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STABILITY OF SECOND-ORDER DIFFERENTIAL INCLUSIONS

HENRY GONZÁLEZ

Abstract. For an arbitrary second-order stable matrix A, we calculate the
maximum positive value R for which the differential inclusion

ẋ ∈ FR(x) := {(A + ∆)x, ∆ ∈ R2×2, ‖∆‖ ≤ R}
is asymptotically stable.

1. Introduction

Let A be a second-order stable matrix (all the eigenvalues of A have negative real
part) and R be a positive real number. For each vector x in the plane we consider
the set of vectors

FR(x) := {(A+ ∆)x : ∆ ∈ R2×2, ‖∆‖ ≤ R}, (1.1)

where ‖ · ‖ denotes the operator norm of a matrix. The objective of this work
is to study the global asymptotical stability (g.a.s.) of the parameter-dependent
differential inclusion

ẋ ∈ FR(x). (1.2)
The main task is computing the number

Ri(A) = inf{R > 0 : ẋ ∈ FR(x) is not g.a.s.}. (1.3)

This number is closely related to the robustness of stability of the linear system
ẋ = Ax, under unstructured real time-varying and nonlinear perturbations. As in
[1] we consider the perturbed systems of the following types:

Σ∆ : ẋ(t) = Ax(t) + ∆x(t)

ΣN : ẋ(t) = Ax(t) +N(x(t))

Σ∆(t) : ẋ(t) = Ax(t) + ∆(t)x(t)

ΣN(t) : ẋ(t) = Ax(t) +N(x(t), t),

(1.4)

where
• ∆ ∈ R2×2;
• N : R2 → R2, N(0) = 0, N is differentiable at 0, is locally Lipschitz and

there exists γ ≥ 0 such that ‖N(x)‖ ≤ γ‖x‖ for all x ∈ R2;
• ∆(·) ∈ L∞(R+, R

2×2);
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• N(·, ·) : R2×<+ → R2, N(0, t) = 0 for all t ∈ <+, N(x, t) is locally Lipschitz
in x continuous in t and there exists γ ≥ 0 such that ‖N(x, t)‖ ≤ γ‖x‖ for
all x ∈ R2, t ∈ <+.

The corresponding sets of perturbations are denoted by R2×2, Pn(R), Pt(R), Pnt(R)
respectively. As perturbation norms we choose

• ‖∆‖ is the operator norm of the matrix;
• ‖N‖n = inf{γ > 0;∀x ∈ R2 : ‖N(x)‖ ≤ γ‖x‖}, N ∈ Pn(R);
• ‖∆‖t = ess supt∈<+

‖∆(t)‖, ∆ ∈ Pt(R);
• ‖N‖nt = inf{γ > 0;∀t ∈ <+ ∀x ∈ R2 : ‖N(x, t)‖ ≤ γ‖x‖}, N ∈ Pnt(R).

Following [1] (also [2, 3]), we define the radii of stability for A with respect to the
considered perturbations classes:

R(A) = inf{‖∆‖;∆ ∈ R2×2,Σ∆ is not g.a.s.}
Rn(A) = inf{‖N‖;N ∈ Pn(R),ΣN is not g.a.s.}
Rt(A) = inf{‖∆‖t;∆ ∈ Pt(R),Σ∆ is not g.a.s.}
Rnt(A) = inf{‖N‖;N ∈ Pnt(R),ΣN is not g.a.s.}

(1.5)

For the defined stability radii in [1] it has been shown that

R(A) ≥ Rn(A) ≥ Rt(A) ≥ Rnt(A). (1.6)

In [4] it is proved that

R(A) = min
{
σ(A),−1

2
tr(A)

}
, (1.7)

where σ(A) is the smallest singular value and tr(A) is the trace of the matrix A.
In section 3, we show that Rnt(A) ≥ Ri(A), so that based on this fact, (1.7)

and (1.6) we can restrict the analysis of the asymptotical stability of differential
inclusion (1.1)-(1.2) for R < R(A) = min{− tr(A)/2, σ(A)}. In section 3, we prove
that differential inclusion (1.1)-(1.2) comes to be unstable throughout a minimum
norm perturbation of the class Pn(<), from what follows that

R(A) ≥ Rn(A) = Rt(A) = Rnt(A) = Ri(A). (1.8)

The organization of the paper is as follows. In section 2 we enunciate a Filippov’s
Theorem [5] about the asymptotical stability of differential inclusions, which will
helps us in the fundamentation of the results. In section 3 we apply this theorem and
obtain conditions for the stability of our differential inclusion (1.1)-(1.2) in terms
of two elliptic integrals and we prove the relations (1.8). In section 4 we reduce the
elliptic integrals to elementary functions and the complete elliptic integral of the
third kind and in the section 5 we give a caracterization of the equality Ri(A) =
R(A) which simplifies the calculation of the number Ri(A). In the last section we
give examples which show the applicability of the main results to the computation
of Ri(A) for arbitrary stable matrix A. The results of this work are a continuation
of the paper [6], where the real time-varying stability radius of second-order linear
systems is calculated taken as the perturbation norm the Frobenius norm of a
matrix.
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2. A Filippov’s theorem

In this section we enunciate a Filippov’s Theorem [5], which will be the funda-
mental tool in the analysis of the stability of differential inclusion (3.1). Let

ẋ ∈ F (x), x ∈ R2 (2.1)

be a differential inclusion which satisfies the following properties:
(i) For all x the set F (x) is non empty, bounded, closed and convex;
(ii) F (x) is upper semi-continuous with respect to the set’s inclusion as function

of x;
(iii) F (cx) = cF (x) for all x and c ≥ 0.

