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GOURSAT PROBLEM FOR THE YANG-MILLS-VLASOV
SYSTEM IN TEMPORAL GAUGE

MARCEL DOSSA, MARCEL NANGA

Abstract. This article studies the characteristic Cauchy problem for the
Yang-Mills-Vlasov (YMV) system in temporal gauge, where the initial data are
specified on two intersecting smooth characteristic hypersurfaces of Minkowski
spacetime (R4, η). Under a C∞ hypothesis on the data, we solve the initial
constraint problem and the evolution problem. Local in time existence and
uniqueness results are established thanks to a suitable combination of the
method of characteristics, Leray’s Theory of hyperbolic systems and tech-
niques developed by Choquet-Bruhat for ordinary spatial Cauchy problems
related to (YMV) systems.

1. Introduction

The purpose of this article is to solve, locally in time in the Minkowski spacetime
(R4, η), the Cauchy problem for the Yang-Mills-Vlasov (YMV) system, where the
initial data are prescribed on two intersecting smooth characteristic hypersurfaces.
Such problems are often referred to as non-linear Goursat problems [2, 3, 4, 8, 9,
10, 12, 13, 14, 21, 22, 23, 26, 27, 29, 30].

The Maxwell-Vlasov system and its generalization to the non Abelian charge
provided by the (YMV) system play a fundamental role in numerous physical sit-
uations; possibly coupled with Einstein Equations, they govern the dynamic of
various species of plasma in the absence of collisions. A plasma is a collection of
charged particles of various species moving at high speed under forces which they
have generated and maintained. The statistical distribution of these particles is de-
scribed by a density function of particles subjected to the Vlasov equation. Here the
particles have a non Abelian charge called a Yang-Mills charge and are submitted
to forces generated by a Yang-Mills field which is solution of Yang-Mills Equations
with a current generated by the density of particles. According to physicists, the
matter which is lying in the Universe is almost made up with plasmas such as the
interior of a star, reactor in fusion, ionosphere, solar winds, nebulous galaxies, the
plasmas of quarks and gluons of the primordial Universe.

Maxwell-Vlasov or Yang-Mills-Vlasov systems, possibly coupled with Einstein
Equations, are mostly studied by authors in the setting of ordinary spatial Cauchy
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problems [1, 7, 15, 16, 17, 18, 19, 20, 24]. It is however important and useful to
consider the study of these same equations in the setting of a Goursat problem; i.e.,
where the initial hypersurface is a characteristic cone [5], or the union of two inter-
secting smooth characteristic hypersurfaces. Indeed initial data on a characteristic
cone correspond to a “physical” Cauchy problem more natural than the ordinary
spatial Cauchy problem, because they provide an ideal mathematical representation
of the measure at the present moment of the physical field studied. Goursat prob-
lems arise also naturally in delicate physical situations where radiation phenomena
appear. In this latter case the solutions considered must be global or semi-global
since they must be defined in a neighborhood of null infinity.

The Goursat problem for the (YMV) system splits into two sub-problems: the
initial constraint problem and the evolution problem. For a suitable choice of
free data, we solve globally the initial constraint problem thanks to a hierarchy
of algebraic-integral-differential relations deduced from the (YMV) system. There-
after the solutions so obtained are used as initial data for the evolution problem.
The fundamental partial differential equations (PDE) for the evolution problem
consist of the Vlasov equation (verified by the density of particles f) and a hyper-
bolic symmetric system of first order extracted from the Yang-Mills equations and
the related Bianchi identities.

Thanks to domain of dependence arguments, we transform this problem into
an ordinary Cauchy problem with zero data on a spatial hypersurface, which we
solve using a suitable combination of the classical method of characteristics, Leray’s
Theory of hyperbolic systems [25] and techniques developed in [7] for the ordinary
spatial Cauchy problems associated with (YMV) systems.

For sake of clarity and simplicity, the Goursat problem considered here for the
(YMV) system in temporal gauge is studied under C∞ assumptions on the data.
The study of solutions of finite differentiability class would normally require the use
of a functional setting of non isotropic weighted Sobolev spaces defined by cumber-
some norms, which would considerably complicate the analysis of this problem.

The work is subdivided in four sections. In section 2, we set the geometrical
framework and describe the PDE under consideration. Section 3 is devoted to
the resolution of the initial constraint problem. Section 4 is devoted to the de-
termination of the restrictions, to both initial characteristic hypersurfaces, of the
derivatives of all order of the possible C∞ solution of the evolution problem; this is
an important step towards the transformation of the problem under consideration
into an ordinary Cauchy problem with zero initial data. The concern of section 5
is the resolution of the evolution problem.

2. Geometric setting, equations and mathematical formulation

2.1. Geometric setting and the unknown functions. Throughout this article,
we use the Einstein summation convention of repeated indices, e. g.,

aαbα =
∑
α

aαbα; α = 0, 1, 2, 3.

Unless otherwise is specified, Greek indexes range from 0 to 3 and Latin ones from
1 to 3.

The fundamental geometric setting of this work is the Minkowski spacetime
(R4, η), where the Minkowski metric η is of signature (+,−,−,−). Let (xα) =
(x0, xi), the global canonical coordinates system on R4, where x0 = t is the time
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coordinate and the xi are the spatial coordinates. Let t be a compact domain of
R4 with boundary ∂t which is contained in the half-space x0 ≥ 0. Let H1 and H2

be two hypersurfaces defined as follows

H1 = {(x0, x1, x2, x3) ∈ t, x0 + x1 = 0, x0 ≥ 0},
H2 = {(x0, x1, x2, x3) ∈ t, x0 − x1 = 0, x0 ≥ 0}.

Set H = H1 ∪H2 and

I = H1 ∩H2 = {(x0, x1, x2, x3) ∈ t, x0 = x1 = 0}.
Denote by B the unique compact domain of R2 such that

I = {0, 0, x2, x3) ∈ R4, (x2, x3) ∈ B}.
It is assumed that H ⊂ ∂t and that ∂t\H is a hypersurface of t, piecewise smooth,
spatial or null at each of its points, with unit normal exterior to the domain t which
is future oriented. For every t ≥ 0, set

tt = {(x0, x1, x2, x3) ∈ t : x0 ≤ t};
ωt = t ∩ {x0 = t}; Ir

t = Hr ∩ {x0 = t}, r = 1, 2.

Denote by A a Yang-Mills potential represented by a 1-form on t which takes its
values in an N−dimensional real Lie algebra K of a Lie group G, endowed with an
Ad- invariant scalar product denoted by a dot (.).

In the global canonical coordinates (xα) of R4 and an orthonormal basis (εa) of
K, A reads:

A = Aαdxα, with Aα = Aa
α · εa, a = 1, 2, . . . , N.

We say that A verifies the temporal gauge condition if A0 = 0 in t. Denote by F
the Yang-Mills field associated to A, i. e., the curvature of A. It is represented by
a K-valued antisymmetric 2-form of type Ad, defined on t by

F = dA +
1
2
[A,A]. (2.1)

The 2− form F in t is of type Ad, which means that, if F(i) and F(j) are respectively
the representatives in gauges si and sj of the 2− form F , then the relations between
these two representatives is F(i) = Ad(u−1

ij )F(j) where u−1
ij is roughly the transition

function between the two gauges si and sj .
In a global canonical coordinates (xα) and in the basis (εa), (2.1) reads

F a
αβ = ∂αAa

β − ∂βAa
α + [Aα, Aβ ]a, (2.2)

with
F =

1
2
Fαβdxα ∧ dxβ , [Aα, Aβ ]a ≡ Ca

bcA
b
αAc

β .

where the Ca
bc are the structure constants of the Lie group G and [, ] denotes the

Lie brackets of the Lie algebra K.
The 2-form F verifies Bianchi identities

∇̂αFβµ + ∇̂βFµα + ∇̂µFαβ ≡ 0, (2.3)

and the relation
∇̂α∇̂βFαβ ≡ 0,

where ∇̂α is the gauge covariant derivative defined by

∇̂α = ∂α + [Aα, ] with ∂α =
∂

∂xα
.
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The trajectories of a particle with momentum p and charge q in a Yang-Mills field
F defined in (t, η) verify the differential system

dxα

ds
= pα

dpα

ds
= pβq.Fα

β

dqa

ds
= −pα[Aα, q]a.

