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A JUMPING PROBLEM FOR A QUASILINEAR EQUATION
INVOLVING THE 1-LAPLACE OPERATOR

ANNAMARIA CANINO, GIUSEPPE RIEY

Abstract. We prove the existence of solutions for a jumping problem of a
functional whose principal part is the total variation. Our main tool is a
nonsmooth variational method.

1. Introduction

The expression jumping problems appeared first in the celebrated paper by Am-
brosetti and Prodi [1]. They studied a semilinear elliptic PDE of the form

−∆u+ g(x, u) = w in Ω ,
u = 0 on ∂Ω ,

(1.1)

where Ω is a bounded domain in Rn, w ∈W−1,2(Ω) and g : Ω× R → R such that

lim
s→−∞

g(x, s)
s

= −α, lim
s→+∞

g(x, s)
s

= −β .

Under suitable assumptions on g and the condition β < λ1 < α < λ2, where λ1 and
λ2 are the first two eigenvalues of the operator −∆, the authors provided a precise
description of the number of solutions u, of (1.1), in dependence of w.

The result has been extended in various directions, also by means of variational
methods applied to the associated functional f : W 1,2

0 (Ω) → R defined as

f(u) =
1
2

∫
Ω

|∇u|2 +
∫

Ω

G(x, u)− 〈w, u〉 ,

where G(x, s) =
∫ s

0
g(x, t) dt. Let us mention, in particular, the case in which

f : W 1,2
0 (Ω) → R is the defined as

f(u) =
1
2

∫
Ω

n∑
i,j=1

aij(x, u)DiuDju+
∫

Ω

G(x, u)− 〈w, u〉 ,

considered in [10], or, more generally, the case in which f : W 1,p
0 (Ω) → R is defined

as

f(u) =
∫

Ω

L(x, u,∇u) +
∫

Ω

G(x, u)− 〈w, u〉 (1.2)
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with

lim
s→−∞

g(x, s)
|s|p−2s

= −α, lim
s→+∞

g(x, s)
|s|p−2s

= −β ,

considered in [21]. In these extensions, the feature is that the functional f is
continuous, but not locally Lipschitz, so that the nonsmooth variational methods
of [12, 15, 18] are used. Further developments in this direction are contained in [11,
22].

Information about the number of solutions in dependence of w are given, in the
case of (1.2), by setting

w = tϕp−1
1 + w0 ,

where ϕ1 is a positive first eigenfunction of the p-Laplace operator and w0 ∈
W−1,p′(Ω). From a variational point of view, this is equivalent to study the func-
tional

ft(u) =
∫

Ω

L(x, u,∇u) +
∫

Ω

G(x, u)− t

∫
Ω

ϕp−1
1 u− 〈w0, u〉 ,

in which the “exploring term”

u 7→
∫

Ω

ϕp−1
1 u

has lower order at infinity with respect to the principal part of the functional, as
p > 1. Under the assumption that β < λ1 < α, the main result asserts that there
exist t ≤ t such that the problem has at least two solutions for t ≥ t and no solution
for t ≤ t.

In this article we are interested in a corresponding result for the case p = 1. At
a naive level, we would consider the functional ft : W 1,1

0 (Ω) → R defined as

ft(u) =
∫

Ω

|∇u|+
∫

Ω

G(x, u)− t

∫
Ω

ϕH(u) ,

where ϕ > 0 in Ω and H(s) =
∫ s

0
1√

1+t2
dt. The choice of

u 7→
∫

Ω

ϕH(u)

as “exploring term” is related to the need of considering a lower order term at
infinity with respect to the principal part of the functional.

It is well known that direct variational methods do not work properly inW 1,1
0 (Ω),

so that we will actually consider a “relaxed” functional defined on BV0(Ω), which
is the subspace of BV (Rn) made by functions vanishing outside Ω. Even after this
first extension, (nonsmooth) critical point theory cannot be directly applied, as the
functional does not satisfy the Palais-Smale condition. This is due to the fact that
such a condition requires a norm convergence, which is almost impossible in BV ,
because of the lack strict convexity of the principal part of the functional. For this
reason, as in [17, 19], we further extend the relaxed functional to Ln/(n−1)(Rn)
with value +∞ outside BV0(Ω). In this way the functional becomes only lower
semicontinuous, but the nonsmooth critical point theory of [12, 15, 18] can be
successfully applied.

