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REGULARITY AND SYMMETRY OF POSITIVE SOLUTIONS
TO NONLINEAR INTEGRAL SYSTEMS

WANGHE YAO, XIAOLI CHEN, JIANFU YANG

Abstract. In this article, we consider the regularity and symmetry of positive
solutions to the nonlinear integral system

u(x) =

Z
Rn

Kα(x− y)
v(y)q

|y|β
dy, v(x) =

Z
Rn

Kα(x− y)
u(y)p

|y|β
dy

for x ∈ Rn, where Kα(x) is the kernel of the operator (−∆)α + id of order α,
with 0 ≤ β < 2α < n, 1 < p, q < (n− β)/β and

1

p + 1
+

1

q + 1
>

n− 2α + β

n
.

We show that positive solution pairs (u, v) ∈ Lp+1(Rn)×Lq+1(Rn) are locally
Hölder continuous in RN \{0}, radially symmetric about the origin, and strictly
decreasing.

1. Introduction

In this article, we consider the regularity and symmetry of positive solutions to
the nonlinear integral system

u(x) =
∫

Rn

Kα(x− y)
v(y)q

|y|β
dy, v(x) =

∫
Rn

Kα(x− y)
u(y)p

|y|β
dy (1.1)

for x ∈ Rn, where Kα(x) is the kernel of the operator (−∆)α + id, 0 < α < 1,
0 ≤ β < 2α < n, 1 < p, q < n−β

β and

1
p + 1

+
1

q + 1
>

n− 2α + β

n
. (1.2)

It can be shown that problem (1.1) is actually equivalent to the indefinite fractional
elliptic systems

(−∆)α
u + u =

vq

|y|β
, (−∆)α

v + v =
up

|y|β
, in Rn. (1.3)

If p = q and β = 0, problem (1.3) is of particular interest in fractional quantum
mechanics in the study of particles on stochastic fields modelled by Lévy processes.
A path integral over the Lévy flights paths and a fractional Schrödinger equation
of fractional quantum mechanics are formulated by Laskin [11], see also [12]. It
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Key words and phrases. L∞ bound; Hölder continuous; radial symmetry; fractional Laplacian.
c©2011 Texas State University - San Marcos.
Submitted July 9, 2011. Published December 7, 2011.

1



2 W. YAO, X. CHEN, J. YAN EJDE-2011/161

was shown in [10] that in the case p = q and β = 0, problem (1.3) has at least a
positive classical solution, which is radially symmetric and decays at infinity.

On the other hand, the problem

(−∆)α/2
u = vq, (−∆)α/2

v = up, in Rn (1.4)

and its generalization have recently been extensively investigated in [1, 2, 4, 5, 6, 7]
etc. Such a problem is equivalent to the integral system

u(x) =
∫

Rn

v(y)q

|x− y|n−α
dy, v(x) =

∫
Rn

u(y)p

|x− y|n−α
dy, in Rn. (1.5)

Solutions (u, v) of (1.5) are critical points of the functional associated with the well-
known Hardy-Littlewood-Sobolev inequality, which is precisely stated as follows.

Proposition 1.1. Let 0 < λ < n and let 1 < p, q < ∞ such that 1
p + 1

q + λ
n = 2.

Then ∣∣ ∫
Rn

∫
Rn

f(x)g(y)
|x− y|λ

dx dy
∣∣ ≤ Cq,λ,n‖f‖p‖g‖q

for f ∈ Lp(Rn) and g ∈ Lq(Rn).

Regularity and symmetry as well as classification of solutions of (1.5) and its
generalization have been widely considered, see [2] and references therein. The
Hardy-Littlewood-Sobolev inequality plays a key role in the study of these prop-
erties. Meanwhile, the moving plane method and the regularity lifting method for
integral equations have been developed, see also [2] and references therein. Further-
more, the double weighted Hardy-Littlewood-Sobolev inequality, was introduced in
[15], which is stated as follows.

Proposition 1.2. Let 0 < λ < n, 1 < p < ∞, τ < n
p′ , β < n

q , τ + β ≥ 0, 1
q + 1

q′ = 1
and 1

p + 1
q′ + λ+τ+β

n = 2. If p ≤ q < ∞ and f ∈ Lp(Rn), g ∈ Lq′(Rn), Then, there
exists a constant C independent of f and g such that the following inequality holds∣∣ ∫

Rn

∫
Rn

f(x)g(y)
|x|τ |x− y|λ|y|β

dx dy
∣∣ ≤ C‖f‖p‖g‖q′ . (1.6)

Critical points of the functional associated with inequality (1.6) will yield so-
lutions of (1.4) if τ = β = 0. Essentially, problem (1.4) is related to the Riesz
potentials Iα(f) = (−∆)−α, 0 < α < n

2 , which is defined by

Iα(f)(x) =
1

C(α)

∫
Rn

f(y)
|x− y|n−2α

dy

for some C(α) > 0. It is known that

‖Iαf‖q ≤ C‖f‖p, where
1
q

=
1
p
− 2α

n
.

In [8], the authors studied the regularity and radial symmetry of solutions of

u(x) =
∫

Rn

Gα(x− y)
v(y)q

|y|β
dy, v(x) =

∫
Rn

Gα(x− y)
u(y)p

|y|β
dy, (1.7)

where Gα is the Bessel kernel; that is,

Gα(x) =
(
√

2π)−n

Γ(n
2 )

∫ ∞

0

e−se−|x|
2/(4s)s(α−n)/2 ds

s
,
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which is associated with the operator (−∆+id)
α
2 . While problem (1.1) is connected

with the kernel Kα of the operator (−∆)α + id, such an operator enjoys different
features, for instant, it is not clear whether the ground state solution of

(−∆)α
u + u = up, in Rn

is exponentially decaying at infinity, see [10] for further properties of the operator
(−∆)α + id and results for one equation case. We will consider in this paper
the regularity and radial symmetry of positive solutions of (1.1), which involves
in Hardy type weights. To this purpose, we first establish the following Hardy-
Littlewood-Sobolev inequality for the potential Kα with double weights.

Theorem 1.3. Let 0 < α < 1, 1 < p, q < n
2α , τ, β ≥ 0. In addition n(1 − 1

p −
1
q + 2α

n ) > β + τ > n(1− 1
p −

1
q ). Then, there exists a constant C, independent of

f ∈ Lp(Rn) and g ∈ Lq(Rn), such that the following inequality holds∣∣ ∫
Rn

∫
Rn

f(x)Kα(x− y)h(y)
|x|τ |y|β

dx dy
∣∣ ≤ C‖f‖p‖h‖q. (1.8)

Furthermore, let

Th(x) =
∫

Rn

Kα(x− y)h(y)
|x|τ |y|β

dy,

then
‖Th‖p′ = sup

‖f‖p=1

|〈Th, f〉| ≤ C‖h‖q,

where 1
p + 1

p′ = 1, 1 + 1
p′ ≥

1
q + n−2α+β+τ

n and h ∈ Lq(Rn).

Next, we use Theorem 1.3 to investigate properties of positive solutions of (1.1).
In the following, we always assume 1 < p, q < n−β

β and that (1.2) holds. We have
the following result.

Theorem 1.4. If (u, v) ∈ Lp+1(Rn) × Lq+1(Rn) is a solution pair of (1.1), then
(u, v) ∈ L∞(Rn)× L∞(Rn).