(2.4)

This system expresses the fact that tangent vector Y to the trajectory of a particle
in P = T t ×K is Y = (p, P, Q), with

p = (pα), P = (Pα) ≡ (pβq.Fα
β ), Q = (Qa) ≡ (−pαCa

bcq
cAb

α).

If the particles have the same rest mass m and a charge q of given size e, then their
phase space, that is the domain described by their trajectories is a subset Pm,e of
T t ×K with equations

p0 =
(
m2 +

3∑
i=1

(pi)2
)1/2

, q.q = e. (2.5)

Coordinates system on Pm,e is given by

x0 ≡ t, xi, pi, qL, i = 1, 2, 3; L = 1, 2, . . . , N − 1.

Pm,e can then be identified with t × R3 ×O ≡ t̂.
Set

Px = {x} × R3 ×O ' R3 ×O.

Let f be a distribution (or density) function for charged particles, that is a positive
scalar function defined on Pm,e. f satisfies the Vlasov equation if in the coordinates
(x0, xi, pi, qL) considered on Pm,e, it holds that

pα ∂f

∂xα
+ P i ∂f

∂pi
+ QL ∂f

∂qL
= 0, L = 1, 2, . . . , N − 1. (2.6)

The current generated by the distribution function f of particles is represented by
a K- valued vector field J , which is of type Ad by gauge transformation, defined at
a point x ∈ t by

Jβ(x) =
∫
Px

pβqfωpωq, (2.7)

where ωp = 1
p0

dp1dp2dp3 is the Leray form induced by the volume element
dp0dp1dp2dp3 on Txt and ωq is the Leray form induced on O by an Ad-invariant
volume element on K.

Remark 2.1. As the Lie algebra K has an Ad-invariant scalar product, if f satisfies
the Vlasov equation in t, then we have

∇̂αJα = 0 in t .
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2.2. Definition of Yang-Mills-Vlasov system. The Yang-Mills equations read

∇̂αFαβ = Jβ in t,

where
∇̂αFαβ ≡ ∂αFαβ + [Aα, Fαβ ].

By definition, the “complete Yang-Mills-Vlasov system” is the following system
defined in t̂ and with unknown function (A,F, f),

∇̂αFαβ = Jβ

∇̂αFβµ + ∇̂βFµα + ∇̂µFαβ = 0

pα ∂f

∂xα
+ P i ∂f

∂pi
+ QL ∂f

∂qL
= 0

(2.8)

By definition, the reduced system, in temporal gauge, extracted from (2.8) is the
system of unknown function (A,F, f), defined in t̂ by

A0 = 0

∇̂αFαi = J i

∇̂0Fij + ∇̂iFj0 + ∇̂jF0i = 0

pα ∂f

∂xα
+ P i ∂f

∂pi
+ QL ∂f

∂qL
= 0

∂0Ai = F0i,

(2.9)

where i, j = 1, 2, 3; α = 0, 1, 2, 3; L = 1, 2, . . . , N − 1.
The evolution problem for the (YMV) system in temporal gauge with initial data

prescribed on the two intersecting smooth characteristic hypersurfaces H1 and H2

consists in solving the reduced system (2.9) under the initial conditions:

Ai

∣∣
H

= ai, F 0i
∣∣
H

= bi, Fij

∣∣
H

= Φij , f
∣∣ bH = ϕ (2.10)

where Ĥ = H × R3 ×O.
The initial constraint problem consists in studying how to generally prescribe the

initial data of the conditions (2.10) such that the unique solution of the evolution
problem (2.9), (2.10) is also solution of the complete system (2.8) of the Yang-Mills-
Vlasov Equations (and satisfies the temporal gauge condition).

3. The initial constraint problem

The following useful notation will be needed. For every function (or tensor field)
v defined in the domain t, we denote by [v]r the restriction to Hr of v, r = 1, 2,
and [v] the restriction to H of v; i.e,

[v]1(x1, x2, x3) = v(−x1, x1, x2, x3) on H1,

[v]2(x1, x2, x3) = v(x1, x1, x2, x3) on H2,

[v](x1, x2, x3) = v(|x1|, x1, x2, x3) on H.

Theorem 3.1. Consider V = (A0 ≡ 0, Ai, F
0i, Fij , f) a C∞ solution, defined in a

neighborhood t̃ of Ĥ in t̂, of the reduced system (2.9) defined above.
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(1) Set

Ai

∣∣
H

= ai =

{
ai on H1

ãi on H2;
F 0i

∣∣
H

= bi =

{
b
i

on H1

b̃i on H2;

Fij

∣∣
H

= Φij =

{
Φij on H1

Φ̃ij on H2;
f
∣∣ bH = ϕ =

{
ϕ onĤ1

ϕ̃ on Ĥ2,

(3.1)

where i, j = 1, 2, 3. Then the functions ai, b
i
and Φij (resp. ãi, b̃

i and Φ̃ij) are C∞

on H1 (resp. H2 ) and ϕ (resp. ϕ̃) is C∞ on Ĥ1 (resp. Ĥ2). Furthermore, these
functions satisfy the following compatibility conditions:

ai = ãi, b
i
= b̃i on H1 ∩H2, i = 1, 2, 3

ϕ = ϕ̃ on Ĥ1 ∩ Ĥ2

∂1ai − ∂1ãi = 2b
i
= 2b̃i on H1 ∩H2, i = 1, 2, 3

(3.2)

The functions ai, bi and ϕ are continuous on Ĥ = Ĥ1 ∪ Ĥ2, and the functions Φij

verify Φij = −Φji. The functions Φij , ai, b
i are linked by the algebraic differential

relations

Φ1j =

{
Φ1j = ∂1aj − ∂ja1 + [a1, aj ]− b

j
on H1, j = 2, 3;

Φ̃1j = ∂1ãj − ∂j ã1 + [ã1, ãj ] + b̃j on H2.

Φ23 =

{
Φ23 = ∂2a3 − ∂3a2 + [a2, a3] on H1

Φ̃23 = ∂2ã3 − ∂3ã2 + [ã2, ã3] on H2.

(3.3)

(2) Furthermore V = (A0 ≡ 0, Ai, F
0i, Fij , f), with i, j = 1, 2, 3, verifies the

equation ∇̂αFα0 = J0 on Ĥ, if and only if the function b
1

(resp. b̃1) is solution of
the following Cauchy problem (3.4) (resp. (3.5)),

∂1b
1

+ [a1, b
1
] = −

(
J

0
+ J

1
+ ∂2Ψ12 + ∂3Ψ13 + [a2,Ψ12] + [a3,Ψ13]

)
on Ĥ1;

b
1
(0, x2, x3) =

1
2
(∂1a1 − ∂1ã1)(0, x2, x3), ∀(x2, x3) ∈ B

(3.4)

and

∂1b̃
1 + [ã1, b̃

1] =
(
J̃0 − J̃1 + ∂2Ψ̃12 + ∂3Ψ̃13 + [ã2, Ψ̃12] + [ã3, Ψ̃13]

)
on Ĥ2;

b̃1(0, x2, x3) =
1
2
(∂1a1 − ∂1ã1)(0, x2, x3), ∀(x2, x3) ∈ B

(3.5)

with

Ψ12 = ∂1a2 − ∂2a1 + [a1, a2], Ψ13 = ∂1a3 − ∂3a1 + [a1, a3],

J
α

=
∫

R3×O

pαqϕωpωq, α = 0, 1;

Ψ̃12 = ∂1ã2 − ∂2ã1 + [ã1, ã2], Ψ̃13 = ∂1ã3 − ∂3ã1 + [ã1, ã3],

J̃α =
∫

R3×O

pαqϕ̃ωpωq, α = 0, 1.
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Remark 3.2. We observe that the PDE appearing in (3.4) and (3.5) are in fact
linear ordinary differential equations of the scalar variable x1, smoothly depending
on the parameters x2 and x3.