The conditions involving α and β will be expressed again as β < λ1 < α, where
λ1 is the first eigenvalue of the 1-Laplace operator as defined e.g. in [23], and

lim inf
s→−∞

G(x, s)
s

≥ α , lim inf
s→+∞

G(x, s)
s

≥ −β .
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We will prove that there exists t such that the problem has at least two solutions,
provided that t ≥ t. A model case, which is covered in our result, is given by

G(x, s) = −βs+ − αs− .

As G is only locally Lipschitz, the concept of solution is given in terms of “hemi-
variational inequality” as in [19].

The content of the paper runs as follows: in Section 2 we recall some basic tools
about functions with bounded variation and non-smooth critical point theory and
in Sections 3 and 4 we state and prove our main result.

2. Notation and preliminary results

Let Ω be a bounded open subset of Rn, n ≥ 2, with Lipschitz boundary.

2.1. BV functions. We denote by BV (Ω) the subspace of L1(Ω) made by func-
tions whose distributional gradient Du is a vector-valued Radon measure with
bounded variation. For u ∈ BV (Ω), |Du| denotes the total variation of Du.
We write ∇u for the approximate differential of u defined as in [4, Definition
3.70]. Denoted by Ln the Lebesgue measure in Rn, we can decompose Du as:
Du = Dau +Dsu, where Dau and Dsu are the absolute continuous part and the
singular part of Du with respect to Ln. It turns out that Dau = ∇u dLn. For
u ∈ W 1,1(Ω), the approximate differential of u coincides with the distributional
gradient of u and we have: Du = ∇u dLn.

Remark 2.1. BV (Ω) is endowed with the norm:

‖u‖BV (Ω) = |Du|(Ω) +
∫

Ω

|u| dLn .

Definition 2.2 (Trace). Let u ∈ BV (Ω). For Hn−1-a.e. x ∈ ∂Ω, there exists
u∂Ω(x) such that:

lim
ρ→0+

1
ρn

∫
Ω∩Bρ(x)

|u(y)− u∂Ω(x)| dLn(y) = 0 ,

where Bρ(x) is the open ball of radius ρ and center x.

Definition 2.3. We set: BV0(Ω) := {u ∈ BV (Rn) : u = 0 Ln a.e. in Rn \ Ω}.

Of course, BV0(Ω) is a closed linear subspace of BV (Rn). Moreover, for every
u ∈ BV0(Ω) it turns out that

|Du|(Ω) = |Du|(Ω) +
∫

∂Ω

|u∂Ω|dHn−1 .

Theorem 2.4 (Sobolev-type inequality in BV ). There exists S > 0 such that, for
every u ∈ BV (Ω), we have

S ‖u‖
L

n
n−1 (Ω)

≤ |Du|(Ω) +
∫

∂Ω

|u∂Ω|dHn−1 .

Remark 2.5. Theorem 2.4 implies that, in BV0(Ω), |Du|(Ω) is a norm equivalent
to the canonical norm of BV (Rn).

Theorem 2.6. Let p belong to the interval [1, n
n−1 [. Then the inclusion of BV0(Ω)

in Lp(Rn) is compact.
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The following theorem states the existence of the first eigenvalue of the total
variation.

Theorem 2.7. There exists

λ1 = min
u∈BV0(Ω)\{0}

|Du|(Ω)∫
Ω
|u| dLn

.

