Electronic Journal of Differential Equations, Vol. 2011 (2011), No. 164, pp. 1-8. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

EXISTENCE OF POSITIVE SOLUTIONS FOR SEMILINEAR ELLIPTIC SYSTEMS WITH INDEFINITE WEIGHT

RUIPENG CHEN

Abstract. This article concerns the existence of positive solutions of semi-

 linear elliptic system$$
\begin{gathered}
-\Delta u=\lambda a(x) f(v), \quad \text { in } \Omega, \\
-\Delta v=\lambda b(x) g(u), \quad \text { in } \Omega, \\
u=0=v, \quad \text { on } \partial \Omega,
\end{gathered}
$$

where $\Omega \subseteq \mathbb{R}^{N}(N \geq 1)$ is a bounded domain with a smooth boundary $\partial \Omega$ and λ is a positive parameter. $a, b: \Omega \rightarrow \mathbb{R}$ are sign-changing functions. $f, g:[0, \infty) \rightarrow \mathbb{R}$ are continuous with $f(0)>0, g(0)>0$. By applying LeraySchauder fixed point theorem, we establish the existence of positive solutions for λ sufficiently small.

1. Introduction

Let $\Omega \subseteq \mathbb{R}^{N}(N \geq 1)$ be a bounded domain with a smooth boundary $\partial \Omega$ and $\lambda>0$ a parameter. Let $a, b: \Omega \rightarrow \mathbb{R}$ be sign-changing functions. We are concerned with the existence of positive solutions of the semilinear elliptic system

$$
\begin{gather*}
-\Delta u=\lambda a(x) f(v), \quad \text { in } \Omega, \\
-\Delta v=\lambda b(x) g(u), \quad \text { in } \Omega, \tag{1.1}\\
u=0=v, \quad \text { on } \partial \Omega .
\end{gather*}
$$

In the past few years, the existence of positive solutions of the nonlinear eigenvalue problem

$$
\begin{equation*}
-\Delta u=\lambda f(u) \tag{1.2}
\end{equation*}
$$

has been studied extensively by many authors. It is well-known that many problems in mathematical physics may lead to problem 1.2 . See, for example, fluid dynamics [1, combustion theory [2, 10, nonlinear field equations [3], wave phenomena [15], etc. Lions [14] studied the existence of positive solutions of Dirichlet problem

$$
\begin{gather*}
-\Delta u=\lambda a(x) f(u), \quad \text { in } \Omega, \\
u=0, \quad \text { on } \partial \Omega \tag{1.3}
\end{gather*}
$$

[^0]with the weight function and nonlinearity satisfy $a \geq 0, f \geq 0$, respectively. Problem (1.3) with indefinite weight $a(\cdot)$ is more interesting, and which has been studied by Brown [4, 5], Cac [6], Hai [11] and the references therein.

In recent years, a good amount of research is established for reaction-diffusion systems. Reaction-diffusion systems model many phenomena in Biology, Ecology, combustion theory, chemical reactors, population dynamics etc. And the elliptic system

$$
\begin{gather*}
-\Delta u=\lambda f(v), \quad \text { in } \Omega, \\
-\Delta v=\lambda g(u), \quad \text { in } \Omega, \tag{1.4}\\
u=0=v, \quad \text { on } \partial \Omega
\end{gather*}
$$

has been considered as a typical example of these models. The existence of positive solutions of (1.4) is established by de Figueiredo [9] et al, by an Orlicz space setting for $N \geq 3$. Hulshof et al [13] established the existence of positive solutions for (1.4) by variational technique for $N \geq 1$. Dalmasso [7] proved the existence of positive solutions of 1.4 by Schauder's fixed point theorem. Hai and Shivaji [12] established the existence of positive solution of 1.4 for λ large, by using the method of sub and supersolutions and Schauder's fixed point theorem.