Let ρ, ϕ be the polar coordinates of the point x = (x1, x2), then we can write
F (x) = ρF̃ (ϕ) and differential inclusion (1.2) takes the form

ρ̇(t)
ρ

= y1(t)

ϕ̇(t) = y2(t),

where (y1(t), y2(t)) ∈ F̃ (ϕ(t)).
We will use the notation

F̃+(ϕ) := {(y1, y2) ∈ F̃ (ϕ) : y2 > 0},

F̃−(ϕ) := {(y1, y2) ∈ F̃ (ϕ) : y2 < 0}.

For ϕ such that F̃+(ϕ) 6= φ, (respect. and F̃−(ϕ) 6= φ), we put

K+(ϕ) := sup
(y1,y2)∈ eF+(ϕ)

y1
‖y2‖

,
(
respect. K−(ϕ) := sup

(y1,y2)∈ eF−(ϕ)

y1
‖y2‖

)
. (2.2)

By Filippov’s Theorem, differential inclusion (2.1) satisfying the conditions (i)-(iii)
is asymptotically stable if and only if for all x 6= 0 the set F (x) does not have
common points with the ray cx, 0 ≤ c < +∞ and when the set F̃+(ϕ) (respect.
F̃−(ϕ)) for almost all ϕ is not empty, the inequality∫ 2π

0

K+(ϕ)dϕ < 0
(
respect.

∫ 2π

0

K+(ϕ)dϕ < 0
)

holds.

3. Application of the Filippov’s theorem

From Definition (1.1) we have that for all R > 0, the set FR(x) for all x ∈ R2

is non empty, bounded, closed and convex in the plane, and FR(x) is linear with
respect to x. So differential inclusion (1.1)-(1.2) satisfies properties (i)-(iii) and
Filippov’s Theorem can be applied.

The following lemma allows us to write the set FR(x) in the form we will use it
in the application of the Filippov’s theorem.

Lemma 3.1. For all R > 0 and x ∈ R2 it holds that{
∆x,∆ ∈ R2×2, ‖∆‖ ≤ R

}
=

{
r‖x‖

(
cos θ
sin θ

)
: 0 ≤ r ≤ R; 0 ≤ θ < 2π

}
.
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Proof. Let z = ∆x,∆ ∈ R2×2, ‖∆‖ ≤ R then ‖z‖ = ‖∆x‖ ≤ R‖x‖. Thus exist r:

0 ≤ r ≤ R, and θ ∈ [0, 2π) such that z = r‖x‖
(

cos θ
sin θ

)
so that we obtained that

z ∈ {r‖x‖
(

cos θ
sin θ

)
: 0 ≤ r ≤ R; 0 ≤ θ < 2π}.

Let now z = r‖x‖
(

cos θ
sin θ

)
, 0 ≤ r ≤ R; 0 ≤ θ < 2π then there exists ∆̃ ∈ R2×2

such that ∆̃x = r‖x‖
(

cos θ
sin θ

)
so ‖∆̃x‖ ≤ R‖x‖ and from the well known theorem

of Hahn-Banach ∆̃ ∈ R2×2 may be chosen such that ‖∆̃‖ ≤ R. So we have:

z = r‖x‖
(

cos θ
sin θ

)
∈ {∆x,∆ ∈ R2×2, ‖∆‖ ≤ R}. �

As a direct consequence of this lemma, the inclusion (1.1)-(1.2) can be written
in the form

ẋ ∈
{
Ax+ r‖x‖

(
cos θ
sin θ

)
: 0 ≤ r ≤ R; 0 ≤ θ < 2π

}
= FR(x). (3.1)

Changing in (3.1) to polar coordinates,

ρ̇(t)
ρ

= y1(t)

ϕ̇(t) = y2(t), (y1(t), y2(t)) ∈ F̃R(ϕ)

F̃R(ϕ) :=
{
(y1(ϕ, θ, r), y2(ϕ, θ, r)), 0 ≤ r ≤ R; 0 ≤ θ ≤ 2π

}
y1(ϕ, θ, r) := f1(ϕ) + rcos(θ − ϕ)

y2(ϕ, θ, r) := f2(ϕ) + rsin(θ − ϕ),

where

f1(ϕ) := a11 cos2(ϕ) + (a12 + a21) sin(ϕ) cos(ϕ) + a22 sin2(ϕ), (3.2)

f2(ϕ) := a21 cos2(ϕ) + (a22 − a11) sin(ϕ) cos(ϕ)− a12 sin2(ϕ). (3.3)

Using trigonometrical identities we have:

f1(ϕ) = m1 + n sin 2(ϕ− χ), (3.4)

f2(ϕ) = m2 + n cos 2(ϕ− χ), (3.5)

where

m1 =
a11 + a22

2
, m2 =

a21 − a12

2
, n =

√
(
a11 − a22

2
)2 + (

a12 + a21

2
)2 (3.6)

and
cos 2(χ) =

a12 + a21

2n
, sin 2(χ) = −a11 − a22

2n
.

From expressions (3.4), (3.5) it follows that:

min{f2(ϕ), ϕ ∈ [0, 2π)} = m2 − n, max{f2(ϕ), ϕ ∈ [0, 2π)} = m2 + n

For the corresponding sets F̃+(ϕ), and F̃−(ϕ) that appears in Filippov’s theorem,
we have

F̃+
R (ϕ) = {(y1, y2) ∈ F̃R(ϕ) : y2 > 0},
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F̃−R (ϕ) = {(y1, y2) ∈ F̃R(ϕ) : y2 < 0}.
Denote

R+(A) := −min{0,min f2(ϕ)} = max{0, n−m2},
R−(A) := max{0,max f2(ϕ)} = max{0, n+m2}.

