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EXISTENCE OF POSITIVE SOLUTIONS FOR SEMILINEAR
ELLIPTIC SYSTEMS WITH INDEFINITE WEIGHT

RUIPENG CHEN

ABSTRACT. This article concerns the existence of positive solutions of semi-
linear elliptic system

—Au = Aa(z)f(v), inQ,
—Av = Xb(z)g(u), in Q,
u=0=wv, on 0L,

where Q C RN (N > 1) is a bounded domain with a smooth boundary 9Q
and A is a positive parameter. a,b : Q@ — R are sign-changing functions.
fy9:]0,00) — R are continuous with f(0) > 0, g(0) > 0. By applying Leray-
Schauder fixed point theorem, we establish the existence of positive solutions
for A sufficiently small.

1. INTRODUCTION

Let 2 C RY (N > 1) be a bounded domain with a smooth boundary 92 and
A > 0 a parameter. Let a,b: 2 — R be sign-changing functions. We are concerned
with the existence of positive solutions of the semilinear elliptic system

—Au = Xa(z)f(v), inQ,
—Av = Ab(x)g(u), in Q, (1.1)
u=0=wv, on 0.

In the past few years, the existence of positive solutions of the nonlinear eigen-
value problem
— Au= A\f(u) (1.2)
has been studied extensively by many authors. It is well-known that many prob-
lems in mathematical physics may lead to problem . See, for example, fluid
dynamics [I], combustion theory [2, [10], nonlinear field equations [3], wave phe-
nomena [15], etc. Lions [14] studied the existence of positive solutions of Dirichlet
problem
Au = da(z)f(u), in Q, (1.3)
u=0, on 9df
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with the weight function and nonlinearity satisfy a > 0, f > 0, respectively. Prob-
lem with indefinite weight a(-) is more interesting, and which has been studied
by Brown [4, [5], Cac [6], Hai [II] and the references therein.

In recent years, a good amount of research is established for reaction-diffusion
systems. Reaction-diffusion systems model many phenomena in Biology, Ecology,
combustion theory, chemical reactors, population dynamics etc. And the elliptic
system

—Au=Af(v), inQ,

—Av = Ag(u), in Q, (1.4)

u=0=wv, ondfd

has been considered as a typical example of these models. The existence of positive
solutions of is established by de Figueiredo [9] et al, by an Orlicz space setting
for N > 3. Hulshof et al [13] established the existence of positive solutions for
by variational technique for N > 1. Dalmasso [7] proved the existence of
positive solutions of by Schauder’s fixed point theorem. Hai and Shivaji
[12] established the existence of positive solution of for A large, by using the
method of sub and supersolutions and Schauder’s fixed point theorem.

Recently, Tyagi [16] studied the existence of positive solutions of by the
method of monotone iteration and Schauder’s fixed point theorem. He assumed
that a,b € L*°(Q) and

(H1) f,g:]0,00) — [0,00) which are continuous and nondecreasing on [0, c0);
(H2) There exists 41 > 0 such that

/ G(z,y)a™ (y)dy > (1 + ,Ul)/ G(z,y)a™ (y)dy, Vax € Q;
Q Q

(H3) There exists ua > 0 such that

/G(m,y)”(y)dyz (1+u2)/ G(z,y)b (y)dy, Vx e,
Q Q

where G(z,y) is the Green’s function of —A associated with Dirichlet
boundary condition.
Here a™, bT are positive parts of @ and b; while a~ and b~ are the negative parts.
The main result of Tyagi [16] reads as follows.

Theorem 1.1. Assume f(0) > 0, g(0) > 0, f and g both are nondecreasing, and
continuous functions. Also assume (H2), (H3). Then there exists \* > 0 depending
on f,g,a,b, ;i = 1,2 such that (1.1 has a nonnegative solution for 0 < X < A*.

Motivated by the above references, the purpose of the present article is to study
the existence of positive solutions of ([L.1)) by using the Leray-Schauder fixed point
theorem:

Lemma 1.2 ([§]). Let X be a Banach space and T : X — X a completely contin-
uous operator. Suppose that there exists a constant M > 0, such that each solution
(z,0) € X x[0,1] of

x=0cTz, oce€l0,1,xzeX
satisfies ||z||x < M. Then T has a fized point.

