂x and consider an analogous
problem in BR × [0, T ] with zero Dirichlet condition on the lateral boundary.

−∂w

∂t
+

∂2w

∂x2
+ α

∂w

∂x
= β

∂

∂x
F

(
w,

∂w

∂x

)
(x, t) ∈ BR × (0, T ) (3.1)

w(x, 0) = w0(x) x ∈ BR (3.2)

w(x, t) = 0, (x, t) ∈ ∂BR × [0, T ]. (3.3)

Definition 3.1. A function w is said to be a weak solution of (3.1)-(3.3) if w ∈
L2(0, T ;H1

0 (BR)), ∂w
∂t ∈ L2(0, T ;H−1(BR)) and∫

BR

(∂w

∂t
φ +

∂w

∂x

∂φ

∂x
+ αw

∂φ

∂x

)
dx = −β

∫
BR

F
(
w,

∂w

∂x

)∂φ

∂x
dx (3.4)

for all φ ∈ H1
0 (BR).

Remark 3.2 ([5, Thm. 3, sec. 5.9.2]). If w belongs to L2(0, T ;H1
0 (BR)) and ∂w

∂t

belongs to L2(0, T ;H−1(BR)), then:
(i) w ∈ C([0, T ];L2(BR));
(ii) the mapping t → ‖w(t)‖2L2(BR) is absolutely continuous with

d

dt
‖w(t)‖2L2(BR) = 2

∫
BR

∂w

∂t
wdt a.e. 0 ≤ t ≤ T (3.5)
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Theorem 3.3 (A priori estimate). If w is a weak solution of (3.1)-(3.3), then there
exists a positive constant C independent of w such that

max
0≤t≤T

‖w(t)‖L2(BR) + ‖w‖L2(0,T ;H1
0 (BR)) + ‖∂w

∂t
‖L2(0,T ;H−1(BR)) ≤ C‖w0‖L2(BR).

Proof. Choosing w(t) ∈ H1
0 (BR) as the test function in (3.4), we obtain∫

BR

(∂w

∂t
w +

∂w

∂x

∂w

∂x
+ αw

∂w

∂x

)
dx = −β

∫
BR

F
(
w,

∂w

∂x

)∂w

∂x
dx.

Therefore, by (3.5),

1
2

d

dt
‖w(t)‖2L2(BR) + ‖∂w

∂x
‖2L2(BR) +

1
2
α

∫
BR

∂w2

∂x
dx = −β

∫
BR

F
(
w,

∂w

∂x

)∂w

∂x
dx

and from (3.3),
1
2

d

dt
‖w(t)‖2L2(BR) + ‖∂w

∂x
‖2L2(BR) ≤ β

∫
BR

∣∣F (
w,

∂w

∂x

)∂w

∂x

∣∣ dx.

Using (H2), we obtain
1
2

d

dt
‖w(t)‖2L2(BR) + ‖∂w

∂x
‖2L2(BR) ≤ β

∫
BR

(
|w|

∣∣∂w

∂x

∣∣ +
∣∣∂w

∂x

∣∣2) dx.

By the Cauchy-Schwartz inequality with ε > 0,
1
2

d

dt
‖w(t)‖2L2(BR) + ‖∂w

∂x
‖2L2(BR)

≤ β
( ∫

BR

|∂w

∂x
|2 dx + ε

∫
BR

|∂w

∂x
|2 dx +

1
4ε

∫
BR

|w|2 dx
)
.

(3.6)

Since β < 1, choosing ε � 1, yields
d

dt
‖w(t)‖2L2(BR) + C1‖w‖2H1

0 (BR) ≤ C2‖w‖2L2(BR) (3.7)

for a.e. 0 ≤ t ≤ T , and appropriate positive constants C1 and C2.
Next we write η(t) := ‖w(t)‖2L2(BR) , then by (3.7),

η′(t) ≤ C2η(t), for a.e.0 ≤ t ≤ T.