(3.7)

Lemma 3.2. Let R < R(A). Then
(a) The set FR(x) does not have common points with the ray cx, 0 ≤ c < +∞

for all x 6= 0.
(b) The set F̃+

R (ϕ) 6= φ for all ϕ ∈ [0, 2π) if and only if R ∈ (R+(A), R(A)).
(c) The set F̃−R (ϕ) 6= φ for all ϕ ∈ [0, 2π) if and only if R ∈ (R−(A), R(A)).

Proof. (a) The set FR(x) := {(A+∆)x,∆ ∈ R2×2, ‖∆‖ ≤ R}, with R < R(A) does
not have common points with the ray cx, 0 ≤ c < +∞ for all x 6= 0 because the
matrix A+ ∆ is stable for ‖∆‖ < R(A).

(b) F̃+
R (ϕ) 6= φ for all ϕ ∈ [0, 2π) if and only if for all ϕ ∈ [0, 2π) there is

θ ∈ [0, 2π) such that f2(ϕ) + rsin(θ − ϕ) > 0 and this is true if and only if for all
ϕ ∈ [0, 2π) is f2(ϕ) + r > 0 and so if and only if either f2(ϕ) ≥ 0 for all ϕ ∈ [0, 2π)
or r > −min{f2(ϕ), ϕ ∈ [0, 2π)} condition equivalent with the assertion (b) of this
lemma.

(c) F̃−R (ϕ) 6= φ for all ϕ ∈ [0, 2π) if and only if for all ϕ ∈ [0, 2π) there is
θ ∈ [0, 2π) such that f2(ϕ) + rsin(θ − ϕ) < 0 and this is true if and only if for all
ϕ ∈ [0, 2π) is f2(ϕ)− r < 0 and so if and only if either f2(ϕ) ≤ 0 for all ϕ ∈ [0, 2π)
or r > max{f2(ϕ), ϕ ∈ [0, 2π)} condition equivalent with the assertion (c) of this
lemma. �

We denote

K(θ, ϕ, r) :=
f1(ϕ) + r cos(θ − ϕ)
f2(ϕ) + r sin(θ − ϕ)

, (3.8)

then for R ∈ (R+(A), R(A)) the function K+(ϕ) that appears in Filippov’s theorem
can be written as

K+
R (ϕ) = sup

(r,θ)∈[0,R]×[0,2π)

{K(θ, ϕ, r) : f2(ϕ) + r sin(θ − ϕ) > 0}. (3.9)

Similarly for R ∈ (R−(A), R(A)) the function K−(ϕ) can be written as

K−R (ϕ) = sup
(r,θ)∈[0,R]×[0,2π)

{−K(θ, ϕ, r) : f2(ϕ) + rsin(θ − ϕ) < 0}. (3.10)

Lemma 3.3. (a) For R ∈ (R+(A), R(A)) we have

K+
R (ϕ) =

f1(ϕ)
√
f2
1 (ϕ) + f2

2 (ϕ)−R2 +Rf2(ϕ)
f2(ϕ)

√
f2
1 (ϕ) + f2

2 (ϕ)−R2 −Rf1(ϕ)
. (3.11)

(b) For R ∈ (R−(A), R(A)) we have:

K−R (ϕ) =
f1(ϕ)

√
f2
1 (ϕ) + f2

2 (ϕ)−R2 −Rf2(ϕ)
−f2(ϕ)

√
f2
1 (ϕ) + f2

2 (ϕ)−R2 −Rf1(ϕ)
. (3.12)

Proof. First for arbitrary R ∈ (R+(A), R(A)) we prove (3.11). Let given ϕ ∈ [0, 2π)
and r ∈ [0, R] and let θ0 ∈ [0, 2π) be such that y2(θ0, ϕ, r) = 0. Then y1(θ0, ϕ, r) < 0
and so the limit of K(θ, ϕ, r) for θ → θ0 and y2(θ, ϕ, r) > 0 is −∞ and therefore for
the calculation of the supremum in (3.9) we can consider only points in the interior
of the set y2(θ, ϕ, r) > 0. So the supremum is taken for a value θ for which the
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partial derivative of K(θ, ϕ, r) with respect to θ is zero. From this condition after
simplifications we obtain

f2(ϕ) sin(θ − ϕ) + f1(ϕ) cos(θ − ϕ) + r = 0, (3.13)

and solving this equation for sin(θ − ϕ) and cos(θ − ϕ),

sin(θ − ϕ) =
−rf2(ϕ)

f2
1 (ϕ) + f2

2 (ϕ)
∓ f1(ϕ)

√
f2
1 (ϕ) + f2

2 (ϕ)− r2

f2
1 (ϕ) + f2

2 (ϕ)
, (3.14)

cos(θ − ϕ) =
−rf1(ϕ)

f2
1 (ϕ) + f2

2 (ϕ)
± f2(ϕ)

√
f2
1 (ϕ) + f2

2 (ϕ)− r2

f2
1 (ϕ) + f2

2 (ϕ)
. (3.15)

Substituting in the expression (3.8) of K(θ, ϕ, r) we obtain

K(ϕ, r) =
f1(ϕ)

√
f2
1 (ϕ) + f2

2 (ϕ)− r2 ± rf2(ϕ)
f2(ϕ)

√
f2
1 (ϕ) + f2

2 (ϕ)− r2 ∓ rf1(ϕ)
. (3.16)

When the following inequalities hold: f2(ϕ)
√
f2
1 (ϕ) + f2

2 (ϕ)− r2 + rf1(ϕ) > 0 and
f2(ϕ)

√
f2
1 (ϕ) + f2

2 (ϕ)− r2 − rf1(ϕ) > 0, from the two possible signs in (3.16) by
direct comparison we have that the maximum value of K(ϕ, r) is