Next, we state the main result of this article, under the assumption
(H1’) f,g:]0,00) — R are continuous with f(0) > 0,¢(0) > 0.
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Theorem 1.3. Let a,b be nonzero continuous functions on Q. Assume that (H1’),
(H2), (H3) hold. Then there exists a positive number A* such that (L.1) has a
positive solution for 0 < A < A*.

Remark 1.4. Assumption (H1’) implies that the nonlinearities f and g can change
their signs, but can not be monotone; thus (H1’) is much weaker than the assump-
tion (H1) used in Tyagi [16]. We obtain a similar result as Theorem under the
weaker condition (H1’). Tt is worth remarking that in proving the Theorem we
extend the results in Hai [I1].

As a consequence of Theorem we have the following result.

Corollary 1.5. Assume that (H1’) holds. Let a,b be nonzero integrable functions
on [0,1]. Suppose that there exist two positive constants k1 > 1 and kg > 1 such
that

t t
/ sNlat (s)ds > k‘l/ sNla7(s)ds, vt e€0,1],
0 0

/t SN (s)ds > ky /t sVl (s)ds, Yt € [0,1].
Then there exist;) a positive number )\*Osuch that the system
u’ + ?u’ +Xa(t)f(v) =0, 0<t<l,
v+ v+ Ab(t)g(u) =0, 0<t<I1,

W'(0) =u(l)=0, 2 (0)=v(1)=0
has a positive solution for 0 < XA < A*.

N-1 (1.5)
t

Remark 1.6. It is worth remarking that Hai [I1] considered only the single equation
N -1
u” + Tu/ +Aa(t)f(u) =0, 0<t<]l,
u'(0) = u(1) = 0.
Here we extend [T, Corollary 1.2] to system (1.5).

2. PROOF OF MAIN RESULTS
Let o o -
C(Q) x C(Q) := {(u,v) : u,v are continuous on Q},
with the norm |[|(u, v)|| = max{||ul|cc, [|v]|cc }, Where [Jul|oe = max, g [u(z)|. Then
(C(Q) x C(Q),|(-,)]) is a Banach space.
In this article, we assume that
f0)=f(0), v<0; g(u)=g(0), u<O.
To prove our main result, we need the following lemma.
Lemma 2.1. Let 0 < § < 1. Then there exists a positive number X such that for
0< A<,
—Au = Xa"(z)f(v), inQ,
—Av =\t (2)g(u), in Q, (2.1)
u=0=wv, ondd
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has a positive solution (ty,vy) with ||(ax,0x)|| — 0 as A — 0, and
ax(z) 2 Adf(0)pi(z), =€ oa(z) > Aog(0)p2(z), z €,
where

p(x) = /Q Gle,y)a* (y)dy, pal) = /Q G, y)b* (v)dy,

and G(z,y) is the Green’s function of —A associated with Dirichlet boundary con-
dition.

Proof. Let A:C(Q2) x C(R2) — C(Q) x C(R2) be defined by
A(u,v)(z) = (A/QG(l:y)@*(y)f(v)dy,AAG(w,y)b+(y)g(U)dy)~

Then A : C(Q) x C() — C(Q) x C(Q) is completely continuous, and the fixed
points of A are solutions of system . We shall apply Lemma to prove that
A has a fixed point for A\ small.

Let € > 0 be such that

f(z) = 6f(0), g(x)>0dg(0), for0<uz<e. (2.2)

In fact, it follows from (H1’) that there exist two positive constants e;1,e5 small
such that

f(m)de(O), 0<z<ey; g(x)zég(()), 0<z<es.
Choosing € = min{ey, e2}, then (2.2) holds. Define

fit) = nax f(s), g(t)= nax g(s), (2.3)

then f and g are continuous and nondecreasing. Let

h(t) = max{f(t),g(t)}, (2.4)
then h is continuous.
e
Suppose that A < 2ol thus
h(e) 1
< . 2.5
= < Dl 25

where |[plloc = max{|[p1lec, [P2lloc}- _
(H1’), (2.3) and (2.4) imply that h(0) > 0, and therefore