Results in Theorem 1.4 hold also for sign-changing solutions of (1.1). In the
proof of Theorem 1.4, we first lift the integrability of a suitable cut-off function of
the solution by the regularity lifting method to some Lq0 , and then we show that
the solution is actually in L∞. From Theorem 1.4, one may expect the solution to
be smooth. Our next result asserts that the solution is locally Hölder continuous.
Precisely, let γ = 1− β

n , under the conditions in Theorem 1.4, we have the following
result.

Theorem 1.5. u, v ∈ C0,γ
loc (Rn\{0}).

Furthermore, we show that the solution is radially symmetric by the moving
plane method.

Theorem 1.6. Both u and v are radially symmetric and strictly decreasing about
the origin.

In Section 2, we establish the weighted Hardy-Littlewood-Sobolev inequality
related to the kernel Kα. Then, using the inequality, we prove Theorem 1.4 in
section 3. In section 4, we prove Theorem 1.5 by Theorem 1.3 and the regularity
lifting method. Theorem 1.6 is shown in section 5 by the moving plane method.
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2. Hardy-Littlewood-Sobolev inequality for the Bessel potential

In this section, we establish a weighted Hardy-Littlewood-Sobolev inequality for
the potential Kα. Let α ∈ (0, 1), the kernel Kα associated with the operator
(−∆)α + id is defined as

Kα(x) = F−1
( 1
1 + |ξ|α

)
,

where F−1 is the inverse Fourier transformation. It is known from [10] that the
kernel Kα is radially symmetric, non-negative and non-increasing in r = |x|. Fur-
thermore, for appropriate constants C1 and C2, the kernel Kα satisfies

Kα(x) ≤

{
C1|x|−n+2α when |x| ≤ 1,

C2|x|−n−2α when |x| ≥ 1.
(2.1)

Proof of Theorem 1.3. By (2.1), we have∣∣ ∫
Rn

∫
Rn

f(x)Kα(x− y)h(y)
|x|τ |y|β

dy dx
∣∣

=
∣∣ ∫

Rn

∫
{y:|x−y|≥1}

f(x)Kα(x− y)h(y)
|x|τ |y|β

dy dx

+
∫

Rn

∫
{y:|x−y|≤1}

f(x)Kα(x− y)h(y)
|x|τ |y|β

dy dx
∣∣

≤ C

∫
Rn

∫
{y:|x−y|≥1}

|f(x)||h(y)|
|x|τ |x− y|n+2α|y|β

dy dx

+ C

∫
Rn

∫
{y:|x−y|≤1}

|f(x)||h(y)|
|x|τ |x− y|n−2α|y|β

dy dx := C(I + J).

(2.2)

Firstly, we estimate I. We write

I =
∫
{x:|x|≤ 1

2}

∫
{y:|x−y|≥1}

|f(x)||h(y)|
|x|τ |x− y|n+2α|y|β

dy dx

+
∫
{x:|x|≥ 1

2}

∫
{y:|x−y|≥1}

|f(x)||h(y)|
|x|τ |x− y|n+2α|y|β

dy dx := I1 + I2.

(2.3)

Notice that if |x| ≤ 1
2 , |y − x| ≥ 1, then |y| ≥ 1

2 . While the function |x|−n−2α is in
Lr(Rn\B1(0)) for all n

n+2α < r < ∞, we have by Young’s inequality that

‖(| · |−n−2αχ{|·|≥1}) ∗ g‖s ≤ C‖g‖q

( ∫
{x:|x|≥1}

1
|x|(n+2α)r

dx
)1/r

,

where 1 + 1
s = 1

r + 1
q . Choosing in Young’s inequality that r = n/(n − 2α), then

s = nq/(n− 2αq), we obtain

I1 ≤
∫
{x:|x|≤ 1

2}

|f(x)|
|x|τ+β

dx
( ∫

{y:|y−x|≥1}

|h(y)|
|x− y|n+2α

dy
)

dx

≤ ‖f‖p‖| · |−n−2αχ{|·|≥1} ∗ |h|‖ nq
n−2αq

( ∫
{x:|x|≤ 1

2}
|x|

− τ+β

1− 1
p
− 1

q
+ 2α

n dx
)1− 1

p−
1
q + 2α

n

≤ C‖f‖p‖h‖q

( ∫
{x:|x|≥1}

1
|x|(n+2α)r

dx
)1/r
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×
( ∫

{x:|x|≤1}
|x|

− τ+β

1− 1
p
− 1

q
+ 2α

n dx
)1− 1

p−
1
q + 2α

n

.

Since n− τ+β
1− 1

p−
1
q + 2α

n

> 0 if and only if β + τ < n(1− 1
p −

1
q + 2α

n ), it yields

I1 ≤ C‖f‖p‖h‖q.

We decompose I2 as follows.

I2 =
∫
{x:|x|≥ 1

2}

∫
{y:|x−y|≥1,|y|≥ 1

2}

|f(x)||h(y)|
|x|τ |x− y|n+2α|y|β

dy dx

+
∫
{x:|x|≥ 1

2}

∫
{y:|x−y|≥1,|y|≤ 1

2}

|f(x)||h(y)|
|x|τ |x− y|n+2α|y|β

dy dx

:= I1
2 + I2

2 .

(2.4)

Furthermore,

I1
2 =

∫
{x:|x|≥ 1

2}

∫
{y:|x−y|≥1,|y|≥ 1

2 ,|y|≥|x|}

|f(x)||h(y)|
|x|τ |x− y|n+2α|y|β

dy dx

+
∫
{x:|x|≥ 1

2}

∫
{y:|x−y|≥1,|y|≥ 1

2 ,|y|≤|x|}

|f(x)||h(y)|
|x|τ |x− y|n+2α|y|β

dy dx

:= I11
2 + I12

2 .

(2.5)

Now we estimate I11
2 and I12

2 , respectively. We deduce by Young’s inequality that

I11
2 ≤

∫
{x:|x|≥ 1

2}

|f(x)|
|x|τ+β

( ∫
{y:|y|≥ 1

2 ,|x−y|≥1}

|h(y)|
|x− y|n+2α

dy
)

dx

≤ ‖f‖p‖(| · |−n−2αχ{|·|≥1}) ∗ |h|‖q

( ∫
{x:|x|≥1}

|x|−(τ+β) pq
pq−p−q dx

)1− 1
p−

1
q

≤ C‖f‖p‖h‖q

( ∫
{x:|x|≥1}

|x|−(τ+β) pq
pq−p−q dx

)1− 1
p−

1
q

.

Since τ + β > n(1− 1
p −

1
q ), we have n− (τ + β) pq

pq−p−q < 0. Hence,

I11
2 ≤ C‖f‖p‖h‖q.

By the Fubini theorem, we find

I12
2 ≤

∫
{x:|x|≥ 1

2}

∫
{y:|y|≥ 1

2 ,|x−y|≥1}

|f(x)||h(y)|
|x− y|n+2α|y|τ+β

| dy dx

≤
∫
{y:|y|≥ 1

2}

|h(y)|
|y|τ+β

( ∫
{x:|x−y|≥1}

|f(x)|
|x− y|n+2α

dx
)

dy

≤ ‖h‖q‖(| · |−n−2αχ{|·|≥1}) ∗ |f |‖p

( ∫
{y:|y|≥ 1

2}
|y|−(τ+β) pq

pq−p−q dy
)1− 1

p−
1
q

≤ C‖h‖q‖f‖p

( ∫
{y:|y|≥ 1

2}
|y|−(τ+β) pq

pq−p−q dx
)1− 1

p−
1
q

.