K(ϕ, r) =
f1(ϕ)

√
f2
1 (ϕ) + f2

2 (ϕ)− r2 + rf2(ϕ)
f2(ϕ)

√
f2
1 (ϕ) + f2

2 (ϕ)− r2 − rf1(ϕ)
, (3.17)

and so taken into account that, according with (3.9), the function (3.17) is a mono-
tone increasing function in r we have the assertion (3.11) of the lemma. When one
of the numbers

f2(ϕ)
√
f2
1 (ϕ) + f2

2 (ϕ)− r2 + rf1(ϕ), f2(ϕ)
√
f2
1 (ϕ) + f2

2 (ϕ)− r2 − rf1(ϕ)

is positive and the other negative then we have for the maximum of K(ϕ, r):

K(ϕ, r) =
f1(ϕ)

√
f2
1 (ϕ) + f2

2 (ϕ)− r2 − rf2(ϕ)(signf1(ϕ))
f2(ϕ)

√
f2
1 (ϕ) + f2

2 (ϕ)− r2 + r|f1(ϕ)|
, (3.18)

but in this case we have(
f2(ϕ)

√
f2
1 (ϕ) + f2

2 (ϕ)− r2 + rf1(ϕ)
)(
f2(ϕ)

√
f2
1 (ϕ) + f2

2 (ϕ)− r2 − rf1(ϕ)
)

= (f2
2 (ϕ)− r2)(f2

1 (ϕ) + f2
2 (ϕ)) < 0,

and so (f2(ϕ)−r)(f2(ϕ)+r) < 0 from what follows that there exists r̃ ∈ (0, R) such
that (f2(ϕ) + r̃) = 0 or (f2(ϕ) − r̃) = 0. We consider only the first case, because
in the same form can be analyzed the second case. Then for θ = ϕ + π

2 we have
(f1(ϕ)+ r̃ cos(θ−ϕ), f2(ϕ)+ r̃ sin(θ−ϕ)) = (f1(ϕ), f2(ϕ)+ r̃) = (f1(ϕ), 0) ∈ F̃R(ϕ)
with R < R(A) and so according with the assertion a) of Lemma 3.2 we have
that f1(ϕ) < 0. But then the expression (3.18) coincide with (3.17) and again we
have the validity of (3.11). So we have proved the assertion a) of the lemma. The
assertion b) follows from (3.10) and the results obtained in the proof of the part
a). �

Theorem 3.4. The differential inclusion (3.1) depending of the parameter R is
asymptotically stable if and only if R ∈ [0, R(A)) and when R ∈ (R+(A), R(A))
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(respect. R ∈ (R−(A), R(A))) the following inequality holds:

I+(R) :=
∫ 2π

0

f1(ϕ)
√
f2
1 (ϕ) + f2

2 (ϕ)−R2 +Rf2(ϕ)
f2(ϕ)

√
f2
1 (ϕ) + f2

2 (ϕ)−R2 −Rf1(ϕ)
dϕ < 0. (3.19)

respectively,

I−(R) :=
∫ 2π

0

f1(ϕ)
√
f2
1 (ϕ) + f2

2 (ϕ)−R2 −Rf2(ϕ)
−f2(ϕ)

√
f2
1 (ϕ) + f2

2 (ϕ)−R2 −Rf1(ϕ)
dϕ < 0. (3.20)

The assertion of the above theorem follows directly as a consequence of Filippov’s
Theorem and the Lemmas (3.2), (3.3).
Remark. For R ∈ (R+(A), R(A)) and arbitrary vector x in the plane, using the
expressions (3.14) (3.15) we denote

v+
1 (x) :=

−Rf2(ϕ(x))
f2
1 (ϕ(x)) + f2

2 (ϕ(x))
− f1(ϕ(x))

√
f2
1 (ϕ(x)) + f2

2 (ϕ(x))−R2

f2
1 (ϕ(x)) + f2

2 (ϕ(x))
, (3.21)

v+
2 (x) :=

−Rf1(ϕ(x))
f2
1 (ϕ(x)) + f2

2 (ϕ(x))
+
f2(ϕ(x))

√
f2
1 (ϕ(x)) + f2

2 (ϕ(x))−R2

f2
1 (ϕ(x)) + f2

2 (ϕ(x))
, (3.22)

where ϕ(x) is the angle between the vector x and the first axis of the original
coordinate system. Calculating sin θ and cos θ from equalities: cos(θ − ϕ(x)) =
v+
1 (x), sin(θ−ϕ(x)) = v+

2 (x) and substituting its in the expression (3.1) we obtain
a second-order non linear but homogeneous system which solutions are solutions of
differential inclusion (3.1):

ẋ = Ax+R

(
v+
1 (x) −v+

2 (x)
v+
2 (x) v+

1 (x)

)
x. (3.23)

This system has as trajectories spirals which turn around the origin in positive sense
and the value of the integral I+(R) is the Ljapunov exponent of the solutions of this
system(note that the homogenity of the system and the rotations of the solutions
around the origin implies that all solution of the sytem have the same Ljapunov
exponent). So the condition I+(R) < 0 is true if and only if the system (3.23) is
asymptotically stable. We will name the system (3.23) the positive extremal system
of differential inclusion (3.1). For all stable matrix A ∈ R2 the positive extremal
system is the perturbation of the nominal linear system ẋ = Ax with the nonlinear
perturbation

N+
R (A, x) := R

(
v+
1 (x) −v+

2 (x
v+
2 (x) v+

1 (x)

)
x.