The differential form of Gronwall inequality implies

η(t) ≤ eC2tη(0) a.e.0 ≤ t ≤ T.

Since η(0) = ‖w(0)‖2L2(BR) = ‖w0‖2L2(BR),

‖w(t)‖2L2(BR) ≤ eC2t‖w0‖2L2(BR).

Hence
max

0≤t≤T
‖w(t)‖L2(BR) ≤ C11‖w0‖2L2(BR), (3.8)

where C11 is some constant. To obtain a bound for the second term, we consider
(3.7), and integrate from 0 to T , obtaining

‖w(T )‖2L2(BR) − ‖w0‖2L2(BR) + C1

∫ T

0

‖w‖2H1
0 (BR)dt ≤ C2

∫ T

0

‖w‖2L2(BR)dt.

Therefore,

‖w(T )‖2L2(BR) + C1

∫ T

0

‖w‖2H1
0 (BR)dt ≤ C2

∫ T

0

‖w‖2L2(BR)dt + ‖w0‖2L2(BR).
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Hence

C1

∫ T

0

‖w‖2H1
0 (BR)dt ≤ C2

∫ T

0

‖w‖2L2(BR)dt + ‖w0‖2L2(BR).

Using (3.8) we conclude that

‖w‖L2(0,T ;H1
0 (BR)) ≤ C22‖w0‖L2(BR), (3.9)

where C22 is a constant. Finally, to obtain a bound for the third term, by fixing
v ∈ H1

0 (BR) with ‖v‖H1
0 (BR) ≤ 1. By (3.4), we have∫

BR

∂w

∂t
v dx +

∫
BR

(∂w

∂x

∂v

∂x
+ αw

∂v

∂x

)
dx = −β

∫
BR

F
(
w,

∂w

∂x

)∂v

∂x
dx.

Thus∣∣ ∫
BR

∂w

∂t
v dx

∣∣ ≤ ∣∣ ∫
BR

(∂w

∂x

∂v

∂x
+ αw

∂v

∂x

)
dx

∣∣ + β
∣∣ ∫

BR

F
(
w,

∂w

∂x

)∂v

∂x
dx.

∣∣
By Hölder inequality,∣∣ ∫

BR

∂w

∂t
v dx

∣∣ ≤ ( ∫
BR

∣∣∂w

∂x

∣∣2 dx
)1/2( ∫

BR

∣∣∂v

∂x

∣∣2 dx
)1/2

+ α
( ∫

BR

|w|2 dx
)1/2( ∫

BR

∣∣∂v

∂x

∣∣2 dx
)1/2

+
( ∫

BR

∣∣F (
w,

∂w

∂x

)∣∣2 dx
)1/2( ∫

BR

∣∣∂v

∂x

∣∣2 dx
)1/2

.

Since ‖v‖H1
0 (BR) ≤ 1, using (H2) and the Poincaré inequality we deduce∣∣ ∫

BR

∂w

∂t
v dx

∣∣ ≤ C33‖w(t)‖H1
0 (BR),

where C33 is some constant. So

‖∂w

∂t
(t)‖H−1(BR) ≤ C33‖w(t)‖H1

0 (BR).

Therefore,∫ T

0

‖∂w

∂t
(t)‖2H−1(BR)dt ≤ C33

∫ T

0

‖w(t)‖2H1
0 (BR)dt = C33‖w‖2L2(0,T ;H1

0 (BR)).

Then (3.9) implies

‖∂w

∂t
‖L2(0,T ;H−1(BR)) ≤ C33‖w0‖2L2(BR). (3.10)

Take C = max{C11, C22, C33} to obtain the required result in the Theorem. �

Before proving the existence theorem in a ball, we state the following energy
estimate from the theory of linear parabolic partial differential equations.