In the same way, n − (τ + β) pq
pq−p−q < 0 if and only if τ + β > n(1 − 1

p −
1
q ), and

then
I12
2 ≤ C‖f‖p‖h‖q.
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Using the Fubini theorem and Young’s inequality, we obtain

I2
2 ≤

∫
{y:|y|≤ 1

2}

|h(y)|
|y|β+τ

∫
{x:|x|≥ 1

2 ,|x−y|≥1}

|f(x)|
|x− y|n+2α

dx dy

≤ ‖h‖q‖(| · |−n−2αχ{|·|≥1}) ∗ |f |‖ np
n−2αp

( ∫
{y:|y|≤ 1

2}
|y|

− τ+β

1− 1
p
− 1

q
+ 2α

n dy
)1− 1

p−
1
q + 2α

n

≤ C‖h‖q‖f‖p

( ∫
{x:|x|≥1}

1

|x|
(n+2α)n

n−2α

dx
)n−2α

n

×
( ∫

{y:|y|≤ 1
2}
|y|

− τ+β

1− 1
p
− 1

q
+ 2α

n dx
)1− 1

p−
1
q + 2α

n

.

Since n− τ+β
1− 1

p−
1
q + 2α

n

> 0 if and only if β + τ < n(1− 1
p −

1
q + 2α

n ), it follows that

I2
2 ≤ C‖f‖p‖h‖q.

Secondly, we estimate J . There holds

J =
∫
{x:|x|≥2}

∫
{y:|x−y|≤1}

|f(x)||h(y)|
|x|τ |x− y|n−2α|y|β

dy dx

+
∫
{x:|x|≤2}

∫
{y:|x−y|≤1}

|f(x)|h(y)|
|x|τ |x− y|n−2α|y|β

dy dx := J1 + J2.

(2.6)

Note that if |x| ≥ 2, |y−x| ≤ 1, then |y| ≥ |x|−|x−y| ≥ 1 ≥ |x−y| and |x| > |x−y|.
By Young’s inequality,

J1 =
∫
{x:|x|≥2}

f(x)
∫
{y:|x−y|≤1}

|h(y)|
|x− y|n−2α+β+τ

dy dx

≤ ‖f‖p‖h ∗ (
χ{|·|≤1}

| · |n−2α+β+τ
)‖p′

≤ ‖f‖p‖h‖q

( ∫
{y:|y|≤1}

1
|y|(n−2α+β+τ)l

dy
)1/l

,

(2.7)

where 1
p′ = 1

q + 1
l − 1, that is 1

l = 2 − 1
p −

1
q . Thus, n − (n − 2α + β + τ)l ≥ 0 if

and only if β + τ < n(1− 1
p −

1
q + 2α

n ), it follows that

J1 ≤ C‖f‖p‖h‖q.

To estimate J2, we decompose it as follows.

J2 =
∫
{x:|x|≤2}

∫
{y:|x−y|≤1,|y|≥|x|}

|f(x)||h(y)|
|x|τ |x− y|n−2α|y|β

dy dx

+
∫
{x:|x|≤2}

∫
{y:|x−y|≤1,|y|≤|x|}

|f(x)||h(y)|
|x|τ |x− y|n−2α|y|β

dy dx := J1
2 + J2

2 .

(2.8)
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Now we estimate J1
2 and J2

2 respectively.

J1
2 ≤

∫
{x:|x|≤2}

|f(x)|
|x|τ+β

( ∫
{y:|x−y|≤1}

|h(y)|
|x− y|n−2α

dy
)

dx

≤
∫
{x:|x|≤2}

|f(x)|
|x|τ+β

Iα(|h|)(x) dx

≤ ‖f‖p‖Iα(|h|)‖ nq
n−2αq

( ∫
{x:|x|≤2}

1

|x|
τ+β

1−1/p−1/q+2α/n

dx
)1−1/p−1/q+2α/n

≤ C‖f‖p‖h‖q

( ∫
{x:|x|≤2}

1

|x|
τ+β

1−1/p−1/q+2α/n

dx
)1−1/p−1/q+2α/n

.

(2.9)

Since n − τ+β
1−1/p−1/q+2α/n > 0 if and only if τ + β < n(1 − 1/p − 1/q + 2α/n), it

yields
J1

2 ≤ C‖f‖p‖h‖q.

In the same way,

J2
2 ≤

∫
{x:|x|≤2}

∫
{y:|y|≤|x|}

|f(x)||h(y)|
|x|τ |x− y|n−2α|y|β

dy dx

≤
∫
{y:|y|≤2}

|h(y)|
|y|τ+β

( ∫
{x:|x|≥|y|}

|f(x)|
|x− y|n−2α

dx
)

dy

≤
∫
{y:|y|≤2}

|h(y)|
|y|τ+β

Iα(|f |)(y) dy

≤ ‖h‖q‖Iα(|f |)‖ np
n−2αp

( ∫
{y:|y|≤2}

1

|y|
τ+β

1−1/p−1/q+2α/n

)1−1/p−1/q+2α/n

≤ C‖f‖p‖h‖q

( ∫
{y:|y|≤2}

1

|y|
τ+β

1−1/p−1/q+2α/n

)1−1/p−1/q+2α/n

.

(2.10)

The inequality τ + β < n(1− 1/p− 1/q + 2α/n) implies

J2
2 ≤ C‖f‖p‖h‖q.

The proof is complete. �

3. L∞-bound of solutions

In this section, we show that any solution of (1.1) in Lp+1(Rn) × Lq+1(Rn)
actually belongs to L∞(Rn)×L∞(Rn). To this purpose, we will use the regularity
lifting method developed in [2], which we will state as follows.

Let Z be a given vector space, ‖ · ‖X and ‖ · ‖Y be two norms on Z. Define a
new norm ‖ · ‖Z by

‖ · ‖Z = p

√
‖ · ‖p

X + ‖ · ‖p
Y.

Suppose that Z is complete with respect to the norm ‖ · ‖Z. Let X and Y be the
completion under ‖ · ‖X and ‖ · ‖Y, respectively. Here one can choose p such that
1 ≤ p ≤ ∞. According to what one needs, it is easy to see that Z = X ∩Y. The
following regularity lifting theorem was obtained in [2].

Lemma 3.1 (Regularity Lifting I). Let T be a contracting map from X into itself
and from Y into itself. Assume that f ∈ X and that there exists a function g ∈ Z
such that f = Tf + g, then f also belongs to Z.
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Proof of Theorem 1.4. Let (u, v) ∈ Lp+1(Rn) × Lq+1(Rn) be a pair of solution to
integral systems (1.1). We first show by Lemma 3.1 that (uξ, vξ), a cut-off function
of (u, v) defined below, belongs to Lp̃(Rn) × Lq̃(Rn) for p̃ > np

2α−β , q̃ > nq
2α−β and

1
p̃ −

1
q̃ = 1

p+1 −
1

q+1 , then we prove that (u, v) ∈ L∞(Rn)× L∞(Rn).
For any sufficient large positive real number ξ, define

uξ(x) =

{
u(x), if |u(x)| ≥ ξ or |x| > ξ,

uξ(x) = 0, otherwise.
(3.1)

Similarly, we define vξ. Let

T ξ
1 g(x) =

∫
Rn

Kα(x− y)|vξ|q−1g(y)
|y|β

dy, T ξ
2 f(x) =

∫
Rn

Kα(x− y)|uξ|p−1f(y)
|y|β

dy

and
Tξ(f, g) = (T ξ

1 g, T ξ
2 f).