Proof of Theorem 3.1. (1) As restrictions to the smooth surface H1 (resp H2) of
the C∞ functions Ai, F

0i, Fij , the functions ai, b
j

Φij (resp. ãi, b̃
j , Φ̃ij) are C∞ on

H1 (resp. H2). Likewise, as restrictions to the smooth surface Ĥ1 (resp. Ĥ2) of the
function f which is C∞ on t̂, ϕ (resp. ϕ̃) is C∞ on Ĥ1 (resp. Ĥ2).

The first and the second compatibility conditions of (3.2) are obviously satisfied.
Moreover, by considering the restrictions to Hr (r = 1, 2) of Ai (i = 1, 2, 3), we
have:

∂1[Ai]1 = −[∂0Ai]1 + [∂1Ai]1 on H1,

∂1[Ai]2 = [∂0Ai]2 + [∂1Ai]2 on H2,

∂j [Ai]r = [∂jAi]r on Hr, r = 1, 2, j = 2, 3, i = 1, 2, 3.

(3.6)

To show the third compatibility condition of (3.2), we observe that on H1 ∩ H2

the following relations are valid: [∂1Ai]1 = [∂1Ai]2 and [∂0Ai]1 = [∂0Ai]2. We then
deduce in view of first and second relations of (3.6) that

2[∂0Ai]r = ∂1[Ai]2 − ∂1[Ai]1 on H1 ∩H2, r = 1, 2.

Then, using the fact that [∂0Ai]1 = −F 0i
∣∣
H1

= −b
i

and [∂0Ai]2 = −F 0i
∣∣
H2

= −b̃i,
we deduce the third relation of (3.2),

∂1ai − ∂1ãi = 2b
i
= 2b̃i on H1 ∩H2, i = 1, 2, 3.

The algebraic differential relations stated in (3.3) follow directly from definitions
(2.2), (3.1) and relations (3.6).

(2) To show that b
1

is solution of (3.4) if ∇̂αFα0 = J0 on Ĥ, we consider the
restrictions to Ĥ1 of equations ∇̂αFα1 = J1 and ∇̂αFα0 = J0. By adding these
restrictions and in view of definitions (3.1) and the relations (3.3), we obtain

∂1b
1

+ [a1, b
1
] = −

(
J

0
+ J

1
+ ∂2Ψ12 + ∂3Ψ13 + [a2,Ψ12] + [a3,Ψ13]

)
on Ĥ1.

Moreover, we know that the third relation of (3.2), for i = 1, gives

b
1
(0, x2, x3) =

1
2
(∂1a1 − ∂1ã1)(0, x2, x3), ∀(x2, x3) ∈ B.

We then deduce that b
1

solves (3.4).
By the same process, subtracting the restriction to Ĥ2 of the equation ∇̂αFα1 =

J1 from that of the equation ∇̂αFα0 = J0, we obtain in view of the third relation
of (3.2) that b̃1 solves problem (3.5). Conversely, if b

1
(resp b̃1 )is solution of the

problem (3.4) (resp (3.5)), then it is obvious that we have ∇̂αFα0 = J0 on Ĥ. �

3.1. Precise statement of the initial constraint problem: the choice of
the free data. Let T ∈ R∗+ such that T ≤ sup{x0 = t, (x0, xi) ∈ t}, T given. We
assume the temporal gauge condition A0 = 0 in tT .
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(a) Free data of the initial constraint problem: Consider the arbitrary
functions:

ai(x1, x2, x3) C∞ function, (−x1, x1, x2, x3) ∈ H1, i = 1, 2, 3;

ãi(x1, x2, x3) C∞ function, (x1, x1, x2, x3) ∈ H2;

b
j
(x1, x2, x3) C∞ function, (−x1, x1, x2, x3) ∈ H1, j = 2, 3;

b̃j(x1, x2, x3) C∞ function, (x1, x1, x2, x3) ∈ H2, j = 2, 3;

ϕ(x1, x2, x3, pi, qL)C∞ function, (−x1, x1, x2, x3, pi, qL) ∈ Ĥ1, L = 1, . . . N − 1;

ϕ̃(x1, x2, x3, pi, qL)C∞ function, (x1, x2, x3, pi, qL) ∈ Ĥ2, L = 1, . . . , N − 1;

with ϕ and ϕ̃ having compact support.
(3.7)

These functions satisfy the compatibility conditions:

ai(0, x2, x3) = ãi(0, x2, x3), where (x2, x3) ∈ B, i = 1, 2, 3;

b
j
(0, x2, x3) = b̃j

(
0, x2, x3

)
, j = 2, 3;

(∂1aj − ∂1ãj) (0, x2, x3) = 2b
j
(0, x2, x3) = 2b̃j(0, x2, x3);

ϕ
(
0, x2, x3, pi, qL

)
= ϕ̃

(
0, x2, x3, pi, qL

)
, L = 1, . . . , N − 1.

(3.8)

(b) For the reduced system (2.9), as initial conditions, we consider

Ai

∣∣
H

= ai =

{
ai on H1

ãi on H2;
F 0i

∣∣
H

= bi =

{
b
i

onH1

b̃i on H2;

Fij

∣∣
H

= Φij =

{
Φij on H1

Φ̃ij on H2;
f
∣∣ bH = ϕ =

{
ϕ on Ĥ1

ϕ̃ on Ĥ2;
i, j = 1, 2, 3

(3.9)

where: Φij are given by relation (3.3) of theorem 3.1 and b1 is such that b
1

(resp.
b̃1) is the unique solution of (3.4) (resp. (3.5)) of theorem 3.1, with

b
1
(0, x2, x3) = b̃1(0, x2, x3) =

1
2
(∂1a1 − ∂1ã1)(0, x2, x3). (3.10)

Our goal is now to show that every C∞ solution of the reduced system (2.9)
subjected to initial conditions (3.9), (3.10) and compatibility conditions (3.8) is in
fact C∞ solution of the complete system (2.8) of Yang-Mills-Vlasov Equations.

Theorem 3.3. Every C∞ solution V = (A0 ≡ 0, Ai, F
0i, Fij , f), defined in a

neighborhood t̃ of Ĥ in t̂, for the reduced system (2.9) with initial conditions and
compatibility conditions (3.9), (3.10) and (3.8) associated to free data (3.7) and
such that the support of ϕ is compact, is solution of the complete system (2.8) of
Yang-Mills-Vlasov Equations in the domain t̂.

Proof. Let V = (A0 ≡ 0, Ai, F
0i, Fij , f) be a C∞ solution, defined in a neighborhood

t̃ of Ĥ, for the reduced system (2.9) with the initial conditions described as above.
We give the proof in three steps:

Step 1. We show that F is the curvature of A. Set Ω = dA, that is the curvature
of A. In the global canonical coordinates system on t it holds that

Ωαβ = ∂αAβ − ∂βAα + [Aα, Aβ ], α, β = 0, 1, 2, 3.
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In view of the temporal gauge condition A0 = 0 in t̃ and the reduced system (2.9)
which is verified in t̃, this implies that

Ω0i = ∂0Ai = F0i in t̃, i = 1, 2, 3.

It remains to prove that Ωij = Fij in t̃, i, j = 1, 2, 3. Since V solves the reduced
system (2.9), it holds that

∂0Fij + ∂iFj0 + ∂jF0i + [Ai, Fj0] + [Aj , F0i] = 0 in t̃, i, j = 1, 2, 3.

In view of (2.9), it holds that F0i = ∂0Ai. Inserting this latter relation in the
previous one and integrating with respect to the variable x0 on [|x1|, t], we obtain(

Fij − ∂iAj + ∂jAi − [Ai, Aj ]
)
(t, x1, x2, x3)

−
(
Fij − ∂iAj + ∂jAi − [Ai, Aj ]

)
(|x1|, x1, x2, x3) = 0.