For more details on BV -functions and their properties see for instance [4, 23].
Let ψ : Rn → R be a convex function such that there exists M > 0 for which

|p| ≤ ψ(p) ≤M(1 + |p|) .
The functional

F (u) =
∫

Ω

ψ(∇u)dLn (2.1)

is lower-semicontinuous in W 1,1(Ω) but, since this space is not reflexive, it has not
good properties for the compactness. Therefore, when one deals with functionals
with linear growth in the gradient, it is usual to extend F on the larger space
Ln/(n−1)(Ω) in such a way to have that this extension is lower-semicontinuous.
This procedure is called relaxation and on past years it was widely investigated for
functionals of the type in (2.1) and with more complicated integrands ψ, depending
also on x and u and eventually also under trace constraints (see [3, 4, 7, 8]). For F
defined in (2.1) its relaxation, denoted by F , takes the form

F (u) =

{∫
Ω
ψ(∇u)dLn +

∫
Ω
ψ∞

(
dDsu

d|Dsu|
)
d|Dsu| if u ∈ BV (Ω) ,

+∞ if u ∈ Ln/(n−1)(Ω) \BV (Ω) ,
(2.2)

where

ψ∞(p) = lim
t→+∞

ψ(tp)
t

.

Remark 2.8. If ψ(p) = |p|, F is the Diriclet functional with linear growth

F (u) =
∫

Ω

|∇u|dLn

and an easy computation gives

F (u) =
∫

Ω

|∇u|dLn + |Dsu|(Ω) ≡ |Du|(Ω) if u ∈ BV (Ω) .

If F is defined only on W 1,1
0 (Ω), then the relaxed functional can be naturally iden-

tified with F : Ln/(n−1)(Rn) → [0,+∞] defined as

F (u) =

{
|Du|(Ω) if u ∈ BV0(Ω) ,
+∞ if u ∈ Ln/(n−1)(Rn) \BV0(Ω) .

Remark 2.9. In view of Remark 2.8 it is usual to refer to the number λ1 given
in Theorem 2.7 as the first eigenvalue of the 1-Laplace operator with homogeneous
Dirichlet condition.

In [6] it is computed the first variation for functionals involving a term of the
type in (2.2) with a ψ depending also on x. For convex functionals of the same
type and involving also u, a characterization of the subdifferential is performed in
[5]. In Section 3 we consider non-convex functionals containing also a non locally
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Lipschitz term. In this case the critical points can be characterized by means of
hemivariational inequalities, using subdifferential calculus and nonsmooth analysis
(see [9, 19]).

2.2. Nonsmooth critical point theory. Let X be a real Banach space and let
X∗ be its dual space. First of all, let us recall from [13] some basic notions.

Definition 2.10. If f : X → R is a locally Lipschitz function, we set, for every
u, v ∈ X,

f◦(u; v) := lim sup
z→u, w→v, t→0+

f(z + tw)− f(z)
t

. (2.3)

The real number f◦(u; v) is called the generalized directional derivative of f at u
with respect to the direction v. For every u ∈ X, let also

∂f(u) = {u∗ ∈ X∗ : 〈u∗, v〉 ≤ f◦(u; v) , ∀v ∈ X} . (2.4)

The set ∂f(u) is called the subdifferential of f at u.

It turns out that f◦ is positively one-homogeneous with respect to the second
variable.

Assume now that f : X →]−∞,+∞] is a lower semicontinuous function and set

epi(f) = {(u, λ) ∈ X × R : f(u) ≤ λ} .

Definition 2.11. For every u ∈ X with f(u) < +∞, we denote by |df |(u) the
supremum of the σ’s in [0,+∞[ such that there exist a neighborhood W of (u, f(u))
in epi(f), δ > 0 and a continuous map H : W × [0, δ] → X satisfying

‖H((w, µ), t)− w‖ ≤ t , f(H((w, µ), t)) ≤ µ− σt ,

whenever (w, µ) ∈W and t ∈ [0, δ].
The extended real number |df |(u) is called the weak slope of f at u.

The above notion has been introduced in [18], following an equivalent approach.
The version we have recalled here is taken from [9]. According to [16], we also
define a function Gf : epi(f) → R by Gf (u, λ) = λ.

Definition 2.12. A point u ∈ X is said to be a lower critical point of f , if
f(u) < +∞ and |df |(u) = 0.