Let ũξ(x) = u(x)− uξ(x), and Eu
ξ = {x ∈ Rn : |u(x)| ≥ ξ or |x| > ξ}. Similarly, we

define ṽξ and Ev
ξ . By (1.1), we have

u(x) =
∫

Rn

Kα(x− y)|v(y)|q−1v(y)
|y|β

dy

=
∫

Ev
ξ

Kα(x− y)|v(y)|q−1v(y)
|y|β

dy +
∫

Rn\Ev
ξ

Kα(x− y)|v(y)|q−1v(y)
|y|β

dy

=
∫

Rn

Kα(x− y)|vξ(y)|q−1vξ(y)
|y|β

dy +
∫

Rn

Kα(x− y)|ṽξ(y)|q−1ṽξ(y)
|y|β

dy.

(3.2)

Moreover,

uξ(x) =
∫

Rn

Kα(x− y)|vξ(y)|q−1vξ(y)
|y|β

dy + M1(x), (3.3)

where

M1(x) =
∫

Rn

Kα(x− y)|ṽξ(y)|q−1ṽξ(y)
|y|β

dy − ũξ(x).

Similarly,

vξ(x) =
∫

Rn

Kα(x− y)|uξ(y)|p−1uξ(y)
|y|β

dy + M2(x), (3.4)

where

M2(x) =
∫

Rn

Kα(x− y)|ũξ(y)|p−1ũξ(y)
|y|β

dy − ṽξ(x).

It yields
(uξ, vξ) = Tξ(uξ, vξ) + (M1(x),M2(x)),

where Tξ(uξ, vξ) = (T ξ
1 vξ, T

ξ
2 uξ).

We claim that M1(x),M2(x) ∈ L∞(Rn) ∩ Ls(Rn) for s > 1. Obviously, ũξ, ṽξ ∈
L∞(Rn) ∩ Ls(Rn). So it suffices to show that H1,H2 ∈ L∞(Rn) ∩ Ls(Rn), where

H1(x) =
∫

Rn

Kα(x− y)|ṽξ(y)|q−1ṽξ(y)
|y|β

dy,

H2(x) =
∫

Rn

Kα(x− y)|ũξ(y)|p−1ũξ(y)
|y|β

dy.
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Now, we estimate H1, the estimation for H2 can be obtained in the same way.
By the definition of ṽξ(x), for x ∈ Rn, we obtain

|H1(x)| ≤ C

∫
{y:|y|≤ξ}

Kα(x− y)
|y|β

dy

≤ C

∫
{y:|y|≤ξ,|x−y|≥1}

Kα(x− y)
|y|β

dy + C

∫
{y:|y|≤ξ,|x−y|≤1}

Kα(x− y)
|y|β

dy

≤ C

∫
{y:|y|≤ξ,|x−y|≥1}

1
|x− y|n+2α|y|β

dy

+ C

∫
{y:|y|≤ξ,|x−y|≤1}

1
|y|β |x− y|n−2α

dy

= A(x) + B(x),

where C > 0 depends on ξ. Since 0 ≤ β < 2α < n,

A(x) ≤ C

∫
{y:|y|≤ξ}

1
|y|β

dy ≤ C.

Similarly,

B(x)

≤
( ∫

{y:|y|≤ξ,|x−y|≤1,|x−y|≥|y|}
+

∫
{y:|y|≤ξ,|x−y|≤1,|x−y|≤|y|}

) C

|y|β |x− y|n−2α
dy

≤
∫
{y:|y|≤ξ}

C

|y|n−2α+β
dy +

∫
{y:|x−y|≤1}

C

|x− y|n−2α+β
dy ≤ C.

As a result, H1 ∈ L∞(Rn). On the other hand, by Theorem 1.3, for r > ns
2αs+n−sβ ,

we have
‖H1‖Ls(Rn) ≤ ‖ṽq

ξ‖Lr(Bξ(0)) ≤ C;

that is, H1 ∈ Ls(Rn). The claim follows.
Next, we show that Tξ(f, g) is a contraction map from Lp̃(Rn) × Lq̃(Rn) into

Lp̃(Rn)× Lq̃(Rn) for q̃, p̃ > 1 satisfying
1
p̃
− 1

q̃
=

1
p + 1

− 1
q + 1

. (3.5)

We may verify by the fact p, q > 1, (1.2) and (3.5) that

q̃ >
np̃

n + (2α− β)p̃
, p̃ >

nq̃

n + (2α− β)q̃
.

Choosing d1 such that
1
d1

=
1
q̃

+
q − 1
q + 1

, (3.6)

we verify by (1.2) that

q̃ > d1 >
np̃

n + (2α− β)p̃
. (3.7)

By Theorem 1.3, we find

‖T ξ
1 g‖p̃ ≤ C‖|vξ|q−1g‖d1 . (3.8)

This and Hölder’s inequality yield

‖T ξ
1 g‖p̃ ≤ C‖vξ‖q−1

q+1‖g‖q̃. (3.9)
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In the same way, choosing 1
d2

= 1
p̃ + p−1

p+1 , we obtain

‖T ξ
2 f‖q̃ ≤ C‖|uξ|p−1f‖d2 ≤ C‖uξ‖p−1

p+1‖f‖p̃. (3.10)

Since (u, v) ∈ Lp+1(Rn)× Lq+1(Rn), one can choose ξ sufficiently large so that

‖T ξ
1 g‖p̃ ≤

1
2
‖g‖q̃, ‖T ξ

2 f‖q̃ ≤
1
2
‖f‖p̃. (3.11)

Therefore,

‖Tξ(f, g)‖p̃×q̃ = ‖(T ξ
1 g, T ξ

2 f)‖p̃×q̃ = ‖T ξ
1 g‖p̃ + ‖T ξ

2 f‖q̃

≤ 1
2
‖g‖q̃ +

1
2
‖f‖p̃ =

1
2
‖(f, g)‖p̃×q̃.

(3.12)

In other words, Tξ(f, g) is a contraction map from Lp̃(Rn)× Lq̃(Rn) into itself for
p̃, q̃ > 1, 1

p̃ −
1
q̃ = 1

p+1 −
1

q+1 . In particular, for p̃ = p + 1 and q̃ = q + 1, we see that
Tξ(f, g) is also a contraction map from Lp+1(Rn)×Lq+1(Rn) into itself. Choosing
p̃, q̃ large enough such that p̃ > np

2α−β , q̃ > nq
2α−β , 1

p̃ −
1
q̃ = 1

p+1 −
1

q+1 , by Lemma 3.1,
we conclude that (uξ, vξ) ∈ (Lp̃(Rn)× Lq̃(Rn)) ∩ (Lp+1(Rn)× Lq+1(Rn)).

Finally, we show that u, v ∈ L∞(Rn). Since u(x) = uξ(x) + ũξ(x), v(x) =
vξ(x) + ṽξ(x) and ũξ, ṽξ ∈ L∞(Rn), we only need to verify uξ, vξ ∈ L∞(Rn). By
(3.3),(3.4) and M1,M2 ∈ L∞(Rn), it is sufficient to verify that I1, I2 ∈ L∞(Rn),
where

I1(x) =
∫

Rn

Kα(x− y)|vξ|q−1vξ(y)
|y|β

dy, I2(x) =
∫

Rn

Kα(x− y)|uξ|p−1uξ(y)
|y|β

dy.