Now the initial conditions (3.9) and (3.10) imply that(
− Fij + ∂iAj − ∂jAi + [Ai, Aj ]

)
(|x1|, x1, x2, x3) = 0.

Hence, we obtain

Fij

(
x0, x1, x2, x3

)
=

(
∂iAj − ∂jAi + [Ai, Aj ]

)
(x0, x1, x2, x3)

= Ωij(x0, x1, x2, x3).
(3.11)

Step 2. We must verify that

∇̂kFij + ∇̂iFjk + ∇̂jFki = 0 k, i, j = 1, 2, 3.

This is obvious since the first step provides

Fαβ = ∂αAβ − ∂βAα + [Aα, Aβ ], ∀α, β = 0, 1, 2, 3.

This implies Bianchi identities

∇̂αFβγ + ∇̂βFγα + ∇̂γFαβ = 0, α, β, γ = 0, 1, 2, 3.

The result then follows.
Step 3. We show that V satisfies the equation ∇̂αFα0 = J0 at each point

(x0, xi) ∈ t̃ with x1 6= 0. Indeed, the equation ∇̂αFαi = J i, which is verified
according to (2.9), can be written as follows

∂0F
0i = J i − ∂jF

ji − [Aj , F
ji], i, j = 1, 2, 3.

By integrating this latter expression with respect to x0 on [|x1|, t] and differentiating
with respect to xi, we obtain

∂iF
0i(t, ., x3)

= ∂i{F 0i(|x1|, ., x3)}+ ∂i

{ ∫ t

|x1|
{J i − ∂jF

ji − [Aj , F
ji]}(τ, ., x3)

}
dτ.

(3.12)

Direct calculations give

∂i

{
F 0i

(
|x1|, x1, x2, x3

) }
= ∂0F

0i
(
|x1|, x1, x2, x3

)
.εi + ∂iF

0i
(
|x1|, x1, x2, x3

)
,

(3.13)
with

εi =

{
ε if i = 1
0 if i = 2, 3;

ε =

{
1 if x1 > 0
−1 if x1 < 0;
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and

∂i

{ ∫ t

|x1|
{J i − ∂jF

ji − [Aj , F
ji]}

(
τ, x1, x2, x3

)
dτ

}
=

∫ t

|x1|
{∂iJ

i − ∂i∂jF
ji − ∂i[Aj , F

ji]}
(
τ, x1, x2, x3

)
dτ

− ε{J1 − ∂jF
j1 − [Aj , F

j1]}
(
|x1|, x1, x2, x3

)
.

(3.14)

Now, as V is solution of the system (2.9) in t̃, f satisfies Vlasov equation in t̃ and
this implies ∇̂βJβ = 0 in t̃; i. e.,

∂iJ
i = −∂0J

0 − [Ai, J
i], i = 1, 2, 3.

By inserting this latter relation into (3.14) and in view of the identity (∂i∂jF
ji = 0)

we gain

∂i

{∫ t

|x1|
{J i − ∂lF

li − [Al, F
li]}

(
τ, x1, x2, x3

)
dτ

}
= Z, (3.15)

where

Z =
∫ t

|x1|
{−∂0J

0 − [Ai, J
i]− ∂i[Al, F

li]}
(
τ, x1, x2, x3

)
dτ

− {J1 − ∂jF
j1 − [Aj , F

j1]}
(
|x1|, x1, x2, x3

)
.ε.

Equation (3.12) then becomes

∂iF
0i

(
t, x1, x2, x3

)
= ∂0F

01
(
|x1|, x1, x2, x3

)
ε + ∂iF

0i
(
|x1|, x1, x2, x3

)
− J0

(
t, x1, x2, x3

)
+ J0

(
|x1|, x1, x2, x3

)
−

{
J1 − ∂jF

j1 − [Aj , F
j1]

} (
|x1|, x1, x2, x3

)
ε

−
∫ t

|x1|

{
[Ai, J

i] + ∂i[Al, F
li]

} (
τ, x1, x2, x3

)
dτ.

(3.16)

The relation ∇̂αFα1 = J1 in t̃, which follows from (2.9) can be written as

∂0F
01 = J1 − ∂jF

j1 − [Aj , F
j1]. (3.17)

Inserting (3.17) into (3.16), we obtain

∂iF
0i

(
x0, x1, x2, x3

)
= ∂iF

0i
(
|x1|, x1, x2, x3

)
−

∫ t

|x1|

{
[Ai, J

i] + ∂i[Al, F
li]

}(
τ, x1, x2, x3

)
dτ

− J0
(
t, x1, x2, x3

)
+ J0

(
|x1|, x1, x2, x3

)
.

(3.18)

Likewise, the relation ∇̂αFαi = J i reads

∂0F
0i + ∂lF

li + [Al, F
li] = J i, i, l = 1, 2, 3.

Setting

L =
∫ t

|x1|
[Ai, J

i]dτ,
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it follows that

L =
∫ t

|x1|

{
[Ai, ∂0F

0i] + [Ai, ∂lF
li] + [Ai, [Al, F

li]]
}
dτ

=
∫ t

|x1|

{
∂0[Ai, F

0i]− [∂0Ai, F
0i] + [Ai, ∂lF

li] + [Ai, [Al, F
li]]

}
dτ

= [Ai, F
0i]

(
t, x1, x2, x3

)
− [Ai, F

0i]
(
|x1|, x1, x2, x3

)
+

∫ t

|x1|

{
[Ai, ∂lF

li] + [Ai, [Al, F
li]]

}
dτ,

(3.19)

thanks to

[∂0Ai, F
0i] = [F0i, F

0i] =
3∑

i=1

[−F 0i, F 0i] = 0.

The insertion of (3.19) into (3.18) gives

∂iF
0i

(
t, x1, x2, x3

)
= −[Ai, F

0i](t, ., x3) + [Ai, F
0i]

(
|x1|, ., x3

)
+ ∂iF

0i
(
|x1|, ., x3

)
− J0(t, ., x3) + J0

(
|x1|, ., x3

)
−R,

(3.20)

where

R =
∫ t

|x1|

{
[Ai, ∂lF

li] + ∂i[Al, ∂lF
li] + [Ai, [Al, F

li]]
}

dτ.

By permuting indexes l and i in [Ai, ∂lF
li] and using the fact that F is antisym-

metric, we obtain
[Ai, ∂lF

li] + ∂i[Al, F
li] = [∂iAl, F

li].
Thus

R =
∫ t

|x1|

{
[∂iAl, F

li] + [Ai, [Al, F
li]]

}
dτ. (3.21)

Moreover it holds that

F li = Fli = ∂lAi − ∂iAl + [Al, Ai].

By inserting this latter relation in (3.21), using several times Jacobi identity and
the fact that Lie bracket [, ] is antisymmetric, we obtain R = 0. But in view of
theorem 3.1, V satisfies the equation

∇̂αFα0
∣∣ bH = J0

∣∣ bH .

This implies (
∂iF

0i + [Ai, F
0i] + J0

) (
|x1|, x1, x2, x3

)
= 0. (3.22)

Thus (3.20) becomes

∇̂αFα0(t, x1, x2, x3) = J0(t, x1, x2, x3) with x1 6= 0,

which implies, by an obvious continuity argument,

∇̂αFα0
(
t, x1, x2, x3

)
= J0

(
t, x1, x2, x3

)
with x1 = 0.

Consequently
∇̂αFα0 = J0 in t̃.

This completes the proof. �
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4. Determination of restrictions

In this section we determine restrictions to the initial characteristic hypersur-
faces Ĥ1 and Ĥ2 of derivatives of all order of a possible C∞ solution of the evolution
problem (2.9) subjected to initial conditions (3.8), (3.9), (3.10). associated with
free data. We will use Rendall’s method [29] which consists in transforming the
Goursat problem under consideration into an ordinary Cauchy problem with zero
data specified on the spatial hypersurface x0 = 0. An important step is the de-
termination of the restrictions to Ĥ1 and Ĥ2 of the derivatives of all order of the
possible C∞ solutions of the evolution problem (2.9) subject to (3.8), (3.9), (3.10),
which is the goal of the present section. To reach it, it will be useful to reinforce
hypothesis of free data ϕ and ϕ̃

Hypothesis I. If m > 0, we assume:
(i) ϕ (resp ϕ̃) is smooth on Ĥ1 (resp Ĥ2) and supp(ϕ) (resp supp(ϕ̃)) is com-

pact.
(ii) supp(ϕ) ∩ {Ĥ1 ∩ Ĥ2} = ∅ and supp(ϕ̃) ∩ {Ĥ1 ∩ Ĥ2} = ∅.