Recently, Tyagi [16] studied the existence of positive solutions of (1.1) by the method of monotone iteration and Schauder's fixed point theorem. He assumed that $a, b \in L^{\infty}(\Omega)$ and
(H1) $f, g:[0, \infty) \rightarrow[0, \infty)$ which are continuous and nondecreasing on $[0, \infty)$;
(H2) There exists $\mu_{1}>0$ such that

$$
\int_{\Omega} G(x, y) a^{+}(y) d y \geq\left(1+\mu_{1}\right) \int_{\Omega} G(x, y) a^{-}(y) d y, \quad \forall x \in \Omega
$$

(H3) There exists $\mu_{2}>0$ such that

$$
\int_{\Omega} G(x, y) b^{+}(y) d y \geq\left(1+\mu_{2}\right) \int_{\Omega} G(x, y) b^{-}(y) d y, \quad \forall x \in \Omega
$$

where $G(x, y)$ is the Green's function of $-\Delta$ associated with Dirichlet boundary condition.
Here a^{+}, b^{+}are positive parts of a and b; while a^{-}and b^{-}are the negative parts. The main result of Tyagi [16] reads as follows.
Theorem 1.1. Assume $f(0)>0, g(0)>0, f$ and g both are nondecreasing, and continuous functions. Also assume (H2), (H3). Then there exists $\lambda^{*}>0$ depending on $f, g, a, b, \mu_{i}, i=1,2$ such that (1.1) has a nonnegative solution for $0 \leq \lambda \leq \lambda^{*}$.

Motivated by the above references, the purpose of the present article is to study the existence of positive solutions of (1.1) by using the Leray-Schauder fixed point theorem:

Lemma 1.2 (8). Let X be a Banach space and $T: X \rightarrow X$ a completely continuous operator. Suppose that there exists a constant $M>0$, such that each solution $(x, \sigma) \in X \times[0,1]$ of

$$
x=\sigma T x, \quad \sigma \in[0,1], x \in X
$$

satisfies $\|x\|_{X} \leq M$. Then T has a fixed point.
Next, we state the main result of this article, under the assumption
$\left(\mathrm{H}^{\prime}\right) f, g:[0, \infty) \rightarrow \mathbb{R}$ are continuous with $f(0)>0, g(0)>0$.

Theorem 1.3. Let a, b be nonzero continuous functions on $\bar{\Omega}$. Assume that (H1'), (H2), (H3) hold. Then there exists a positive number λ^{*} such that 1.1) has a positive solution for $0<\lambda<\lambda^{*}$.

Remark 1.4. Assumption (H1') implies that the nonlinearities f and g can change their signs, but can not be monotone; thus (H1') is much weaker than the assumption (H1) used in Tyagi [16. We obtain a similar result as Theorem 1.1 under the weaker condition (H1'). It is worth remarking that in proving the Theorem 1.3 we extend the results in Hai [11].

As a consequence of Theorem 1.3 , we have the following result.
Corollary 1.5. Assume that (H1') holds. Let a, b be nonzero integrable functions on $[0,1]$. Suppose that there exist two positive constants $k_{1}>1$ and $k_{2}>1$ such that

$$
\begin{array}{ll}
\int_{0}^{t} s^{N-1} a^{+}(s) d s \geq k_{1} \int_{0}^{t} s^{N-1} a^{-}(s) d s, & \forall t \in[0,1], \\
\int_{0}^{t} s^{N-1} b^{+}(s) d s \geq k_{2} \int_{0}^{t} s^{N-1} b^{-}(s) d s, & \forall t \in[0,1] .
\end{array}
$$

Then there exists a positive number λ^{*} such that the system

$$
\begin{gather*}
u^{\prime \prime}+\frac{N-1}{t} u^{\prime}+\lambda a(t) f(v)=0, \quad 0<t<1 \\
v^{\prime \prime}+\frac{N-1}{t} v^{\prime}+\lambda b(t) g(u)=0, \quad 0<t<1 \tag{1.5}\\
u^{\prime}(0)=u(1)=0, \quad v^{\prime}(0)=v(1)=0
\end{gather*}
$$

has a positive solution for $0<\lambda<\lambda^{*}$.
Remark 1.6. It is worth remarking that Hai 11 considered only the single equation

$$
\begin{gathered}
u^{\prime \prime}+\frac{N-1}{t} u^{\prime}+\lambda a(t) f(u)=0, \quad 0<t<1, \\
u^{\prime}(0)=u(1)=0 .
\end{gathered}
$$

Here we extend [7, Corollary 1.2] to system (1.5).