There holds

|I1(x)| ≤
∫
{y:|y|≤ξ}

Kα(x− y)|vξ|q

|y|β
dy +

∫
{y:|y|≥ξ}

Kα(x− y)|vξ|q

|y|β
dy

:= J(x) + G(x).
(3.13)

If x ∈ Rn\B2ξ(0), y ∈ Bξ(0), then |x− y| > |x| − |y| > ξ > |y|. Thus,

J(x) ≤ C

∫
{y:|y|≤ξ}

|vξ|q

|x− y|n+2α|y|β
dy ≤ C

∫
{y:|y|≤ξ}

|vξ|q

|y|β
dy

≤
( ∫

{y:|y|≤ξ}
|vξ|q+1 dy

)q/(q+1)( ∫
{y:|y|≤ξ}

1
|y|(q+1)β

dy
)1/(q+1)

≤ C

(3.14)

since q < (n− β)/β. If x ∈ B2ξ(0), we have

J(x) ≤
∫
{y:|y|≤ξ,|x−y|≥1}

Kα(x− y)|vξ|q

|y|β
dy +

∫
{y:|y|≤ξ,|x−y|≤1}

Kα(x− y)|vξ|q

|y|β
dy

≤ C

∫
{y:|y|≤ξ,|x−y|≥1}

|vξ|q

|x− y|n+2α|y|β
dy

+ C

∫
{y:|y|≤ξ,|x−y|≤1}

|vξ|q

|x− y|n−2α|y|β
dy := CJ1(x) + CJ2(x).

Now we estimate J1(x), J2(x) respectively. By Hölder’s inequality, we have

J1(x) ≤ C
( ∫

{y:|y|≤ξ}
|vξ|q+1 dy

)q/(q+1)( ∫
{y:|y|≤ξ}

1
|y|(q+1)β

dy
)1/(q+1)

≤ C

(3.15)
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and because of q̃ > nq/(2α− β), we deduce

J2(x)

≤
∫
{y:|y|≤ξ,|x−y|≤1,|x−y|≥|y|}

|vξ|q

|x− y|n−2α|y|β
dy

+
∫
{y:|y|≤ξ,|x−y|≤1,|x−y|≤|y|}

|vξ|q

|x− y|n−2α|y|β
dy

≤
∫
{y:|y|≤ξ}

|vξ|q

|y|n−2α+β
dy +

∫
{y:|x−y|≤1,|y|≤ξ}

|vξ|q

|x− y|n−2α+β
dy

≤
( ∫

{y:|y|≤ξ}
|vξ|q̃ dy

)q/q̃( ∫
{y:|y|≤ξ}

1

|y|
q̃

q̃−q (n−2α+β)
dy

)(q̃−q)/q̃

+
( ∫

{y:|y|≤ξ}
|vξ|q̃ dy

)q/q̃( ∫
{y:|x−y|≤1}

1

|x− y|
q̃

q̃−q (n−2α+β)
dy

)(q̃−q)/q̃

≤ C.

(3.16)

Inequalities (3.14),(3.15) and (3.16) imply that J ∈ L∞(Rn). Now we estimate
G(x). For any x ∈ Rn,

G(x) ≤
∫
{y:|y|≥ξ,|x−y|≥1}

Kα(x− y)|vξ|q

|y|β
dy +

∫
{y:|y|≥ξ,|x−y|≤1}

Kα(x− y)|vξ|q

|y|β
dy

≤ C

∫
{y:|y|≥ξ,|x−y|≥1}

|vξ|q

|x− y|n+2α|y|β
dy

+ C

∫
{y:|y|≥ξ,|x−y|≤1}

|vξ|q

|x− y|n−2α|y|β
dy

≤ C

∫
{y:|y|≥ξ,|x−y|≥1}

|vξ|q

|x− y|n+2α|y|β
dy + C

∫
{y:|x−y|≤1}

|vξ|q

|x− y|n−2α+β
dy

:= CG1(x) + CG2(x).

By Hölder’s inequality,

G2(x) ≤
( ∫

Rn

|vξ|q̃dy
)q/q̃( ∫

{y:|x−y|≤1}

1

|x− y|
q̃

q̃−q (n−2α+β)
dy

)(q̃−q)/q̃

≤ C.

Now we estimate G1(x). Since q̃ > nq
2α−β > nq

n−β , we can choose an r such that
1 < r < nq̃

nq̃−nq−q̃β . Hence, Hölder’s inequality implies that

G1(x) ≤
( ∫

{y:|y|≥ξ}
|vξ|q̃dy

)q/q̃( ∫
{|x−y|≥1}

1
y : |x− y|(n+2α)r

dy
)1/r

×
( ∫

{y:|y|≥ξ}

1

|y|
β

1−q/q̃−1/r

dy
)1−q/q̃−1/r

≤ C.

(3.17)

Consequently, both J and G belong to L∞(Rn), so is I1. Similarly, we have I2 ∈
L∞(Rn). Therefore, u, v ∈ L∞(Rn). The proof of Theorem 1.3 is completed. �

4. Regularity of solutions to integral systems

In this section, we show that the solution of (1.1) is Hölder continuous. We recall
the regularity lifting theorem II given in [2]. Let V be a Hausdorff topological vector
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space. Suppose there are two extended norms defined on V ,

‖ · ‖X , ‖ · ‖Y : V → [0,∞].

Let
X := {v ∈ V : ‖v‖X < ∞}, Y := {v ∈ V : ‖v‖Y < ∞}.

We also assume that X is complete and that the topology in V is weaker than the
topology of X and the weak topology of Y , which means that the convergence in X
or weak convergence in Y will imply convergence in V . The pair of spaces (X, Y )
described as above is called an XY−pair, if whenever the sequence {un} ⊂ X with
un → u in X and ‖un‖Y < C will imply u ∈ Y .

From [2, Remark 3.3.5], we know that if X = Lp(U) for 1 ≤ p ≤ ∞, Y = C0,γ(U)
for 0 < γ ≤ 1, and V is the space of distributions, where U can be any subset of
Rn or Rn itself, then (X, Y ) is an XY−pair.

Lemma 4.1 (Regularity Lifting II). Suppose that Banach spaces X, Y are an XY -
pair, both contained in some larger topological space V satisfying properties de-
scribed above. Let X and Y be closed subsets of X and Y respectively. Suppose that
T : X → X is a contraction:

‖Tf − Tg‖X ≤ η‖f − g‖X , ∀f, g ∈ X and for some 0 < η < 1;

and T : Y → Y is shrinking:

‖Tg‖Y ≤ θ‖g‖Y , ∀g ∈ Y and for some 0 < θ < 1;

Define
Sf = Tf + F for some F ∈ X ∩Y.

Moreover, assume that S : X ∩Y → X ∩Y. Then there exists a unique solution u
of the equation

u = Tf + F in X,

and more importantly, u ∈ Y .

Proof of Theorem 1.5. Since (u, v) is a solution pair for (1.1), we have

u(x) =
∫

Rn

Kα(|x− y|)vq(y)
|y|β

dy

= −
∫

Rn

∫ ∞

|x−y|
K ′

α(s)
vq(y)
|y|β

ds dy

= −
∫ ∞

0

∫
Bs(x)

K ′
α(s)

vq(y)
|y|β

ds dy

and

v(x) = −
∫ ∞

0

∫
Bs(x)

K ′
α(s)

up(y)
|y|β

ds dy.

For any Ω ⊂⊂ Rn \ {0}, denote d = dist(0,Ω) > 0. Let X = L∞(Ω) and Y =
C0,γ(Ω). By Theorem 1.4, u, v ∈ L∞(Rn), we define

X = {w ∈ X
∣∣‖w‖L∞ ≤ 2‖u‖L∞ + 2‖v‖L∞},

Y = {w ∈ Y
∣∣‖w‖L∞ ≤ 2‖u‖L∞ + 2‖v‖L∞}.