Definition 2.13 (Cerami-Palais-Smale condition). Let c ∈ R. A sequence (uk) in
X is said to be a Cerami-Palais-Smale sequence at level c for f ((CPS)c-sequence,
for short), if f(uk) → c and (1 + ‖uk‖)|df |(uk) → 0. We say that f satisfies the
Cerami-Palais-Smale condition at level c ((CPS)c-condition, for short), if every
(CPS)c-sequence for f admits a strongly convergent subsequence in X.

Definition 2.14. Let c ∈ R. We say that f satisfies condition (epi)c, if there exists
ε > 0 such that

inf{|dGf |(u, λ) : f(u) < λ, |λ− c| < ε} > 0 .

The next result is an extension of the celebrated Mountain pass theorem [2] to
our setting. For the proof, when the usual Palais-Smale condition is assumed, we
refer the reader to [15, 20]. We also refer to [14] for the fact that the Cerami-
Palais-Smale condition can be reduced to the Palais-Smale condition by a change
of metric.
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Theorem 2.15 (Mountain pass theorem). Let u0, u1, u ∈ X and r > 0 be such
that:

‖u0 − u‖ < r, ‖u1 − u‖ > r (2.5)
and

inf{f(u) : u ∈ X, ‖u− u‖ = r} ≥ max{f(u0), f(u1)} . (2.6)
Set

Γ := {γ ∈ C([0, 1];X) : γ(0) = u0, γ(1) = u1}
and define

c1 := inf
u∈Br(u)

f(u), c2 = inf
γ∈Γ

sup
t∈[0,1]

f(γ(t)) ,

so that
c1 ≤ inf{f(u) : u ∈ X, ‖u− u‖ = r} ≤ c2 .

Assume that c1 > −∞, c2 < +∞ and that f satisfies (CPS)c and (epi)c for
c = c1, c2.

Then f admits two distinct lower critical points w1, w2 with f(w1) = c1 and
f(w2) = c2.

3. Statement of the main result

We consider:
• ϕ ∈ Ln(Ω) such that ϕ > 0 a.e. in Ω;
• G : Ω× R → R such that

G(·, s) is measurable for any s ∈ R; (3.1)

for every t > 0 there exists at ∈ L1(Ω) such that

|G(x, s1)−G(x, s2)| ≤ at(x)|s1 − s2| (3.2)

for a.e. x ∈ Ω and every s1, s2 ∈ R with |s1| ≤ t, |s2| ≤ t; there exist
α, β ∈ R such that β < λ1 < α and

lim inf
s→−∞

G(x, s)
s

≥ α , lim inf
s→+∞

G(x, s)
s

≥ −β for a.e. x ∈ Ω . (3.3)

From (3.2) it follows that G(x, ·) is locally Lipschitz for a.e. x ∈ Ω. We denote by
G◦(x, s; t) the generalized directional derivative with respect to the second variable.
Then we also assume that

• there exist b0 ∈ L1(Ω) and b1 ∈ Ln(Ω) such that:

|G(x, s)| ≤ b1(x)|s| for a.e. x ∈ Ω and every s ∈ R , (3.4)

G◦(x, s;−s) ≤ b0(x) + b1(x)|s| for a.e. x ∈ Ω and every s ∈ R , (3.5)

G◦(x, s; s) ≤ b0(x) +G(x, s) for a.e. x ∈ Ω and every s ∈ R with s ≤ 0 . (3.6)

From (3.4) it follows that the functional

{u 7→
∫

Ω

G(x, u)}

is continuous on Ln/(n−1)(Ω), although it is not locally Lipschitz, as there is no
upper bound for G◦(x, s; s) when s > 0. In particular, the assumptions on G are
satisfied in the model case

G(x, s) = −βs+ − αs− .
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We are interested in solutions u ∈ BV0(Ω) of the hemivariational inequality (see [19])

|Dv|(Ω)− |Du|(Ω) +
∫

Ω

G◦(x, u; v − u) ≥ t

∫
Ω

ϕ
1√

1 + u2
(v − u) , ∀v ∈ BV0(Ω)

(3.7)
associated with the lower semicontinuous functional ft : Ln/(n−1)(Rn) → R∪{+∞}
defined as:

ft(u) =

{
|Du|(Ω) +

∫
Ω
G(x, u)− t

∫
Ω
ϕH(u) if u ∈ BV0(Ω) ,

+∞ if u ∈ Ln/(n−1)(Rn) \BV0(Ω) ,
(3.8)

where

H(s) =
∫ s

0

1√
1 + t2

dt .