Note that the perturbation N+
R (A, x) is of the class Pn(R) defined in the introduc-

tion of this work, and that according with (3.21), (3.22) and (3.14), (3.15) for all

x the matrix
(
v+
1 (x) −v+

2 (x
v+
2 (x) v+

1 (x)

)
is an orthonormal matrix, from what follows that

the perturbation N+
R (A, x) has norm equal R.

Similarly For R ∈ (R−(A), R(A)), an arbitrary vector x in the plane, we denote

v−1 (x) :=
Rf2(ϕ(x))

f2
1 (ϕ(x)) + f2

2 (ϕ(x))
− f1(ϕ(x))

√
f2
1 (ϕ(x)) + f2

2 (ϕ(x))−R2

f2
1 (ϕ(x)) + f2

2 (ϕ(x))
,

v−2 (x) :=
Rf1(ϕ(x))

f2
1 (ϕ(x)) + f2

2 (ϕ(x))
+
f2(ϕ(x))

√
f2
1 (ϕ(x)) + f2

2 (ϕ(x))−R2

f2
1 (ϕ(x)) + f2

2 (ϕ(x))
,
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where ϕ(x) is defined as above. Then we obtain a second-order non linear but
homogeneous system which solutions are solutions of differential inclusion (3.1):

ẋ = Ax+R

(
v−1 (x) −v−2 (x)
v−2 (x) v−1 (x)

)
x. (3.24)

This system has as trajectories spirals which turn around the origin in negative
sense and the value of the integral I−(R) is the Ljapunov exponent of the solutions
of this system. So the condition I−(R) < 0 is true if and only if the system (3.24)
is asymptotically stable. We will name system (3.24) the negative extremal system
of differential inclusion (3.1). For all stable matrix A ∈ R2 the negative extremal
system is the perturbation of the nominal linear system ẋ = Ax with the nonlinear
perturbation of the class Pn(R) which norm is R,

N−R (A, x) := R

(
v−1 (x) −v−2 (x
v−2 (x) v−1 (x)

)
x.

Lemma 3.5. For an arbitrary stable A ∈ R2×2 matrix we have

R(A) ≥ Rn(A) = Rt(A) = Rnt(A) = Ri(A). (3.25)

Proof. Let N(x, t) ∈ Pnt(R), ‖N(x, t)‖nt = R0. Then for all t ∈ <, x ∈ R2

N(x, t) = r(t)‖x‖
(

cos θ(t)
sin θ(t)

)
for suitable 0 ≤ r(t) ≤ R0, 0 ≤ θ(t) < 2π, and so

all solution of the perturbed system ẋ = Ax + N(x, t) is a solution of differential
inclusion (3.1) with R = R0, from what follows that

Rnt(A) ≥ Ri(A). (3.26)

In the case Ri(A) = R(A) from the inequalities (1.6) and (3.26) follows that all the
considered stability radii are equals and then the assertion of the lemma is true.

When Ri(A) < R(A) from the remark to Theorem 3.4, there exists NRi(A)(A, x)
nonlinear perturbation of the class Pn(R) and norm Ri(A) such that the perturbed
system ẋ = Ax+NRi(A)(A, x) is not g.a.s., so Rn(A) ≤ Ri(A), and from that and
(1.6), (3.26) the assertion of the lemma follows. �

4. Calculation of the integrals I+(R) and I−(R)

First note that if A ∈ R2×2 is a stable matrix such that n = 0, from expressions
(3.4), (3.5) follows that f1(ϕ) and f2(ϕ) are constant functions, so the integrals
I+(R) and I−(R) are immediate, but as we show in the next section it is not
necessary in this case calculate these integrals, because easily can be proved that
Ri(A) = R(A).

In this section for the case n 6= 0 we give the expressions of the integrals I+(R)
and I−(R) that appear in the Theorem 3.4 in terms of elementary functions and
the complete elliptic integral of the third kind. For the reduction of the integrals to
canonical elliptic integrals we use the well known method proposed by example in
[7] and the following equality which appears in the table of integrals of this book:∫ ∞

0

dt

t2 − p

√
t2 + a2

t2 + b2
=

1
a

∏
(α2, k), if a > b, (4.1)

where
∏

(·, ·) denotes the complete elliptic integral of the third kind and

α2 = 1 +
p

a2
, k2 = 1− b2

a2
. (4.2)
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After rationalization of the denominators in (3.11), (3.12) we obtain

K+
R (ϕ) =

f1(ϕ)f2(ϕ) +R
√
f2
1 (ϕ) + f2

2 (ϕ)−R2

f2
2 (ϕ)−R2

, (4.3)

K−R (ϕ) =
−f1(ϕ)f2(ϕ) +R

√
f2
1 (ϕ) + f2

2 (ϕ)−R2

f2
2 (ϕ)−R2

. (4.4)

The rationalization can introduce some singularities in the integrals, but taken into
account that the original integrals exist as proprius integrals for the considered
values of R, we can calculate this integrals in the sense of the Cauchy principal
value. From Theorem 3.4 and (4.3), (4.4) after decomposition in partial fractions
we have

I+(R) =
1
2

∫ 2π

0

( f1(ϕ)
f2(ϕ) +R

+
f1(ϕ)

f2(ϕ)−R

−
√
f2
1 (ϕ) + f2

2 (ϕ)−R2

f2(ϕ) +R
+

√
f2
1 (ϕ) + f2

2 (ϕ)−R2

f2(ϕ)−R

)
dϕ,

I−(R) =
1
2

∫ 2π

0

( −f1(ϕ)
f2(ϕ) +R

+
−f1(ϕ)
f2(ϕ)−R

−
√
f2
1 (ϕ) + f2

2 (ϕ)−R2

f2(ϕ) +R
+

√
f2
1 (ϕ) + f2

2 (ϕ)−R2

f2(ϕ)−R

)
dϕ.