For every ε > 0 such that 0 < ε < d
2 , we define

T q
ε v̂(x) = −

∫ ε

0

∫
Bs(x)

K ′
α(s)

v̂q(y)
|y|β

ds dy,
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T p
ε û(x) = −

∫ ε

0

∫
Bs(x)

K ′
α(s)

ûp(y)
|y|β

ds dy, Tε(û, v̂) = (T q
ε v̂, T p

ε û).

Furthermore, we define

F qv(x) = −
∫ ∞

ε

∫
Bs(x)

K ′
α(s)

vq(y)
|y|β

ds dy,

F pu(x) = −
∫ ∞

ε

∫
Bs(x)

K ′
α(s)

up(y)
|y|β

ds dy, F = (F pv, F qu).

Obviously, a solution (u, v) of (1.1) is a solution of the equation

(û, v̂) = Tε(û, v̂) + F.

Write Sε(û, v̂) = Tε(û, v̂)+F . We will show for ε > 0 small that Tε is a contracting
operator from X×X to X×X, and also is a shrinking operator from Y×Y to Y ×Y .
Furthermore, F ∈ (X×X)∩(Y×Y), and Sε : (X×X)∩(Y×Y) → (X×X)∩(Y×Y).
This then will yields (u, v) ∈ Y × Y by Lemma 4.1.

We first show that Tε is a contracting operator from X× X to X ×X. For any
f, g ∈ X, we denote here and below that fp = fp

+. By the mean value theorem, we
have∣∣T q

ε f(x)− T q
ε g(x)

∣∣ ≤ ∫ ε

0

∫
Bs(x)

|fq(y)− gq(y)| |K
′
α(s)|
|y|β

ds dy

≤ C max{‖f‖q−1
L∞ , ‖g‖q−1

L∞ }‖f − g‖L∞

∫ ε

0

sn−β |K ′
α(s)| ds.

By (2.1), we obtain ∫ ε

0

sn−β |K ′
α(s)| ds ≤ O(ε2α−β)

as ε → 0. Hence, for ε > 0 small,∣∣T q
ε f(x)− T q

ε g(x)
∣∣ ≤ C max{‖f‖q−1

L∞ , ‖g‖q−1
L∞ }‖f − g‖L∞ε2α−β . (4.1)

Choosing ε > 0 small so that C max{‖f‖q−1
L∞ , ‖g‖q−1

L∞ }ε2α−β ≤ 1/4, we see that T q
ε

is a contracting operator from X to X. Similarly, T p
ε is also a contracting operator

from X to X. Therefore, Tε is a contracting operator from X× X to X ×X.
Next, we verify that Tε is a shrinking operator from Y×Y to Y × Y . We only

show it for T q
ε , it can be done in the same way for T p

ε . Assume f ∈ Y. Then for
any x, z ∈ Ω, we have

|T q
ε f(x)− T q

ε f(z)| =
∣∣ ∫ ε

0

{∫
Bs(x)

fq(y)
|y|β

dy −
∫

Bs(z)

fq(y)
|y|β

dy
}

K ′
α(s) ds

∣∣
=

∣∣ ∫ ε

0

∫
Bs(x)

[fq(y)
|y|β

− fq(y + z − x)
|y + z − x|β

]
K ′

α(s) dy ds
∣∣

≤
∣∣ ∫ ε

0

∫
Bs(x)

[
fq(y)

( 1
|y|β

− 1
|y + z − x|β

)
+

(fq(y)− fq(y + z − x)
|y + z − x|β

)]
K ′

α(s) dy ds
∣∣.

For y ∈ Bs(x), 0 < s < ε, we have |y| ≥ |x| − s ≥ d− d
2 = d

2 > 0 and |y + z − x| ≥
|z| − |y − x| ≥ d − s ≥ d

2 . So both 1
|y|β and 1

|y+z−x|β are regular in Bs(x) for
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0 < s < ε. In particular, there exists C > 0 such that | 1
|y|β −

1
|y+z−x|β | ≤ C|x− z|.

Hence, ∣∣ ∫ ε

0

∫
Bs(x)

fq(y)
( 1
|y|β

− 1
|y + z − x|β

)
K ′

α(s) dy ds
∣∣

≤ C‖f‖q
L∞ |x− z|

∣∣ ∫ ε

0

snK ′
α(s) ds

∣∣
≤ C‖f‖q

L∞ |x− z|ε2α

≤ C‖f‖q−1
L∞ ‖f‖C0,γ |x− z|ε2α.

If |x − z| ≤ 1, |x − z| ≤ |x − z|γ ; if |x − z| > 1, |x − z| ≤ (diamΩ)1−γ |x − z|γ .
Therefore, ∣∣ ∫ ε

0

∫
Bs(x)

fq(y)
( 1
|y|β

− 1
|y + z − x|β

)
K ′

α(s) dy ds
∣∣

≤ C‖f‖q−1
L∞ ‖f‖C0,γ |x− z|γε2α.

On the other hand, by the mean value theorem,∣∣ ∫ ε

0

∫
Bs(x)

fq(y)− fq(y + z − x)
|y + z − x|β

K ′
α(s) dy ds

∣∣
≤

∣∣ ∫ ε

0

∫
Bs(x)

|w(ξ)|q−1 |f(y)− f(y + z − x)|
|y + z − x|β

K ′
α(s) dy ds

∣∣
≤ C‖f‖q−1

L∞ ‖f‖C0,γ |x− z|γ
∣∣ ∫ ε

0

snK ′
α(s) ds

∣∣
≤ C‖f‖q−1

L∞ ‖f‖C0,γ |x− z|γε2α,

where w is valued between f(y) and f(y + z − x). Consequently,

|T q
ε f(x)− T q

ε f(z)| ≤ C‖f‖C0,γ |x− z|γε2α.

Choosing ε > 0 sufficiently small, we obtain

sup
x6=z

∣∣T q
ε f(x)− T q

ε f(z)
∣∣

|x− z|
≤ 1

4
‖f‖C0,γ .

We may derive in the same way as (4.1) that∣∣T q
ε f(x)

∣∣ ≤ C‖f‖L∞ε2α−β ≤ 1
4
‖f‖C0,γ .

Therefore, for any f ∈ Y,

‖T q
ε f(x)‖C0,γ ≤ 1

2
‖f‖C0,γ ;

that is, T q
ε is a shrinking operator from Y to Y .

Now, we show that F qv(x) and F pu(x) are Hölder continuous for u, v ∈ Y. We
only deal with F qv(x). For F pu(x), it can be shown similarly. We write

F qv(x) = −
∫ 1

ε

∫
Bs(x)

K ′
α(s)

vq(y)
|y|β

ds dy −
∫ ∞

1

∫
Bs(x)

K ′
α(s)

vq(y)
|y|β

ds dy

:= F1(x) + F2(x).
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For x, z ∈ Ω, we have

|F1(x)− F1(z)| =
∣∣ ∫ 1

ε

( ∫
Bs(x)

vq(y)
|y|β

dy −
∫

Bs(x)

vq(y)
|y|β

dy
)
K ′

α(s) ds
∣∣

≤ ‖v‖q
L∞

∫ 1

ε

( ∫
(Bs(x)\Bs(z))∪(Bs(z)\Bs(x))

1
|y|β

dy
)
|K ′

α(s)| ds.