If G(x, ·) is of class C1 for a.e. x ∈ Ω and we set g(x, s) = DsG(x, s), then
assumptions (3.5) and (3.6) are equivalent to

sg(x, s) ≥ −b0(x)− b1(x)|s| ,
sg(x, s) ≤ b0(x) +G(x, s) for s ≤ 0 .

Remark 3.1. In view of Remark 2.8 we recall that ft is achieved by relaxation of
the functional defined on W 1,1,

0 (Ω) as∫
Ω

|∇u|+
∫

Ω

G(x, u)− t

∫
Ω

ϕH(u) .

Theorem 3.2. There exists t ∈ R such that, for every t ≥ t, there exists at least
two solutions of (3.7).

4. Proof of the main result

4.1. Compactness properties.

Proposition 4.1. For every t > 0 and c ∈ R, the functional ft satisfies (CPS)c.

Proof. First of all, by (3.4) we have that G(x, 0) = 0. Let (uk) be a sequence in
BV0(Ω) satisfying

lim
k→+∞

ft(uk) = c , (4.1)

lim
k→+∞

(1 + ‖uk‖n/(n−1))|dft|(uk) = 0 . (4.2)

By [19, Theorems 2.16, 3.6 and 4.1], there exists a sequence (wk) in Ln(Rn) such
that

lim
k→+∞

(1 + ‖uk‖n/(n−1))‖wk‖n = 0 , (4.3)

|Dv|(Ω) ≥ |Duk|(Ω)−
∫

Ω

G◦(x, uk; v − uk)

+ t

∫
Ω

ϕ
1√

1 + u2
k

(v − uk) +
∫

Ω

wk(v − uk) ∀v ∈ BV0(Ω).
(4.4)

In particular, the choice v = uk − u−k yields

|Duk|(Ω) + |Du−k |(Ω)

≥ |D(uk − u−k )|(Ω)
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≥ |Duk|(Ω)−
∫

Ω

G◦(x,−u−k ;−u−k )− t

∫
Ω

ϕ
1√

1 + u2
k

u−k −
∫

Ω

wku
−
k ,

hence

|Du−k |(Ω) ≥ −
∫

Ω

G◦(x,−u−k ;−u−k )− t

∫
Ω

ϕ
1√

1 + u2
k

u−k −
∫

Ω

wku
−
k ,

which by (3.6) implies

ft(uk) ≥ |Du+
k |(Ω) +

∫
Ω

G(x, u+
k ) +

∫
Ω

[G(x,−u−k )−G◦(x,−u−k ;−u−k )]

− t

∫
Ω

ϕH(uk)− t

∫
Ω

ϕ
1√

1 + u2
k

u−k −
∫

Ω

wku
−
k

≥ |Du+
k |(Ω) +

∫
Ω

G(x, u+
k )−

∫
Ω

b0 − t

∫
Ω

ϕH(uk)− t

∫
Ω

ϕ

−
∫

Ω

wku
−
k .

(4.5)

By [19, Theorems 3.12 and 4.1], it sufficies to prove that (uk) is bounded in
Ln/(n−1)(Rn).