So if we define

I1(R) :=
1
2

∫ 2π

0

f1(ϕ)
f2(ϕ) +R

dϕ =
1
2

∫ 2π

0

m1

f2(ϕ) +R
dϕ (4.5)

I2(R) :=
1
2

∫ 2π

0

f1(ϕ)
f2(ϕ)−R

dϕ =
1
2

∫ 2π

0

m1

f2(ϕ)−R
dϕ (4.6)

I3(R) :=
1
2

∫ 2π

0

−
√
f2
1 (ϕ) + f2

2 (ϕ)−R2

f2(ϕ) +R
dϕ (4.7)

I4(R) :=
1
2

∫ 2π

0

√
f2
1 (ϕ) + f2

2 (ϕ)−R2

f2(ϕ)−R
dϕ (4.8)

we have

I+(R) = I1(R) + I2(R) + I3(R) + I4(R), (4.9)

I−(R) = −I1(R)− I2(R) + I3(R) + I4(R). (4.10)

Lemma 4.1. If A ∈ R2×2 is a stable matrix such that n 6= 0, then for the integrals
Ik(R), k = 1, 2, 3, 4 in the sense of Cauchy Principal Value we have

I1(R) =

{
0 if |m2 +R| < n
m1π sgn(m2+R)√

(m2+R)2−n2
if |m2 +R| > n; (4.11)

I2(R) =

{
0 if |m2 −R| < n
m1π sgn(m2−R)√

(m2−R)2−n2
if |m2 −R| > n; (4.12)
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I3(R) =


0 if |m2 +R| < n

= α3(R)<
[
β3(R)

∏ (
1 + τ2

3 (R)
a2(R) ,

√
1− 1

a2(R)

)]
if |m2 +R| > n;

(4.13)

I4(R) =


0 if |m2 −R| < n,

= α4(R)<
[
β4(R)

∏ (
1 + τ2

4 (R)
a2(R) ,

√
1− 1

a2(R)

)]
,

if |m2 −R| > n,

(4.14)

where
∏

(·, ·) denotes the complete elliptical integral of second kind, σ(A), σ(A) are
the smallest and largest singular values of the matrix A, and m1,m2, n are the
numbers given by (3.6), and

a(R) =

√
σ2(A)−R2

σ2(A)−R2
(4.15)

α3(R) =
−2(σ2(A)−R2)√

σ2(A)−R2
(
m2 +R− nm2√

m2
1+m2

2

) (4.16)

β3(R) = 1− nm1i√
m2

1 +m2
2

√
(m2 +R)2 − n2

(4.17)

τ3(R) =

nm1√
m2

1+m2
2

+ i
√

(m2 +R)2 − n2

m2 +R− nm2√
m2

1+m2
2

(4.18)

α4(R) =
2(σ2(A)−R2)√

σ(A)2 −R2
(
m2 −R− nm2√

m2
1+m2

2

) (4.19)

β4(R) = 1− nm1i√
m2

1 +m2
2

√
(m2 −R)2 − n2

(4.20)

τ4(R) =

nm1√
m2

1+m2
2

+ i
√

(m2 −R)2 − n2

m2 −R− nm2√
m2

1+m2
2

(4.21)

Proof. The integrands in I1(R) and I2(R) are very simple rational functions, which
primitive functions are given in terms of logarithmic or arco tangents functions and
so evaluating the integrals in the sense of the Cauchy Principal value we obtain
easily the results of the lemma.

Now we explain how to compute the more complicated integral I3(R) (The com-
putation of I4(R) is completely similar).

In the case |m2 + R| < n using the methods proposed in [7], the integral I3(R)
can be easily reduced to the form

∫∞
−∞ 1/

(
(t2 − p2)

√
P

)
dt, where P is a positive

polynomial of fourth degree, and the parameter p is real and positive. It is well
known [7], that the primitive function of this last integral is an elliptic integral of the
third kind, which becomes logarithmically infinite, for t = p as ± ln(t−p)/(2

√
P (p))

and; for t = −p as ∓ ln(t + p)/(2
√
P (p)). From that it follows that the integral

I3(R) taken in the sense of the Cauchy principal value is equal zero.
In the case |m2 +R| > n from expressions (3.4), (3.5) we obtain

f2
1 (ϕ) + f2

2 (ϕ)−R2 = m2
1 +m2

2 + n2 −R2 + 2n
√
m2

1 +m2
2 cos 2x,
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f2(ϕ) +R = m2 +R+ n
[ m2√

m2
1 +m2

2

cos 2x− m1√
m2

1 +m2
2

sin 2x
]
,

where x = ϕ−χ−ψ and sinψ = m1√
m2

1+m2
2

, cosψ = m2√
m2

1+m2
2

. Using this expressions

we write the integral in the form

I3(R) = −1
4

∫ 4π

0

√
m2

1 +m2
2 + n2 −R2 + 2n

√
m2

1 +m2
2 cos 2x

m2 +R+ n
[

m2√
m2

1+m2
2

cos 2x− m1√
m2

1+m2
2

sin 2x
]dx

Now by the change of the variable of integration tan(x/2) = t and using the ex-
pressions for the smallest and the largest singular values of the matrix A:

σ(A) = m2
1 +m2

2 + n2 − 2n
√
m2

1 +m2
2,

σ(A) = m2
1 +m2

2 + n2 + 2n
√
m2

1 +m2
2,

we obtain

I3(R) = −
∫ ∞

−∞

√
σ

2
(A)−R2 + (σ2(A)−R2)t2/

√
1 + t2[

(m2 +R− nm2√
m2

1+m2
2

)t2 − 2nm1t√
m2

1+m2
2

+m2 +R+ nm2√
m2

1+m2
2

] dt.
Factoring the denominator,

I3(R) = −
√
σ2(A)−R2

m2 +R− nm2√
m2

1+m2
2

∫ ∞

−∞

√
σ2(A)−R2

σ2(A)−R2 + t2
√

1 + t2(t− τ3(R))(t− τ3(R))
dt,

where τ3(R) is given by (4.18). Using the identity

1
(t− τ)(t− τ)

= 2<
[ 1
τ − τ

( τ

t2 − τ2
+

t

t2 − τ2

)]
, (4.22)

and taking into account that the integral of an odd function in the real line is zero,
we obtain

I3(R)

= −
√
σ2(A)−R2

m2 +R− nm2√
m2

1+m2
2

2<
∫ ∞

−∞

√
σ2(A)−R2

σ2(A)−R2 + t2
√

1 + t2
τ3(R)

τ3(R)− τ3(R)
1

t2 − τ2
3 (R)

dt.

Now using expressions (4.18) and (4.17),

τ3(R)
τ3(R)− τ3(R)

=
1
2
[
1− nm1i√

m2
1 +m2

2

√
(m2 +R)2 − n2

]
=

1
2
β3(R),

I3(R) = −
√
σ2(A)−R2

m2 +R− nm2√
m2

1+m2
2

<
{
β3(R)

∫ ∞

0

√
σ2(A)−R2

σ2(A)−R2 + t2
√

1 + t2
1

t2 − τ2
3 (R)

dt
}
.

And finally from the formula (4.1) and expression (4.16) we obtain the expression
(4.13). �
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5. Calculation of the radius of stability for arbitrary matrices

Let us now formulate some important results related to the integrals I+(R),
R ∈ (R+(A), R(A)) and I−(R), R ∈ (R−(A), R(A)), which allow characterizing
the stable matrices A ∈ R2×2 such that Ri(A) = R(A) and formulate the algorithm
for the calculation of the number Ri(A).

Lemma 5.1. Let A ∈ R2×2 be a stable matrix such that n = 0 or m2 = 0, then
Ri(A) = R(A).

Proof. If n = 0, then from (3.4) and (3.5) we have that f1(ϕ) = m1, f2(ϕ) = m2

are constant functions. So if the differential inclusion (3.1) changes to be unstable
throughout a nonlinear perturbation N+

R (A, x) or N−R (A, x), then this perturbation
will be in this case linear constant perturbation and so from inequalities (3.25) we
have Ri(A) = R(A). If m2 = 0, then R+(A) = n, R−(A) = n, thus for R > n
from (4.11) and (4.12) follows that I1(R)+ I2(R) = 0 and from (4.7) and (4.8) that
I3(R) < 0 and I4(R) < 0, so using the expressions (4.9), (4.10) we conclude that
I+(R) < 0, I−(R) < 0 and from Theorem 3.4 Ri(A) = R(A). �

Lemma 5.2. Let A ∈ R2×2 be a stable matrix such that max{R−(A), R+(A)} <
R(A) and R ∈ (max{R−(A), R+(A)}, R(A)), then in the case m2 > 0 is I−(R) < 0
and in the case m2 < 0 is I+(R) < 0.

Proof. Let R ∈ (max{R−(A), R+(A)}, R(A)) then f2(ϕ)+R > 0 and f2(ϕ)−R < 0
for all ϕ ∈ [0, 2π) and from expressions (4.7) and (4.8) we have that I3(R) < 0 and
I4(R) < 0. Now if m2 > 0, then m2 + R > 0,m2 − R < 0,m2 + R > |m2 − R|
and so from the expressions (4.11) and (4.12) follows that I1(R) + I2(R) > 0, but
now from this and (4.10) we conclude I−(R) < 0. The proof in the case m2 < 0 is
completely similar. �

Theorem 5.3. Let A ∈ R2×2 be a stable matrix. The equality Ri(A) = R(A)
is true if and only if from the inequality max{R−(A), R+(A)} < R(A) follows
I+(R(A)) ≤ 0 in the case m2 > 0 and I−(R(A)) ≤ 0 in the case m2 > 0.

Proof. From lemma 5.1 the assertion of the theorem holds in the cases m2 = 0 or
n = 0. Thus from now on we assume m2 6= 0 and n 6= 0. In the case R−(A) ≥
R(A), R+(A) ≥ R(A) in theorem 3.4 the condition for the integrals automatically
follows, and so Ri(A) = R(A).
Now if R+(A) < R(A), but R−(A) ≥ R(A), then we have to cheque only the integral
I+(A). In this case from the lemma 3.2 we have m2 + R > n, and |m2 − R| < n,
so from lemma 4.1 I1(R) < 0, I2(R) = 0, I3(R) < 0, I4(R) = 0, from what we
obtain: I+(R) < 0, and from theorem 3.4 follows the equality Ri(A) = R(A). The
case R−(A) < R(A), but R+(A) ≥ R(A) is completely similar. Finally we analyze
the case m2 > 0 and max{R−(A), R+(A)} < R(A). In this case from the lemma
5.2 follows that I−(R) < 0 for all R ∈ (max{R−(A), R+(A)}, R(A)) and then from
theorem 3.4 and the fact that I+(R) is a monotone increasing function of R the
equality Ri(A) = R(A) is true if and only if I+(R(A)) ≤ 0. The proof in the case
m2 < 0 is similar. �

Lemma 5.4. Let A ∈ R2×2 be a stable matrix.
(i) If m2 > 0 and R+(A) < R(A), then for R > R+(A) sufficiently near to

R+(A) is I+(R) < 0;
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(ii) If m2 < 0 and R−(A) < R(A), then for R > R−(A) sufficiently near to
R−(A) is I−(R) < 0.