Denote by A∗ the symmetric rearrangement of the set A, and f∗ the symmetric-
decreasing rearrangement of a function f . It is known that for the characteristic
function χA of a set A, χ∗A = χA∗ . Moreover, for nonnegative functions f and g,
there holds ∫

Rn

fg dx ≤
∫

Rn

f∗g∗ dx.

If |x− z| ≥ 2s, then∫
(Bs(x)\Bs(z))∪(Bs(z)\Bs(x))

1
|y|β

dy =
∫

Bs(x)

1
|y|β

dy +
∫

Bs(z)

1
|y|β

dy

=
∫

Rn

χBs(x)
1
|y|β

dy +
∫

Rn

χBs(z)
1
|y|β

dy

≤
∫

Rn

χBs(0)
1
|y|β

dy +
∫

Rn

χBs(0)
1
|y|β

dy

≤ Csn−β

≤ Csn−β−1|x− z|γ .

If |x− z| < 2s, we have

(Bs(x) \Bs(z)) ∪ (Bs(z) \Bs(x)) ⊂ (Bs(x) ∪Bs(z)) \B
s− |x−z|

2
(
x + z

2
).

Let r =
(
sn −

(
s− |x−z|

2

)n)1/n. Noting 0 < s < 1 and reasoning in the same way,
we obtain∫

(Bs(x)\Bs(z))∪(Bs(z)\Bs(x))

1
|y|β

dy ≤
∫

(Bs(x)∪(Bs(z))\B
s− |x−z|

2
( x+z

2 )

1
|y|β

dy

≤ 2
∫

Br(0)

1
|y|β

dy

≤ C
(
sn −

(
s− |x− z|

2
)n

)n−β
n

≤ Csn−1−β |x− z|γ .

(4.2)

As a result,

|F1(x)− F1(z)| ≤ −‖v‖q
L∞ |x− z|1−

β
n

∫ 1

ε

sn−β−1K ′
α(s) ds ≤ C(ε)‖v‖q

L∞ |x− z|γ ;

that is,

sup
x6=z

|F1(x)− F1(z)|
|x− z|γ

≤ C(ε). (4.3)
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Now we estimate the Hölder norm of F2. For x, z ∈ Ω, by (4.2),

|F2(x)− F2(z)| =
∣∣ ∫ ∞

1

( ∫
Bs(x)

vq(y)
|y|β

dy −
∫

Bs(x)

vq(y)
|y|β

dy
)
K ′

α(s) ds
∣∣

≤ ‖v‖q
L∞

∫ ∞

1

( ∫
(Bs(x)\Bs(z))∪(Bs(z)\Bs(x))

1
|y|β

dy
)
|K ′

α(s)| ds

≤ −‖v‖q
L∞ |x− z|γ

∫ ∞

1

sn−β−1K ′
α(s) ds

≤ −‖v‖q
L∞ |x− z|γ

∫ ∞

1

sn−βK ′
α(s) ds.

We may verify that

−
∫ ∞

1

sn−β−1K ′
α(s) = Kα(1) + (n− β)

∫ ∞

1

sn−β−1Kα(s) ds

≤ Kα(1) + C(n− β)
∫ ∞

1

sn−β−1s−n−2α ds

≤ Kα(1) + C.

Thus,
|F2(x)− F2(z)| ≤ C‖v‖q

L∞ |x− z|γ ;

that is,

sup
x6=z

|F2(x)− F2(z)|
|x− z|γ

≤ C. (4.4)

Inequalities (4.3) and (4.4) yield

sup
x6=z

|F qv(x)− F qv(z)|
|x− z|γ

≤ C(ε). (4.5)

From the definition of F1(x) and F2(x), we have

|F1(x)| ≤ ‖v‖q
L∞

∫ 1

ε

( ∫
Bs(x)

1
|y|β

dy
)
|K ′

α(s)| ds

≤ C‖v‖q
L∞

∫ 1

ε

sn−β |K ′
α(s)| ds

≤ C(ε)‖v‖q
L∞ ,

(4.6)

and

|F2(x)| ≤ ‖v‖q
L∞

∫ ∞

1

( ∫
Bs(x)

1
|y|β

dy
)
|K ′

α(s)| ds

≤ C‖v‖q
L∞

∫ ∞

1

sn−β |K ′
α(s)| ds

≤ C‖v‖q
L∞ .

(4.7)

It follows from (4.6) and (4.7) that

|F qv|L∞ ≤ C(ε)‖v‖q
L∞ . (4.8)

Inequalities (4.6) and (4.8) imply that F qv is Hölder continuous, and this together
with (4.8) imply F qv ∈ X ∩Y.
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Finally, we show that Sε maps (X × X) ∩ (Y × Y) to itself. We need only to
verify that if ‖w‖L∞ ≤ 2‖u‖L∞ + 2‖v‖L∞ , then

‖T q
ε w‖L∞ ≤ 2‖u‖L∞ + 2‖v‖L∞ . (4.9)

In the same way, we can prove

‖T p
ε w‖L∞ ≤ 2‖u‖L∞ + 2‖v‖L∞ . (4.10)

Now, we verify (4.9). Indeed,

|T q
ε w(x)| = −

∫ ε

0

∫
Bs(x)

K ′
α(s)

wq(y)
|y|β

ds dy

≤ (2‖u‖L∞ + 2‖v‖L∞)q

∫ ε

0

∫
Bs(x)

1
|y|β

|K ′
α(s)| dyds

≤ C(2‖u‖L∞ + 2‖v‖L∞)q

∫ ε

0

sn−β |K ′
α(s)|ds

≤ C(2‖u‖L∞ + 2‖v‖L∞)qε2α−β .

Therefore, choosing ε sufficiently small, but independent of w, we obtain (4.9). This
completes the proof of the theorem. �

5. Symmetry of solutions

In this section, we show that positive solutions of (1.1) are radially symmetric.
For a given real number λ, we may define

Σλ = {x = (x1, x2, · · · , xn) ∈ Rn|x1 ≤ λ}, Tλ = {x ∈ Rn|x1 = λ}.

For x ∈ Σλ, let xλ = (2λ− x1, x2, · · · , xn), and define

uλ(x) = u(xλ), vλ(x) = v(xλ).

Lemma 5.1. For any positive solution u of (1.1), we have

u(x)− uλ(x) =
∫

Σλ

(
Kα(x− y)−Kα(xλ − y)

)(vq(y)
|y|β

−
vq

λ(y)
|yλ|β

)
dy, (5.1)

v(x)− vλ(x) =
∫

Σλ

(
Kα(x− y)−Kα(xλ − y)

)(up(y)
|y|β

−
up

λ(y)
|yλ|β

)
dy. (5.2)

Proof. Let Σc
λ = {x = (x1, x2, · · · , xn) ∈ Rn|x1 > λ}. It follows from (1.1) that

u(x) =
∫

Σλ

Kα(x− y)vq(y)
|y|β

dy +
∫

Σc
λ

Kα(x− y)vq(y)
|y|β

dy

=
∫

Σλ

Kα(x− y)vq(y)
|y|β

dy +
∫

Σλ

Kα(x− yλ)vq(yλ)
|yλ|β

dy

=
∫

Σλ

Kα(x− y)vq(y)
|y|β

dy +
∫

Σλ

Kα(xλ − y)vq
λ(y)

|yλ|β
dy.