We first show that (|Du+
k |(Ω)) is bounded. Assume, for a contradiction, that

limk→+∞ |Du+
k |(Ω) = +∞ and consider the sequence vk := u+

k /%k, where %k =
|Du+

k |(Ω). Then, up to a subsequence, (vk) is convergent to some v ∈ BV0(Ω) with
|Dv|(Ω) ≤ 1 weakly in Ln/(n−1)(Rn) and a.e. in Ω. Moreover, we also have that
u+

k (x) → +∞ a.e. on {v(x) 6= 0}. Since H(uk) ≤ H(u+
k ), from (4.5) we infer that

ft(uk)
%k

≥ 1 +
∫

Ω

G(x, %kvk)
%k

− 1
%k

∫
Ω

b0 − t

∫
Ω

ϕ
H(%kvk)

%k

− t

%k

∫
Ω

ϕ− 1
%k

∫
Ω

wku
−
k .

(4.6)

On the other hand, by (3.4) and (3.3) we have

G(x, %kvk)
%k

− tϕ
H(%kvk)

%k
≥ −b1(x)vk − tϕvk ,

lim inf
k→+∞

(G(x, %kvk)
%k

− tϕ
H(%kvk)

%k

)
≥ −βv .

From Fatou’s lemma, (4.1), (4.3) and (4.6) we infer that

0 ≥ 1− β

∫
Ω

v ≥ 1− β

λ1
|Dv|(Ω) ≥ 1− β

λ1
.

Since β < λ1, a contradiction follows. Therefore, (|Du+
k |(Ω)) is bounded.

We now show that also (|Du−k |(Ω)) is bounded. Again, we assume by contradic-
tion that limk→+∞ |Du−k |(Ω) = +∞ and consider the sequence ṽk := u−k /%̃k, where
%̃k = |Du−k |(Ω). Then, up to a subsequence, (ṽk) is convergent to some ṽ ∈ BV0(Ω)
with |Dṽ|(Ω) ≤ 1 weakly in Ln/(n−1)(Rn) and a.e. in Ω. Moreover, we have that
u−k (x) → +∞ a.e. in {ṽ(x) 6= 0}. On the other hand, from (4.5) we also infer that

ft(uk) ≥ |Du+
k |(Ω) +

∫
Ω

G(x, u+
k )−

∫
Ω

b0 − t

∫
Ω

ϕH(u+
k )
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+ t

∫
Ω

ϕH(u−k )− t

∫
Ω

ϕ−
∫

Ω

wku
−
k .

Since (|Du+
k |(Ω)) is bounded, from (4.1), (4.3) and (3.4) we deduce that (ϕH(u−k ))

is bounded in L1(Ω). By Fatou’s lemma it follows that ṽ = 0 a.e. in Ω. By (3.4)
we have

ft(uk)
%̃k

≥ 1
%̃k

|Du+
k |(Ω) + 1 +

1
%̃k

∫
Ω

G(x, u+
k )−

∫
Ω

b1vk − t

∫
Ω

ϕvk .

Passing to the limit as k → ∞ and taking into account (4.1), we infer that 0 ≥ 1
and a contradiction follows. Therefore also (|Du−k |(Ω)) is bounded. In particular,
(uk) is bounded in Ln/(n−1)(Rn) and the assertion follows. �

4.2. Geometric conditions. To apply Theorem 2.15 we check that the functional
ft satisfies the property stated in the two following propositions.

Proposition 4.2. Set

X+ := {u ∈ Ln/(n−1)(Rn) : u ≥ 0 a.e. in Rn,

Br(v) := {u ∈ Ln/(n−1)(Rn) : ‖u− v‖n/(n−1) < r} .

Then there exists t > 0 such that, for every t ≥ t, there exist u0 ∈ X+ ∩ BV0(Ω)
and r > 0 such that ft(u) ≥ ft(u0) for every u ∈ Br(u0).

Proof. From assumptions (3.3), (3.4) and the fact that ϕ ∈ Ln(Ω), we infer that
ft is coercive on X+, although it does not on the whole Ln/(n−1)(Rn). Moreover
by assumptions on G it is also lower semi-continuous and therefore it immediately
follows that there exists a minimum point u0 of ft on X+ with u0 ∈ BV0(Ω) and
ft(u0) ≤ 0.