_h(t) _

Inequalities (2.5)and (2.6 imply that there exists Ay € (0,¢) such that

h(Ay) 1
= . 2.7
A e 2.7)
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Now, let (u,v) € C(Q) x C(R2) and § € (0,1) be such that (u,v) = A(u,v). Then
we have
[[(w, )| = max{|[ul[oc, [[V]|oc }

< max {A|[pallocf([[]]00) Allp2llocg(llulloo) }

< max {A\[[p1 [loo S (I (s 0)1); Mllp2 oo (s v) 1)} (2.8)
< max {Al[plloc f(1I(w, ) 1), Allpllocg (Il (u, 0) )}

< AllpllocA( (u, 0)1)),

which implies that ||(u,v)|| # Ax. Note that Ay — 0 as A — 0. By Lemma
A has a fixed point (@, 0x) with [|(@x, 95)] < Ax < e. Consequently, from (2.2)) it
follows that

ux(z) 2 A0 f(0)pi(z), =€ oa(z) 2 A0g(0)p2(z), z€Q.  (2.9)
The proof is complete. ([

Proof of Theorem[1.3 Let
1) = [ Gatdr, w0 = [ Gy Gy
It follows from (H2), (H3) and Lemma that there exist four positive constants
a1, a2,71,72 € (0,1) such that
@1 (2)[f(s)] < mp1(2)f(0), for s €0,a1], z €
2(2)|g(s)| < 72p2(2)g(0),  for s € [0, 2], = € Q.
Let a = min{ay, as}. Then
a(@)|f(s)] <mpi(z)f(0), forse0,a], ze€ (2.10)
22(2)|g(s)| < v2p2(2)g(0), for s €[0,a], z € Q. (2.11)

Fix 6 € (v,1), where v = max{vy1,v2}. Let h(0) = max{f(0),g(0)} and let AT, \}
be so small such that
[ax]loc + A0R(0)[|plloc < @, for A € (0, A7),

[0alloe + A0R(0)[[Plloc < a,  for A € (0, A3),

where @) and 7, are given by Lemma 2.1} and

[f(t) = fs)] < f(0)5 — L, fort,s € [—a,al, [t —s| < A{A(0) [pllee,

2
6 — Y *
l9(t) = g()| < 9(0)=—57, for .5 € [~a,al, [t — 5| < A56h(0) [pl|sc-
Let A* = min{A}, A5}. Then for A € (0, \*), we have
[2xlloe + A0R(0)[plloc < @, [|0Alloc + A0R(0)]|pll0 < v, (2.12)
and for ¢,s € [—a,q], [t — s| < A*6h(0)]|p||oc, We have

70~ F6) < O™, lgth) — g(s)] < 9(0)

Now, let A < A*. We look for a solution (uy,vy) of (L.1)) of the form (@) +my, Ux +
wy). Thus (my,w)) solves the system

Amy = —)\a+(w)(f(17,\ + w,\) - f(ﬁ,\)) + Xa~ (.%‘)f(’f),\ + w,\), in Q,

0 — 2
. 2.1
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Awy = =" (2)(g(in +m») — g(an)) + A~ (2)g(in +my), inQ,
my =0=w,. on 0.
For each (v, ) € C(Q) x C(Q), let (m,w) = A(2), ) be the solution of the system
Am = —Xa (2)(f(0x + @) = f(B2) + Aa” (@) f(0x +¢), nQ,
Aw = =\b* (z)(g(tn + 1) — g(in)) + A0~ ()g(ax + ),  inQ,
m=0=w, on .
Then A : C(Q) x C(Q) — C(Q) x C(Q) is completely continuous. Let (m,w) €
C(Q) x C(Q2) and 6 € (0,1) be such that (m,w) = §A(m,w). Then
Am = —Xa™ (z)(f(0x +w) — f(Dy)) + Ma™ (2) f(Tx +w), in Q,
Aw = = \0bT () (g(ix +m) — g(ay)) + Nb™ (x)g(ix +m), in Q,
m=0=w, on 0f.

Now, we claim that ||(m,w)| # Adh(0)||p|lc. Suppose to the contrary that
[[(m, w)|| = AdR(0)]|p||co, then there are three possible cases.