Here we have used the fact that |x− yλ| = |xλ − y| and the fact that Kα is radially
symmetric in Rn. Substituting x by xλ gives

u(xλ) =
∫

Σλ

Gα(xλ − y)vq(y)
|y|β

dy +
∫

Σλ

Gα(x− y)vq
λ(y)

|yλ|β
dy.
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Hence,

u(x)− uλ(x) =
∫

Σλ

(
Kα(x− y)−Kα(xλ − y)

)(vq(y)
|y|β

−
vq

λ(y)
|yλ|β

)
dy.

Similarly, we have

v(x)− vλ(x) =
∫

Σλ

(
Kα(x− y)−Kα(xλ − y)

)(up(y)
|y|β

−
up

λ(y)
|yλ|β

)
dy.

This completes the proof. �

Proof of Theorem 1.6. We use the moving plane method developed for integral
equations in [6] to prove the result. First, we show for sufficiently negative λ
that

u(x) ≤ u(xλ), v(x) ≤ v(xλ), ∀x ∈ Σλ. (5.3)
Set

wλ(x) = u(x)− u(xλ), zλ(x) = v(x)− v(xλ),

Σu,−
λ = {x ∈ Σλ|u(x) > u(xλ)}, Σv,−

λ = {x ∈ Σλ|v(x) > v(xλ)}.
From Lemma 5.1, we deduce that

u(x)− uλ(x) =
∫

Σλ\Σv,−
λ

(
Kα(x− y)−Kα(xλ − y)

)(vq(y)
|y|β

−
vq

λ(y)
|yλ|β

)
dy

+
∫

Σv,−
λ

(
Kα(x− y)−Kα(xλ − y)

)(vq(y)
|y|β

−
vq

λ(y)
|yλ|β

)
dy.

Since |x − y| < |xλ − y| and |y| > |yλ| in Σλ, taking into account that Kα(x) is
decreasing as well as that tq is convex, we obtain

u(x)− uλ(x) ≤
∫

Σv,−
λ

(
Kα(x− y)−Kα(xλ − y)

)(vq(y)
|y|β

−
vq

λ(y)
|yλ|β

)
dy

≤
∫

Σv,−
λ

(
Kα(x− y)−Kα(xλ − y)

)(vq(y)− vq
λ(y)

|y|β
)

dy

≤ C

∫
Σv,−

λ

Kα(x− y)
vq−1(v − vλ)

|y|β
dy.

We may derive as in the proof of (3.9) and (3.10) for
1
p̃
− 1

q̃
=

1
p + 1

− 1
q + 1

and
1
d1

=
1
q̃

+
q − 1
q + 1

,
1
d2

=
1
p̃

+
p− 1
p + 1

that

‖wλ‖Lp̃(Σu,−
λ ) ≤ C‖vq−1zλ‖Ld1 (Σv,−

λ ) ≤ C‖v‖q−1

Lq+1(Σv,−
λ )

‖zλ‖Lq̃(Σv,−
λ ) (5.4)

and

‖zλ‖Lq̃(Σv,−
λ ) ≤ C‖up−1wλ‖Ld2 (Σu,−

λ ) ≤ C‖u‖p−1

Lp+1(Σu,−
λ )

‖wλ‖Lp̃(Σu,−
λ ). (5.5)

As a result,

‖wλ‖Lp̃(Σu,−
λ ) ≤ C‖u‖p−1

Lp+1(Σu,−
λ )

‖v‖q−1

Lq+1(Σv,−
λ )

‖wλ‖Lp̃(Σu,−
λ ). (5.6)
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Since (u, v) ∈ Lp+1(Rn)× Lq+1(Rn), for sufficiently negative λ,

C‖u‖p−1

Lp+1(Σu,−
λ )

‖v‖q−1

Lq+1(Σv,−
λ )

≤ 1
2
.

Hence,

‖wλ‖Lp̃(Σu,−
λ ) ≤

1
2
‖wλ‖Lp̃(Σu,−

λ ).

This implies Σu,−
λ must be a set of measure zero. Similarly, the measure of Σv,−

λ is
zero. Consequently, (5.3) holds.

Next, we increase the value of λ continuously; that is, we move the plane Tλ to
the right as long as the inequality (5.3) holds. We show that by moving Tλ in this
way, it will not stop before the plane hitting the origin. Let

λ0 = sup{λ|u(x)− uλ(x) ≤ 0, v(x)− vλ(x) ≤ 0,∀x ∈ Σλ}. (5.7)

Obviously λ0 ≤ 0, We claim that
λ0 = 0. (5.8)

In fact, if it were not the case, we would show that the plane could be moved further
to the right by a small distance, and this would contradict with the definition of
λ0. Suppose by the contrary that λ0 < 0, and that there exist some points x0, x1

in Σλ0 such that u(x0) = uλ0(x0), v(x1) = vλ0(x1). By Lemma 5.1 and noting that
xλ0 = (x0)λ0 , we obtain

0 = u(x0)− uλ0(x0)

=
∫

Σλ0

(
Kα(x0 − y)−Kα(xλ0 − y)

)(vq(y)
|y|β

−
vq

λ0
(y)

|yλ0 |β
)

dy.

Since |y| > |y0| in Σλ0 ,
vq(y)
|y|β

<
vq

λ0
(y)

|yλ0 |β
in Σλ0 .

Moreover, |x0 − y| < |xλ0 − y| in Σλ0 , we infer that

v(x) ≡ vλ0(x) ≡ 0, a.e. x ∈ Σλ0 .

This also implies that v(x) ≡ 0, which is a contradiction to the fact that v is
positive. So we have

u(x) < uλ0(x), a.e. x ∈ Σλ0 .

Similarly,
v(x) < vλ0(x), a.e. x ∈ Σλ0 .

Since (u, v) ∈ Lp+1(Rn)× Lq+1(Rn), for any ε > 0 there exists R > 0 such that∫
Rn\BR(0)

up+1 dx < ε,

∫
Rn\BR(0)

vq+1 dx < ε.

By Lusin theorem, for any δ > 0, there exists a closed set Fδ with Fδ ⊂ BR(0) ∪
Σλ0 = E and m(E − Fδ) < δ such that wλ0 |Fδ, zλ0 |Fδ is continuous.

As wλ0 , zλ0 < 0 in the interior of Σλ0 , wλ0 , zλ0 < 0 in Fδ. Choosing ε0 > 0
sufficiently small so that for any λ ∈ [λ0, λ0 + ε0), it holds that wλ, zλ < 0 in Fδ.
For such a λ,

Σu,−
λ ⊂ Mu := (Rn\BR(0)) ∪ (E\Fδ) ∪ [(Σλ\Σu,−

λ0
) ∩BR(0)],

Σv,−
λ ⊂ Mv := (Rn\BR(0)) ∪ (E\Fδ) ∪ [(Σλ\Σv,−

λ0
) ∩BR(0)].
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We may choose ε, δ and ε0 small so that

C‖u‖p−1

Lp+1(Σu,−
λ )

‖v‖q−1

Lq+1(Σv,−
λ )

≤ 1
2
.

Hence,

‖wλ‖Lp̃(Σu,−
λ ) ≤

1
2
‖wλ‖Lp̃(Σu,−

λ ),

which implies that Σu,−
λ must be of measure zero. Again, it contradicts the defini-

tion of λ0. Equation (5.8) is proved.
On the other hand, we can also move the plane from positive infinite to zero by

the similar procedure. Hence, u(x), v(x) are symmetric and monotonic with respect
to x1 = 0. Moreover, since the x1 direction can be chosen arbitrarily, u(x), v(x) are
radial symmetric and strictly monotonic with respect to the origin. Thus we have
completed the proof of Theorem 1.6. �
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