If m = 0, we add (i) and (ii) the following hypothesis
(iii) supp(ϕ) ⊂ {X = (−x1, x1, x2, x3, pi, qL) : (p2)2+(p3)2 > 0} and supp(ϕ̃) ⊂

{X = (x1, x1, x2, x3, pi, qL) : (p2)2 + (p3)2 > 0}.

Remark 4.1. From hypothesis (i), (ii), (iii), we have the following:
If m 6= 0, for every X = (−x1, x1, x2, x3, pi, qL) ∈ supp(ϕ), we have p0 + p1 6= 0;

and for every X = (x1, x1, x2, x3, pi, qL) ∈ supp(ϕ̃) we have p0 − p1 6= 0.
If Hypothesis (i) holds, that is the compactness of the supports of ϕ and ϕ̃, then

inf
X∈supp(ϕ)

|p0 + p1| = min
X∈supp(ϕ)

|p0 + p1| = C1 > 0,

inf
X∈supp(eϕ)

|p0 − p1| = min
X∈supp(eϕ)

|p0 − p1| = C2 > 0.

Analogously, if m = 0 hypothesis (i) and (iii) again imply

inf
X∈supp(ϕ)

|p0 + p1| = min
X∈supp(ϕ)

|p0 + p1| = C1 > 0

inf
X∈supp(eϕ)

|p0 − p1| = min
X∈supp(eϕ)

|p0 − p1| = C2 > 0.

These remarks are crucial to establish the unique determination of the restrictions
to Ĥr (r = 1, 2) of the derivatives of all order of a possible C∞ solution f of the
Vlasov equation.

Hypothesis (ii) is a sufficient condition for showing that

[
∂lf

(∂x0)l
]1 = [

∂lf

(∂x0)l
]2 on Ĥ1 ∩ Ĥ2, ∀l ∈ N,

which are necessary conditions for a function C∞ in a neighborhood of Ĥ1 ∩ Ĥ2

4.1. Determination of the restrictions. In this section we determine the re-
striciotns to Ĥ of the first derivatives of any possible C∞ solution of the evolution
problem. Let V =

(
A0 ≡ 0, Ai, F

0i, Fij , f
)

be a C∞ solution, defined in the neigh-
borhood t̃ of Ĥ in t̂, of the evolution problem. We will use the equations of system
(2.9) to determine the restrictions to Ĥr(r = 1, 2) of the first order derivatives of
V .
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(i) To determine [∂0Ai]1, we use the equation ∂0Al = F0l of (2.9), to obtain

[∂0Ai]1 = −b
i
, i = 1, 2, 3. (4.1)

(ii) To determine [ ∂f
∂x0 ]1, we use the fourth equation of (2.9) which implies in

view of Remark 4.1,

[
∂f

∂x0
]1 =

−1
p0 + p1

{
pi0

∂ϕ

∂xi0
+ P

j0 ∂ϕ

∂pj0
+ Q

L0 ∂ϕ

∂qL0

}
, (4.2)

(iii) To determine [∂0F
01]1, we consider the restriction to Ĥ1 of the equation

∇̂αFα1 = J1 which implies

[∂0F
01]1 = J

1
+

3∑
j=1

∂jΨ1j − ∂jb
j
+

3∑
j=1

[aj ,Ψ1j − b
j
], j 6= 1, (4.3)

with

Ψ1j = ∂1aj − ∂ja1 + [a1, aj ], J̄1 =
∫

R3×O

p1qϕωpωq.

(iv) To determine [∂0Fij ]1 with i, j 6= 1, we consider the restriction to H1 of
Bianchi identities (third equation of (2.9)) which leads to

[∂0Fij ]1 = −∂ib
j − [ai, b

j
] + ∂jb

i
+ [aj , b

i
], i, j = 2, 3; i 6= j. (4.4)

(v) It remains to determine [∂0F
1i]1 and [∂0F

0i]1 for i 6= 1. Consider the follow-
ing equations extracted from system (2.9),

∇̂αFαi = J i, ∇̂0Fi1 + ∇̂iF10 + ∇̂1F0i = 0, for i 6= 1.

Differentiating the sum of the latter equalities with respect to x0 and taking the
restriction to H1 of the relation obtained, we gain

∂1

{
[∂0F

1i]1 − [∂0F
0i]1

}
+ [a1, [∂0F

1i]1 − [∂0F
0i]1] = D, (4.5)

with D a known function on Ĥ1. Moreover, it holds that

F 1i(−x1, x1, x2, x3) = (Ψ1i − b
i
)(x1, x2, x3) on H1

F 1i(x1, x1, x2, x3) =
(
Ψ̃1i + b̃i

)
(x1, x2, x3) on H2, i 6= 1,

By differentiating with respect to x1 the above relations, and using the fact that
the F 1i and their derivatives are continuous on I = H1 ∩H2, for i 6= 1, we have

[∂0F
1i]

(
0, 0, x2, x3

)
=

1
2

{(
∂1Ψ̃1i + ∂1b̃

i
)
−

(
∂1Ψ1i − ∂1b

i)} (
0, 0, x2, x3

)
, (4.6)

Analogously, we obtain

[∂0F
0i]

(
0, 0, x2, x3

)
=

1
2

{
∂1b̃

i − ∂1b
i
}(

0, 0, x2, x3
)
, i 6= 1, (4.7)

From (4.6) and (4.7), for i 6= 1, we have

{[∂0F
1i]1 − [∂0F

0i]1}(0, x2, x3) =
1
2
{∂1Ψ̃1i − ∂1Ψ1i + 2∂1b

i}(0, x2, x3), (4.8)

We then deduce [∂0F
1i]1 − [∂0F

0i]1 on H1 as the unique solution of the Cauchy
problem (4.5), (4.8). We can then set

[∂0F
1i]1 − [∂0F

0i]1 = C (4.9)
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where C is now a known smooth function on H1. To determine
(
[∂0F

1i]1, [∂0F
0i]1

)
on H1, considering now the restriction to H1 of the equation ∇̂αFαi = J i, i 6= 1,
we obtain

[∂0F
0i]1 + [∂0F

1i]1 = [J i]1 − ∂j [F ji]1 − [[Aj , F
ji]]1, (4.10)

for i = 2, 3, j = 1, 2, 3. The relations (4.9) and (4.10) then determine [∂0F
1i]1 and

[∂0F
0i]1. By the same process, we can uniquely determine [∂0Ai]2 (for i = 1, 2, 3),

[∂0f ]2, [∂0F
01]2, [∂0Fij ]2, for i, j = 2, 3, [∂0F

1i]2, [∂0F
0i]2 for i = 2, 3 and these

functions are C∞ on Ĥ2.
We have then proved the following proposition.

Proposition 4.2. Let V = (A0 ≡ 0, Ai, Fij , F
0i, f) a C∞ solution, defined in a

neighborhood t̃ of Ĥ in t̂ of the evolution problem (2.9) subject to (3.8), (3.9),
(3.10) such that initial datum ϕ satisfies hypothesis (I). Then the restrictions to
Ĥ of all first order derivatives of V , that is [∂0Ai], [∂0Fij ], [∂0F

0i] and [∂0f ], are
uniquely determined on Ĥ. These functions are continuous on Ĥand are C∞ on
Ĥr, (r = 1, 2). Moreover, supp[∂0f ] is compact and contained in the support of ϕ.

4.2. Determination of derivatives. In this section we determine derivatives all
order of any possible C∞ solution of the evolution problem (2.9) subject to (3.8),
(3.9), (3.10).