Proof. We prove only the assertion i), the prove of ii) is similar. For R > R+(A)
sufficiently near to R+(A) we have from (4.11) that I1(R) < 0 and from (4.7)
that I3(R) < 0. Furthermore for R sufficiently near to R+(A) is |m2 − R| < n
and so from lemma 4.1 follows that I2(R) = I4(R) = 0. Thus from 4.9 follows
I+(R) < 0. �

Finally, as a direct consequence of the results proved in this work and the fact
that the functions I+(R), R ∈ (R+(A), R(A)) and I−(R), R ∈ (R−(A), R(A))
are monotonically increasing functions of the variable R, which follows from (3.9),
(3.10) we formulate the general algorithm for the calculation of the number Ri(A).

Algorithm.
1 For the given stable matrix A calculate the numbers: m1,m2, n, σ(A),
R(A);

2 If m2 = 0 or n = 0, then put Ri(A) = R(A);
3 If m2 6= 0, n 6= 0, calculate R+(A) and R−(A). If R+(A) ≥ R(A) or
R−(A) ≥ R(A), then put Ri(A) = R(A);

4 If max{R−(A), R+(A)} < R(A) and m2 > 0 calculate I+(R(A)). If
I+(R(A)) ≤ 0 then put Ri(A) = R(A);

5 If max{R−(A), R+(A)} < R(A) and m2 < 0 calculate I−(R(A)). If
I−(R(A)) ≤ 0 then put Ri(A) = R(A);

6 If max{R−(A), R+(A)} < R(A), m2 > 0 and I+(R(A)) > 0, search R0 ∈
(R+(A), R(A)) such that I+(R0) < 0, and use bisection method in the
interval (R0, R(A)) to determine the root R of the equation I+(R) = 0 and
put Ri(A) = R;

7 If max{R−(A), R+(A)} < R(A), m2 < 0 and I−(R(A)) > 0, search R0 ∈
(R−(A), R(A)) such that I−(R) < 0, and use bisection method in the
interval (R0, R(A)) to determine the root R of the equation I−(R) = 0 and
put Ri(A) = R;

6. Examples

In this section we give applications of the main results of this work to the calcu-
lation of the stability radius Ri(A).

Example 1. Let

A =
[
−220 −99
181 −220

]
.

Then simple calculations give m1 = −220, m2 = 140, n = 41, σ(A) = 219.768.
So, R(A) = min{σ(A),− 1

2 tr(A)} = 219.768, R+(A) = max{0, n − m2} = 0,
R−(A) = max{0, n + m2} = 181, max{R+(A), R−(A)} < R(A) and I+(R(A)) =
I+(219.768) = 0, 37 > 0, so from theorem 2 we have that Ri(A) < R(A) and Ri(A)
is the root of the equation: I+(R) = 0. Using lemma 4.1 we calculate the integral
I+(200) = −0.711 < 0 from what follows that Ri(A) ∈ (200, 219.768). Since I+(R)
is a monotonically increasing function we can applied the method of bisection to
obtain an approximation for the number Ri(A). Finally we obtain

I+(214.555) = −0.0001034 < 0, I+(214.560) = 0.000188 > 0

and we can take Ri(A) = 214.555.
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Example2. Let

A =
[
−220 −159
241 −220

]
.

Then m1 = −220, m2 = 200, n = 41, σ(A) = 256.321. So, R(A) = 220, R+(A) =
0, R−(A) = 241. So R−(A) > R(A) and the assertion of the Theorem 2 implies
that Ri(A) = R(A) = 220.

Example 3. Let

A =
[
−220 −9
91 −220

]
Then from the calculations we obtain: m1 = −220, m2 = 50, n = 41, σ(A) =
184.610. So, R(A) = min{σ(A),− 1

2 tr(A)} = 184.610, R+(A) = 0, R−(A) = 9,
max{R+(A), R−(A)} < R(A) and I+(R(A)) = I+(184.610) = −2.324 < 0, so from
theorem 2 we have that Ri(A) = R(A) = 184.610.

Conclusion. In this paper we have solved the problem of the computation of
the number Ri(A). We have characterize the stable matrices A for which the
equality Ri(A) = R(A) holds. In the case when this numbers are not equal the
results allow with arbitrary accuracy calculate Ri(A) using the bisection method
to search the zero of the integral I+(R) or I−(R). We have proved also that
Rn(A) = Rt(A) = Rnt(A) = Ri(A) for all stable matrix A. This results to our
knowledge are not reported in the mathematical literature. It is of interest to note
also that the number Ri(A) has closed links with the stability of switched linear
systems. For the exposition of recent advances in this important topic see [8].

References

[1] D. Hinrichsen, A. J. Pritchard; Destabilization by output feedback. Differential and Integral
Equations, 5; pp. 357-386, 1992.

[2] D. Hinrichsen, A. J. Pritchard; Stability radii of linear systems. Systems & Control Letters,
Vol. 7, pp. 1-10, 1986.

[3] D. Hinrichsen, A. J. Pritchard; Stability radius for structured perturbations and the algebraic
Riccati equation. Systems & Control Letters, Vol. 8, pp. 105-113, 1986.

[4] D. Hinrichsen, M. Motscha; Optimization Problems in the Robustness Analysis of Linear State
Space Systems, Report No. 169, Institut fur Dynmische Systeme, University of Bremen, 1987.

[5] A. F. Filippov; Stability conditions of homogeneous systems with arbitrary switches of the
operating modes, Automation and Remote Control, Vol. 41, pp. 1078-1085, 1980.
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