Lemma 3.4 ([5, Theorem 2 page 354]). Consider the problem

∂w

∂t
− ∂2w

∂x2
− α

∂w

∂x
= f(x, t) in BR × (0, T )

w(x, 0) = w0(x) on BR × {0}
w(x, t) = 0 on ∂BR × [0, T ]

(3.11)

with f ∈ L2(0, T ;L2(BR)) and w0 ∈ L2(BR).
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Then there exists a unique u ∈ L2(0, T ;H1
0 (BR))∩C([0, T ];L2(BR)) solution of

(3.11) that satisfies

max
0≤t≤T

‖u(t)‖L2(BR) + ‖u‖L2(0,T ;H1
0 (BR)) + ‖∂u

∂t
‖L2(0,T ;H−1(BR))

≤ C
(
‖f‖L2(0,T ;L2(BR)) + ‖w0‖L2(BR)

)
,

(3.12)

where C is a positive constant depending only on R and T .

We need another Lemma that follows directly from [5, Theorem 5, page 360].

Lemma 3.5 (Improved regularity). Consider the problem

∂w

∂t
− ∂2w

∂x2
− α

∂w

∂x
= f(x, t) in BR × (0, T )

w(x, 0) = w0(x) on BR × {0}
w(x, t) = 0 on ∂BR × [0, T ]

with f ∈ L2(0, T ;L2(BR)) and w0 ∈ H1
0 (BR). Then this problem has a unique weak

solution u ∈ L2(0, T ;H1
0 (BR)) ∩ C([0, T ];L2(BR)), with ∂u

∂t ∈ L2(0, T ;H−1(BR)).
Moreover,

u ∈ L2(0, T ;H2(BR)) ∩ L∞(0, T ;H1
0 (BR)),

∂u

∂t
∈ L2(0, T ;L2(BR)).

We also have the estimate

ess sup0≤t≤T ‖u(t)‖H1
0 (BR) + ‖u‖L2(0,T ;H2(BR)) + ‖∂u

∂t
‖L2(0,T ;L2(BR))

≤ C ′′
(
‖f‖L2(0,T ;L2(BR)) + ‖w0‖H1

0 (BR)

)
,

(3.13)

where C ′′ is a positive constant depending only on BR, T and the coefficients of the
operator L.

Next we show the existence of a solution in a ball by using the Schaefer’s fixed
point Theorem.

Theorem 3.6. If (H1)–(H5) are satisfied, then (3.1)-(3.3) has a weak solution
w ∈ L2(0, T ;H1

0 (BR)) ∩ C([0, T ];L2(BR)).

Proof. Given w ∈ L2(0, T ;H1
0 (BR)), set fw(x, t) := β ∂

∂xF
(
w, ∂w

∂x

)
. By (H3), fw ∈

L2(0, T ;L2(BR)). From Lemma 3.4 there exists a unique v ∈ L2(0, T ;H1
0 (BR)) ∩

C([0, T ];L2(BR)) solution of

∂v

∂t
− ∂2v

∂x2
− α

∂v

∂x
= f(x, t) in BR × (0, T )

v(x, 0) = v0(x) on BR × {0}
v(x, t) = 0 on ∂BR × [0, T ]

(3.14)

Define the mapping

A : L2(0, T ;H1
0 (BR)) → L2(0, T ;H1

0 (BR))

by w 7→ A(w) = v, where v is derived from w via (3.14).
We now show that the mapping A is continuous and compact. We first prove

the continuity. Let {wk}k ⊂ L2(0, T ;H1
0 (BR)) be a sequence such that

wk → w in L2(0, T ;H1
0 (BR)). (3.15)
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By the improved regularity (3.13), there exists a constant C ′′, independent of {wk}k

such that

‖vk‖L2(0,T ;H2(BR)) ≤ C ′′
(
‖fwk

‖L2(0,T ;L2(BR)) + ‖w0‖H1
0 (BR)