Let V =
(
A0 ≡ 0, Ai, F

0i, Fij , f
)

be a C∞ solution, defined on a neighborhood t̃
of Ĥ in t̂, of the evolution problem. We want to show, for every k ∈ N, that [∂k

0V ]
is uniquely determined, is continuous on Ĥ and that [∂k

0V ]r is C∞ on Ĥr, r = 1, 2.
This can obviously be done, by induction on k, by considering suitable combina-
tions of k order derivatives with respect to x0 or x1 of equations of the reduced
system (2.9) and by using continuity of V and its derivatives of all order in the
neighborhood of I = H1 ∩ H2. We then obtain the following proposition which
generalizes proposition 4.2.

Proposition 4.3. (a) Let V =
(
A0 ≡ 0, Ai, F

0i, Fij , f
)

be a C∞ solution, defined
in a neighborhood t̃ of Ĥ in t̂, of the evolution problem (2.9) subject to (3.8),
(3.9), (3.10) defined in a neighborhood such that initial data ϕ satisfies hypothesis
(I). Then the restrictions to Ĥ of derivatives of order l of V , that is [∂l

0Ai], [∂l
0Fij ],

[∂l
0F

0i] and [∂l
0f ], l ∈ N, are uniquely determined on Ĥ. These functions are

continuous on Ĥ and are C∞ on Ĥr, r = 1, 2. Moreover, for every l ∈ N, supp[∂l
0f ]

is compact and contained in suppϕ.
(b) Moreover, if W is a C∞ function defined in a neighborhood of Ĥ in t̂ such

that for every l ∈ N, [∂l
0W ] = [∂l

0V ] on Ĥ, then W satisfies on Ĥ the reduced
system (2.9) and its derivatives of all orders.

In the next section, we will use the following convenient notation.

[∂k
0V ] =

(
Λ(k)

i ,Ξ(k)
i ,Ω(k)

ij , f (k)
)
, k ∈ N,

with

Λ(k)
i =

{
Λ

(k)

i on H1

Λ̃(k)
i on H2;

E
(k)
i =

{
E

(k)

i on H1

Ẽ
(k)
i on H2;

Ω(k)
ij =

{
Ω

(k)

ij on H1

Ω̃(k)
ij on H2;

f (k) =

{
f

(k)
on Ĥ1

f̃ (k) on Ĥ2;
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Λ
(k)

i = [∂k
0Ai]1, E

(k)

i = [∂k
0F 0i]1, Ω

(k)

ij = [∂k
0Fij]1, f

(k)
= [∂k

0 f ]1,

Λ̃(k)
i = [∂k

0Ai]2, Ẽ
(k)
i = [∂k

0F 0i]2, Ω̃(k)
ij = [∂k

0Fij ]2, f̃ (k) = [∂k
0 f ]2.

We also use the notation

[∂k
0V ] = Φ(k) =

{
Φ

(k)
(x1, x2, x3) on Ĥ1

Φ̃(k)(x1, x2, x3) on Ĥ2,
(4.11)

where

Φ
(k) ≡

(
Λ

(k)

i , E
(k)

i ,Ω
(k)

ij , f
(k))

, Φ̃(k) ≡
(
Λ̃(k)

i , Ẽ
(k)
i , Ω̃(k)

ij , f̃ (k)
)
, ∀k ∈ N.

5. Resolution of problem (2.9), (3.8), (3.9), (3.10)

The goal of this section is to solve the evolution problem (2.9), (3.8), (3.9), (3.10),
where the initial data ϕ satisfies the support condition of hypothesis (I). The method
used consists in reducing this problem into an ordinary Cauchy problem with zero
data assigned on the spatial hypersurface x0 = 0, which we solve thanks to a
suitable combination of the classical characteristics method, the Leray’s theory [25]
of hyperbolic systems and techniques of solution developed in [7] for the ordinary
Cauchy problem associated to Yang-Mills-Vlasov equations. According to section
4, the evolution problem at hand, of unknown V =

(
A0 ≡ 0, Ai, F

0i, Fij , f
)
, is

equivalent to the following Goursat problem defined in t̂T = tT × R3 ×O,

∇̂αFαi = J i

∇̂0Fij + ∇̂iFj0 + ∇̂jF0i = 0

pα ∂f

∂xα
+ P i ∂f

∂pi
+ QL ∂f

∂qL
= 0,

∂0Ai = F0i,

[∂k
0V ] = Φ(k) =

{
Φ

(k)
on Ĥ1

Φ̃(k) on Ĥ2,

(5.1)

where L = 1, . . . , N − 1; α = 0, 1, 2, 3; i, j = 1, 2, 3; k ∈ N.
Proceeding as in [11] and [29], we transform problem (5.1) into a Goursat problem

defined in t̂T with zero initial data on Ĥ, by introducing a new unknown function
V1 =

(
Ci, D

0i, Dij , v
)

such that V = W + V1, where the auxiliary function W =(
Bi, G

0i, Gij , h
)

must be a C∞ function on t̂ such that

[∂l
0W ] = Φ(l), ∀l ∈ N; (5.2)

i. e., for all l ∈ N,

[∂l
0Bi] = Λ(l)

i , [∂l
0G

0i] = E
(l)
i , [∂l

0Gij ] = Ω(l)
ij , [∂l

0h] = f (l) . (5.3)

As in [11] and [21] the construction of the function W is made thanks to some
variants of classical Borel lemma [28]. The function W so constructed is defined
not only in the domain t̂T , but also in the whole domain Ω̂ε

T = Ωε
T ×R3×O, where

Ωε
T is the maximal subdomain of

L = {(x0, x1, x2, x3) ∈ R4, 0 ≤ x0 ≤ T,−T ≤ x1 ≤ T, (x2, x3) ∈ B}

containing tT , of which the future boundary ∂Ω(f)
T contains ∂ tT \H and of which

the past boundary is equal to tT ∩ {x0 = 0}. The component h of W is C∞ with
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a compact support, since the f (l) have their supports contained in suppϕ which
is compact. The transformed problem of unknown V1 can also be written in the
domain t̂T as follows:

∂0D
0i + ∂jD

ji + [Bj + Cj , D
ji] + [Cj , G

ji]−
∫

R3×O

qpivwpwq = Xi

∂0D
ij − ∂iD

j0 − ∂jD
0i − [Bi + Ci, D

j0]− [Bj + Cj , D
0i]

+ [Ci, Gj0] + [Cj , G0i] = Z0ij ,

pα ∂v

∂xα
+ pµq

(
Gi

µ + Di
µ

) ∂v

∂pi
− pα

(
[Bα, q]L + [Cα, q]L

) ∂v

∂qL

+ pµqDi
µ

∂h

∂pi
− pα[Cα, q]L

∂h

∂qL
= ω,

∂0Ci −D0i = E0i

[∂l
0V1] bHT

= 0, ∀l ∈ N,

(5.4)

where

Xi ≡
∫

R3×O

qpihwpwq − ∂0G
0i − ∂jG

ji − [Bj , G
ji],

Z0ij ≡ −∂0G0i − ∂iGj0 − ∂jG0i − [Bi, Gj0]− [Bj , G0i],

ω ≡ −pα ∂h

∂xα
− pµqGi

µ

∂h

∂pi
+ pα[Bα, q]L

∂h

∂qL
,

E0i ≡ G0i − ∂0Bi.

Remark 5.1. According to (5.2), and in view of proposition 4.3 the terms of the
right hand side of the system (5.4); i.e., Xi, Z0ij , ω and E0i and their derivatives
of all order vanish on Ĥ.

Consider now the functions X
i
, Z0ij , ω and E0i which are the following contin-

uations on Ω̂T of the functions Xi, Z0ij , ω and E0i:

X
i
=

{
Xi on t̂T

0 on Ω̂T \t̂T ;
Z0ij =

{
Z0ij on t̂T

0 on Ω̂T \t̂T ;

ω =

{
ω on t̂T

0 on Ω̂T \t̂T ;
E0i =

{
E0i on t̂T

0 on Ω̂T \t̂T .