Observe that for t > 0,

{u ∈ BV0(Ω) : |Du|(Ω) ≤ 1 , u ≥ 0 a.e. in Ω , 1−
∫

Ω

b1u+ t

∫
Ω

ϕu ≤ 0}

is a decreasing family of weakly compact subsets of Ln/(n−1)(Rn) with empty in-
tersection, as ϕ > 0 a.e. in Ω. Therefore there exists t > 0 such that

{u ∈ BV0(Ω) : |Du|(Ω) ≤ 1 , u ≥ 0 a.e. in Ω , 1−
∫

Ω

b1u+ t
∫

Ω

ϕu ≤ 0} = ∅ . (4.7)

Let us show that, for every t ≥ t, u0 is a local minimum of ft in Ln/(n−1)(Rn). By
contradiction, let (vk) be a sequence convergent to u0 with ft(vk) < ft(u0). Since
G(x, 0) = 0 and H is an odd function, by [4, Theorem 3.99] and (3.4) we have:

ft(vk) = |D(v+
k )|(Ω) + |D(v−k )|(Ω) +

∫
Ω

G(x, v+
k ) +

∫
Ω

G(x,−v−k )

− t

∫
Ω

ϕH(v+
k ) + t

∫
Ω

ϕH(v−k )

≥ ft(u0) + |D(v−k )|(Ω)−
∫

Ω

b1v
−
k + t

∫
Ω

ϕH(v−k )

> ft(vk) + |D(v−k )|(Ω)−
∫

Ω

b1v
−
k + t

∫
Ω

ϕH(v−k ) .

It follows
|D(v−k )|(Ω)−

∫
Ω

b1v
−
k + t

∫
Ω

ϕH(v−k ) < 0 .
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Since v−k → 0 a.e. in Ω, if we define a sequence (ηk) in L∞(Ω) by

ηk =

{
H(v−k )/v−k where v−k 6= 0 ,
1 where v−k = 0 ,

by Lebesgue theorem we infer that

lim
k
ϕηk = ϕ strongly in Ln(Ω) .

Let wk = v−k /|D(v−k )|(Ω). Then, up to a subsequence, (wk) is weakly convergent
in Ln/(n−1)(Rn) to some w ∈ BV0(Ω) satisfying w ≥ 0, |Dw|(Ω) ≤ 1 and

1−
∫

Ω

b1w + t

∫
Ω

ϕw ≤ 0 .

This fact contradicts (4.7) and the assertion follows. �

Proposition 4.3. Let ψ ∈ BV0(Ω) \ {0} be a first eigenfunction of the total varia-
tion, so that λ1

∫
Ω
|ψ| = |Dψ|(Ω), with ψ ≥ 0 a.e. in Ω (see [23]). Then, for every

t ∈ R, there holds:
lim

s→+∞
ft(−sψ) = −∞ . (4.8)

Proof. By the definition of H, (3.3) and (3.4) we have

lim sup
s→+∞

G(x,−sψ(x))− tϕ(x)H(−sψ(x))
s

= −ψ(x) lim inf
σ→−∞

G(x, σ)
σ

≤ −αψ(x) ,

G(x,−sψ(x))− tϕ(x)H(−sψ(x))
s

≤ b1(x)ψ(x) + |t|ϕ(x)ψ(x) .

From Fatou’s lemma we infer that

lim sup
s→+∞

∫
Ω
(G(x,−sψ(x))− tϕ(x)H(−sψ(x)))

s
≤ −α

∫
Ω

ψ(x) = − α

λ1
|Dψ|(Ω) .

Since α > λ1, the assertion follows. �

Conclusion. Let t > 0 be as in Proposition 4.2, let t ≥ t and let u0 be a local
minimum of ft. If we set u = u0, by Proposition 4.3 we can find r > 0 and u1 as
in Theorem 2.15. By Proposition 4.1, the functional ft satisfies (CPS)c for every
c ∈ R. Moreover, by [19, Theorems 3.11 and 4.1] also (epi)c holds for any c ∈ R.
From Theorem 2.15 we get the existence of at least two lower critical points of ft.
By [19, Theorems 2.16, 3.6 and 4.1], they are solutions of (3.7).
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