)
, (3.16)

for vk = A[wk], k = 1, 2, . . . . By (H3) as wk → w in L2(0, T ;H1
0 (BR)), we must have

fwk
(x, t) → fw(x, t) in L2(0, T ;L2(BR)). Therefore ‖fwk

(x, t)‖L2(0,T ;L2(BR)) →
‖fw(x, t)‖L2(0,T ;L2(BR)). Then the sequence {‖fwk

‖L2(0,T ;L2(BR))}k is bounded and

sup
k
‖fwk

‖L2(0,T ;L2(BR)) ≤ C ′′′, (3.17)

for a constant C ′′′. Thus by (3.16) and (3.17) the sequence {vk}k is bounded
uniformly in L2(0, T ;H2(BR)). Similarly it can be proved that {∂vk

∂t }k is uniformly
bounded in L2(0, T ;H−1(BR)). Thus by Rellich’s Theorem (see [7]) there exists a
subsequence {vkj}j ∈ L2(0, T ;H1

0 (BR)) and a function v ∈ L2(0, T ;H1
0 (BR)) with

vkj → v in L2(0, T ;H1
0 (BR)), as j →∞. (3.18)

Therefore, ∫
BR

(∂vkj

∂t
φ +

∂vkj

∂x

∂φ

∂x
+ αvkj

∂φ

∂x

)
dx =

∫
BR

fwkj
(x, t)φdx

for each φ ∈ H1
0 (BR). Using (3.15) and (3.18) we see that∫

BR

(∂v

∂t
φ +

∂v

∂x

∂φ

∂x
+ αv

∂φ

∂x

)
dx =

∫
BR

fw(x, t)φdx.

Thus v = A[w]. Therefore

A[wk] → A[w] in L2(0, T ;H1
0 (BR)).

The compactness result follows from similar arguments.
To apply Schaefer’s fixed point Theorem in L2(0, T ;H1

0 (BR)) we need to show
that the set {w ∈ L2(0, T ;H1

0 (BR)) : w = λA[w] for some 0 ≤ λ ≤ 1} is bounded.
This follows directly from the a priori estimate (Theorem 3.3) with λ = 1. �

Remark 3.7. Theorem 3.6 shows that w = ∂u
∂x ∈ L2(0, T ;H1

0 (BR)) solves problem
(3.1)-(3.3); so u ∈ L2(0, T ;H1

0 (BR) ∩H2(BR)) and is a strong solution of problem
(1.4)-(1.5) in the bounded domain BR × [0, T ] with zero Dirichlet condition on the
lateral boundary of the domain.

4. Construction of the solution in the whole domain

The next step is to construct a solution of (3.1)-(3.3) in the whole real line. To
do that, we approximate the real line by

R = ∪N∈NBN = lim
N→∞

BN

where BN = {x ∈ R : |x| < N}. We also approximate w0 by a sequence of
bounded function w0N defined in BN such that |w0N | ≤ |w0| and w0N → w0 in
L2

loc(R). For N ∈ N, there exists wN ∈ L2(0, T ;H1
0 (BN )) ∩ C([0, T ];L2(BN )) with

∂wN

∂t ∈ L2(0, T ;H−1(BN )), weak solution of

−∂w

∂t
+

∂2w

∂x2
+ α

∂w

∂x
= β

∂

∂x
F

(
w,

∂w

∂x

)
(x, t) ∈ BN × (0, T ) (4.1)

w(x, 0) = w0N (x) x ∈ BN (4.2)
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w(x, t) = 0, (x, t) ∈ ∂BN × [0, T ]. (4.3)

For any given ρ > 0, the following sequences are bounded uniformly for N > 2ρ:

{wN}N in L2(0, T ;H1
0 (Bρ)),

{∂wN

∂t
}N in L2(0, T ;H−1(Bρ))

Since these spaces are compactly embedded in L2((Bρ × (0, T )) then the sequence
{wN}N is relatively compact in L2((Bρ × (0, T )). By a standard diagonal process
we may select a subsequence also denoted {wN}N so that

wN → w a.e. in L2(0, T ;L2
loc(R)),

wN → w weakly in L2(0, T ;H1
loc(R)).

Since F is continuous, passing to the limit in (3.4) yields that w is a weak solution
of (3.1)-(3.3) in R.
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