Case 1. ||m|lec = [|w|lcc = AJR(0)||p]|co- Then we have frorn ) that ||Uy +
1-i

W|oo < |0 ]lco + AGR(0)||P]|cc < @, and so ||0x||cc < . Thus by we obtain
- - o —
(5 +w) = F(5)] < F(O) 2 (2.14)
On the other hand, implies
5—
[m(a)] < A1 (2)£(0) (2)/(0)
1) +
= Aps () £ (0) =
< Ap1(x)f(0)d

< ASR(0)|Iplloc, for € €,

which implies that ||m||s < A6R(0)||p||so, a contradiction.
Case 2. [w|w < [Imlloc = A6R(0)[[plloc-  Then [[ox + wlloo < [[Oalloc +
A3R(0)||plcc < @, and so ||Ux]|co < . Thus
0—m

£+ w) = F@)] < £

By the same method used to prove Case 1, we can show that ||m|ec < Adh(0)]|p]] oo,
which is a desired contradiction.

Case 3. ||m]e < ||lwl]leo = AJR(0)||P|lco- As in Case 2, we obtain ||w|e <
A6h(0)||plloo, & contradiction.

Then the claim is proved. By Lemma A has a fixed point (my,w)) with
[[(mx, wx)|| < AdR(0)||p||oo- Using Lemma we obtain

ux (@) = (2) — [ma()]

> Adp1 () f(0) — A

O+
2

f(O)p1(x)

=2 O ()
>0, xe€f

Similarly, we can prove that vy(z) > 0,2 € Q. The proof is complete. O
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Proof of Corollary[1.5. Multiplying the both sides of the equation

u” + ?u' = —a®(t), u'(0)=u(l)=0 (2.15)

by tV~1, we obtain
N ") = —aF ()N L (2.16)
Integrating the both sides of (2.16)) from 0 to ¢, we have

t
N (1) = —/ a*(s)s™N " lds.
0

Integrating the both sides of above equation from ¢ to 1, we have

0 /tl SNl_l (/Osai(T)TNldT)ds. (2.17)

Therefore the solution of problem (2.15)) is given by (2.17). This implies that
ut > kiu~. By the same method, we can show that v™ > kyv~, and the result
follows from Theorem [[.3} O

3. n X n SYSTEMS

In this section, we consider the existence of positive solutions of the n x n system

—Auy = Aay(2) fi(uz), in,

—Aug = Aag(z) fo(uz), in Q,
—Aup_1 = Aap_1(2) fno1(uy), inQ, (3.1)

—Au, = Aap(z) fr(ur), in Q,
Uy =uUg=---=1u, =0, ondf,

where a; € L*(Q) (i = 1,2,...,n) may be sign-changing in Q@ and A > 0 is a

parameter.
We assume the following conditions:

(H4) f; :[0,00) — R which is continuous and f;(0) >0 (i =1,2,...,n);

(H5) a; (i = 1,2,...,n) is continuous on ) and there exists k; > 1 (i =
1,2,...,n) such that

/Ga:y dy>k‘/Ga;y (y)dy, Vzeq,

where G(z,y) is defined as in Section 2.
Define the integral equation
(ug,ug, ..., uy) = A(ug, ug, ..., up),
where A : (C(Q))" — (C(Q))" is defined by

A(Ul,UQ, e ,un)(ac)
= (* [ Gnameds.. A [ Ggan) fulm)dy).

Theorem 3.1. Let (H4), (H5) hold. Then there exists a positive number \* such
that (3.1) has a positive solution for 0 < A < A*.

As a consequence of the above theorem we have the following corollary.
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Corollary 3.2. Let f; (i = 1,2,...,n) satisfy (H4). Let a; (i = 1,2,...,n) be

no
ki

nzero integrable functions on [0,1]. Suppose that there exist positive constants
> 1 such that

t ¢
/ sNlaf (s)ds > kl/ sV a7 (s)ds, forte[0,1], (i=1,2,...,n).
0 0

Then there exists a positive number X* such that the system

ha

1
2

3

[4
5
6
[7

8
[9

[10
[11
[12
(13
[14
[15

16

N -1
u'1' + T“i + )\al(t)fl(ug) =0, 0<t<l,

N -1
U/Q/+ 7 U/Q+Aa2(t)f2(U3) :0, 0<t< 17

N -1
un + ; ul, + Aan(t) fu(ur) =0, 0<t<1,
ui(0) = u;(1) =0

3

s a positive solution for 0 < A < \*.
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