Remark 5.2. In view of Remark 5.1, the functions X
i
, Z0ij , ω and E0i are C∞

on Ω̂T .

To study problem (5.4), we will first consider the following ordinary Cauchy
problem of unknown V 1 =

(
Ci, D

0i
, D

ij
, v

)
, defined on Ω̂T , with zero initial data
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given on the spatial hyperplane x0 = 0:

∂0D
0i

+ ∂jD
ji

+ [Bj + Cj , D
ji

] + [Cj , G
ji]−

∫
R3×O

qpivwpwq = X
i
,

∂0D
ij − ∂iD

j0 − ∂jD
0i − [Bi + Ci, D

j0
]

− [Bj + Cj , D
0i

] + [Ci, Gj0] + [Cj , G0i] = Z0ij ,

pα ∂v

∂xα
+ pµq

(
Gi

µ + D
i

µ

) ∂v

∂pi
− pα

(
[Bα, q]L + [Cα, q]L

) ∂v

∂qL

+ pµqD
i

µ

∂h

∂pi
− pα[Cα, q]L

∂h

∂qL
= ω,

∂0Ci −D0i = E0i,

V 1 = 0 on x0 = 0.

(5.5)

We will show, in the last step, by using mostly the techniques of solution of [7],
that problem (5.5) admits in a domain Ω̂T1 = Ω̂T ∩ {x0 ≤ T1}, T1 ∈]0, T0], small
enough, a unique C∞ solution V 1 such that the support of V 1 is contained in t̂T1

with the supp v compact.
We will then deduce that V1 = V 1

∣∣btT1
is the unique solution of problem (5.4),

consequently, the C∞ function V = W + V1 will be the unique solution of the
evolution problem (2.9) subject to ((3.8), (3.9), (3.10) in the domain t̂T1 .

5.1. Resolution of problem (5.5). We write problem (5.5) defined in Ω̂T in the
following appropriate form:

∂0D
0i

+ ∂jD
ji

= F1

(
X, Cj , D

0i
, D

ji
, v

)
,

∂0D
ij − ∂iD

j0 − ∂jD
0i

= F2

(
X, Cj , D

0i
, D

ji
, v

)
,

pα ∂v

∂xα
+ pµq

(
Gi

µ + D
i

µ

) ∂v

∂pi
− pα

(
[Bα, q]L + [Cα, q]L

) ∂v

∂qL

= F3

(
X, Cj , D

0i
, D

ji
, v

)
,

∂0Ci = F4

(
X, Cj , D

0i
, D

ji
, v

)
on Ω̂T ,

V 1 = 0 on x0 = 0, where X = (t, x1, x2, x3, pi, qL) ∈ Ω̂T .

(5.6)

Definition 5.3. We will call linearized problem associated to problem (5.6), to
the given C∞ functions Ĉj , D̂0i, D̂ji, v̂ defined on Ω̂T , the following linear problem
defined in Ω̂T , of unknown V 1 =

(
Ci, D

0i
, D

ij
, v

)
:

∂0D
0i

+ ∂jD
ji

= F1

(
X, Ĉj , D̂

0i, D̂ji, v̂
)
, (5.7)

∂0D
ij − ∂iD

j0 − ∂jD
0i

= F2

(
X, Ĉj , D̂

0i, D̂ji, v̂
)
, (5.8)

∂0Ci = F4

(
X, Ĉj , D̂

0i, D̂ji, v̂
)

on Ω̂T , (5.9)

pα ∂v

∂xα
+ pµq

(
Gi

µ + D
i

µ

) ∂v

∂pi
− pα

(
[Bα, q]L + [Cα, q]L

) ∂v

∂qL

= F3

(
X, Ĉj , D̂

0i, D̂ji, v̂
)
,

(5.10)

V 1 = 0 on x0 = 0, where X = (t, x1, x2, x3, pi, qL) ∈ Ω̂T . (5.11)
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Proposition 5.4. If v̂ ∈ C′∞(Ω̂T ) and Ĉ, D̂ ∈ C∞(ΩT ), then the linear system
(5.7), (5.8), (5.9) under initial condition C = 0, D = 0, on x0 = 0, admits in the
domain ΩT a unique C∞ solution with support contained in tT .

Proof. The subsystem (5.7), (5.8), (5.9) is a linear symmetric hyperbolic system
of first order with unknown C and D of which the right hand side is C∞ with
support contained in t̂T . Thanks to Leray’s theory [25] of hyperbolic systems, this
system possesses in the domain ΩT a unique C∞ solution with support contained
in the future emission of t̂T which is equal to t̂T . Hence supp C ⊂ t̂T , and
suppD ⊂ t̂T . �

Proposition 5.5. If Ĉ and D̂ are C∞ on ΩT , then the linear equation (5.10) under
the initial condition v = 0 on x0 = 0 admits in Ω̂T a unique C∞ solution v with
compact support contained in t̂T .

We will mostly use the classical method of characteristics to solve the problem
considered in proposition 5.5. The differential characteristic system associated to
the first order PDE (5.10) is in fact

dx0 =
p0dxi

pi
=

p0dpi

p0q
(
Gi

µ + D
i

µ

) =
dqL

−pi[Bi + Ci, q]L
= dτ, (5.12)

with p0 =
(
m2 +

∑
(pi)2

)1/2. The solutions of (5.12) will be called characteristic
curves. The proof of proposition 5.5 is based on the following lemma.

Lemma 5.6. (1) If m > 0 and D̂ is differentiable in ΩT , and D̂ and its derivatives
are bounded on ΩT , then the solution τ 7→ X(x0

0, x
i
0, p

i
0, q

L
0 , τ) of the differential

characteristic system (5.12) such that X
(
x0

0, x
i
0, p

i
0, q

L
0 , 0

)
= X

(
x0

0, x
i
0, p

i
0, q

L
0

)
is

defined in the interval ]− x0
0, T − x0

0[.
If moreover Ĉ and D̂ are C∞ on ΩT , the function: X

(
x0

0, x
i
0, p

i
0, q

L
0 , 0

)
7→

X
(
x0

0, x
i
0, p

i
0, q

L
0 , τ

)
is C∞.

(2) If m = 0, suppϕ ⊂ {p0 > 0} and p0
0 > 0, then the solution of the differential

system (5.12) is defined in the interval ]− x0
0,min(T − x0

0, ε)[, where ε is a strictly
positive real number depending only on the bounds D̂ on ΩT and on p0

0.

For a proof of the above lemma, see [7, Theorem of section 2].

Proof of Proposition 5.5. From the methods of characteristics and Lemma 5.6, the
linear problem under consideration has, in the domain Ω̂T , a unique C∞ solution
given by

v
(
x0

0, x
i
0, p

i
0, q

L
0

)
= v

(
x0 (0) , xi (0) , pi (0) , qL (0)

)
=

∫ 0

−x0
0

[
1

p0(s)
G3

(
x0(s), xi(s), pi(s), qL(s)

)
]ds,

(5.13)

with

G3 (X) =


−pα(X)∂h(X)

∂xα − (p0qGi0(X)− pjqGij(X))∂h(X)
∂pi

+pα[Bα, q]L(X)∂h(X)
∂qL − (p0qD̂i0(X)

−pjqD̂ij(X))∂h(X)
∂pi + pα[Ĉα, q]L(X)∂h(X)

∂qL , in t̂T ,

0 in Ω̂T \t̂T .

(5.14)
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The support of G3 is compact, contained in t̂T , since the support of h is compact.
We will now show that the support of v is contained in t̂T . Let (x0

0, x
i
0, p

i
0, q

L
0 ) ∈

Ω̂T \ t̂T . It suffices, in view of the fact that suppG3 is contained in t̂T (see
5.14), to show that the part of the characteristic curve τ 7→ X

(
x0

0, x
i
0, p

i
0, q

L
0 , τ

)
originating from

(
x0

0, x
i
0, p

i
0, q

L
0

)
and corresponding to parameters s ∈] − x0

0, 0] is
entirely contained in Ω̂T \ t̂T . For so doing, it suffices to show, by setting

X
(
x0

0, x
i
0, p

i
0, q

L
0 , τ

)
≡

(
x0(τ), x1(τ), pi(τ), qL(τ)

)
,

that |x1(τ)| > x0(τ) for all τ ∈] − x0
0, 0]; this is an obvious consequence of the

following relations:

x0
0 < |x1

0|, x1(τ)τ) = x1
0 +

∫ 0

τ

(
p1

p0 )(s)ds, |p
1

p0 | ≤ 1,∀τ ∈]− x0
0, 0].

We will now show that supp v is compact.
According to the relations (5.13) and (5.14), supp v is contained in an ε -closed

neighborhood of supph, where ε is a positive real number depending only on T and
the bounds of the continuous and bounded functions q

(
Gi0+D

i0)− P
j

p0 q
(
Gij + Dij

)
on ΩT . We then deduce that supp v is compact, as support of h is compact. �

5.2. Functional spaces used for the resolution of (5.4). Let s be an integer
and k a given real number such that s > 4 and k > 3/2.

Definition 5.7 ([7]). Let D̄ = (D̄λµ) denote a 2-form defined on t. Es(ΩT ) is the
closure of C∞(ΩT ) with respect to the norm

‖D̄‖Es(ΩT ) = sup
0≤τ≤T

‖D̄‖τ
s ,

with

‖D‖τ
s =

{∫
ωτ

∑
|r|≤s

∣∣∂rD
∣∣2µτ

}1/2

, |∂rD|2 =
∑
λ≤µ

(∂rDλµ)2,

where

µτ = dx1dx2dx3, ∂r =
∑
|α|≤r

∂|α|

(∂x0)α0(∂x1)α1(∂x2)α2(∂x3)α3
,

α = (α0, α1, α2, α3), |α| = α0 + α1 + α2 + α3 .

Es,k(Ω̂T ) is the closure of C∞0 (Ω̂T ) with respect to the norm

‖v‖Es,k(ΩT ) = sup
0≤τ≤T

‖v‖τ
s,k,

with

‖v‖τ
s,k =

{ ∑
|l|≤s

∫
bωτ

(p0)2k+2(bl+el)+1(Dlv)2βτ

}1/2

,

where

ω̂τ = wτ × R3 ×O, βτ = dx1dx2dx3dp1dp2dp3dq1dq2 . . . dqN−1,

Dl

=
∑
|α|≤l

∂|α|

(∂x0)α0(∂x1)α1(∂x2)α2(∂x3)α3(∂p1)α4 . . . (∂p3)α6(∂q1)α7 . . . (∂qN−1)αN+6
.
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Remark 5.8. The functional spaces defined above are the same as those defined
in [7].

5.3. Energy inequalities for the linearized problems. Problem (5.5) is an
ordinary Cauchy problem defined in Ω̂T with zero data specified on the spatial
hyperplane x0 = 0. We can establish for the smooth solution of this problem the
same energy inequalities as those given in [7]. This energy inequalities will be
expressed in the functional spaces

Hs,k(Ω̂T ) ≡ (Es(ΩT ))9 × Es,k(Ω̂T ).

Proposition 5.9. If C and D ∈ C∞(ΩT ) satisfy the linearized Yang-Mills problem
(5.7), (5.8), (5.9) under the initial condition Ci = 0, D

0i
= 0, Dij = 0 on x0 = 0,

then for every t ∈]0, T ], the following inequality is satisfied

‖C‖Es(Ωt) + ‖D‖Es(Ωt) ≤ Ct
[
‖F (X, Ĉ, D̂, v̂)‖Hs,k(bΩt)

]
, (5.15)

where C is a positive constant depending only on T .

For a proof of the above proposition see [7].

Proposition 5.10. If v̂ ∈ C∞0 (Ω̂T ) satisfies the linearized Vlasov equation (5.10)
with initial condition v = 0 on x0 = 0, then, for all t ∈]0, T ], the following inequality
is valid

‖v‖Es,k(bΩt)
≤ Ct

[
‖F (X, Ĉ, D̂)‖Es(Ωt)

]
, (5.16)

where C is a positive constant depending only on T .

For a proof of the above proposition see [7]. To complete the resolution of
problem (5.4), let us consider

g0 : (C∞(ΩT ))9 × C∞0 (Ω̂T ) −→ (C∞(ΩT ))9 × C∞0 (Ω̂T )

V̂ =
(
Ĉj , D̂

0i, D̂ij , v̂
)
7−→ V 1 =

(
Cj , D

0i
, Dij , v

)
,

where V 1 is the unique solution of the linearized problem (5.7), (5.8), (5.9), (5.10),
(5.11).

By using the denseness of (C∞(ΩT ))9 × C∞0 (Ω̂T ) in Hs,k(Ω̂T ), and propositions
5.4 and 5.5, we can obviously show that g0 can be extended to a function:

g : Hs,k(Ω̂T ) → Hs,k(Ω̂T )

V̂ 7→ V1,

where V1 is now the unique solution of the linearized problem (5.7), (5.8), (5.9),
(5.10), (5.11), with V̂ belonging to Hs,k(Ω̂T ). Then we show using again proposi-
tions 5.4 and 5.5 that there exist some constants R > 0, large enough, T0 ∈]0, T ],
small enough, such that g is a contraction from the closed ball B(0, R) of the Banach
space Hs,k(Ω̂T ) into itself; g then has a unique fixed point V 1 =

(
Ci, D

0i
, Dij , v

)
,

suppV 1 ⊂ t̂T1 with supp v compact. We can also show by a classical argument [6]
that V 1 ∈ (C∞ (ΩT0))

9 × C∞0 (Ω̂T0). V 1 is then the unique solution of the problem
(5.5)

We have then proved the following theorem.
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Theorem 5.11. There exists T0 ∈]0, T ], small enough, such that the evolution
problem (2.9), ( (3.8), (3.9), (3.10), with initial data ϕ satisfying hypothesis (I),
admits in the domain t̂T0 a unique C∞ solution.

We sum up the whole work in the following Theorem.

Theorem 5.12. For any free data ai, b
j
, (i = 1, 2, 3; j = 2, 3) C∞ on H1, ϕ C∞

on Ĥ1, and ãi, b̃
j C∞ on H2, ϕ̃ C∞ on Ĥ2 and satisfying the following compatibility

conditions

ai(0, x2, x3) = ãi(0, x2, x3), where (x2, x3) ∈ B, i = 1, 2, 3;

b
j
(0, x2, x3) = b̃j(0, x2, x3), j = 2, 3;(

∂1aj − ∂1ãj

)
(0, x2, x3) = 2b

j
(0, x2, x3) = 2b̃j(0, x2, x3);

ϕ(0, x2, x3, pi, qL) = ϕ̃
(
0, x2, x3, pi, qL

)
, (pi, qL) ∈ R3 ×O, L = 1, . . . , N − 1.

there exists T0 ∈]0, T ], small enough, such that the complete system (2.8) of Yang-
Mills-Vlasov equations admits, in the domain t̂T0 , a unique C∞ solution V = (A0 =
0, Ai, F

0i, Fij , f) satisfying the following conditions:

Ai

∣∣
H

= ai =

{
ai onH1

ãi onH2,
i = 1, 2, 3;

F 0j
∣∣
H

= bj =

{
b
j

onH1

b̃j onH2,
j = 2, 3;

f
∣∣ bH = ϕ =

{
ϕ on Ĥ1

ϕ̃ on Ĥ2.
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[29] A. Rendall; Reduction of the characteristic initial value problem to the Cauchy problem and
applications to Einstein equations, Proc. Roy. Soc. London. Ser. A, Vol. 427,(1990), 221-239.

[30] A. Rendall; The characteristic initial value problem for the Einstein equations, nonlinear
hyperbolic equations and field theory, (Lake Como, 1991), Pitman Research notes in Mathe-
matical Series 253, Harlow: Longman Sci. Tech. (1992), 154-63.

Marcel Dossa
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