2. Proof of main results

Let

$$
C(\bar{\Omega}) \times C(\bar{\Omega}):=\{(u, v): u, v \text { are continuous on } \bar{\Omega}\},
$$

with the norm $\|(u, v)\|=\max \left\{\|u\|_{\infty},\|v\|_{\infty}\right\}$, where $\|u\|_{\infty}=\max _{x \in \bar{\Omega}}|u(x)|$. Then $(C(\bar{\Omega}) \times C(\bar{\Omega}),\|(\cdot, \cdot)\|)$ is a Banach space.

In this article, we assume that

$$
f(v)=f(0), \quad v \leq 0 ; \quad g(u)=g(0), \quad u \leq 0
$$

To prove our main result, we need the following lemma.
Lemma 2.1. Let $0<\delta<1$. Then there exists a positive number $\bar{\lambda}$ such that for $0<\lambda<\bar{\lambda}$,

$$
\begin{align*}
-\Delta u & =\lambda a^{+}(x) f(v), \quad \text { in } \Omega \\
-\Delta v & =\lambda b^{+}(x) g(u), \quad \text { in } \Omega, \tag{2.1}\\
u & =0=v, \quad \text { on } \partial \Omega
\end{align*}
$$

has a positive solution $\left(\tilde{u}_{\lambda}, \tilde{v}_{\lambda}\right)$ with $\left\|\left(\tilde{u}_{\lambda}, \tilde{v}_{\lambda}\right)\right\| \rightarrow 0$ as $\lambda \rightarrow 0$, and

$$
\tilde{u}_{\lambda}(x) \geq \lambda \delta f(0) p_{1}(x), \quad x \in \Omega ; \quad \tilde{v}_{\lambda}(x) \geq \lambda \delta g(0) p_{2}(x), \quad x \in \Omega,
$$

where

$$
p_{1}(x)=\int_{\Omega} G(x, y) a^{+}(y) d y, \quad p_{2}(x)=\int_{\Omega} G(x, y) b^{+}(y) d y
$$

and $G(x, y)$ is the Green's function of $-\Delta$ associated with Dirichlet boundary condition.

Proof. Let $A: C(\bar{\Omega}) \times C(\bar{\Omega}) \rightarrow C(\bar{\Omega}) \times C(\bar{\Omega})$ be defined by

$$
A(u, v)(x)=\left(\lambda \int_{\Omega} G(x, y) a^{+}(y) f(v) d y, \lambda \int_{\Omega} G(x, y) b^{+}(y) g(u) d y\right)
$$

Then $A: C(\bar{\Omega}) \times C(\bar{\Omega}) \rightarrow C(\bar{\Omega}) \times C(\bar{\Omega})$ is completely continuous, and the fixed points of A are solutions of system (2.1). We shall apply Lemma 1.2 to prove that A has a fixed point for λ small.

Let $\varepsilon>0$ be such that

$$
\begin{equation*}
f(x) \geq \delta f(0), \quad g(x) \geq \delta g(0), \quad \text { for } 0 \leq x \leq \varepsilon \tag{2.2}
\end{equation*}
$$

In fact, it follows from $\left(\mathrm{H}^{\prime}\right)$ that there exist two positive constants $\varepsilon_{1}, \varepsilon_{2}$ small such that

$$
f(x) \geq \delta f(0), \quad 0 \leq x \leq \varepsilon_{1} ; \quad g(x) \geq \delta g(0), \quad 0 \leq x \leq \varepsilon_{2} .
$$

Choosing $\varepsilon=\min \left\{\varepsilon_{1}, \varepsilon_{2}\right\}$, then 2.2 holds. Define

$$
\begin{equation*}
\widetilde{f}(t)=\max _{s \in[0, t]} f(s), \quad \widetilde{g}(t)=\max _{s \in[0, t]} g(s) \tag{2.3}
\end{equation*}
$$

then \widetilde{f} and \widetilde{g} are continuous and nondecreasing. Let

$$
\begin{equation*}
\widetilde{h}(t)=\max \{\widetilde{f}(t), \widetilde{g}(t)\} \tag{2.4}
\end{equation*}
$$

then \widetilde{h} is continuous.
Suppose that $\lambda<\frac{\varepsilon}{2\|p\|_{\infty} \tilde{h}(\varepsilon)}$, thus

$$
\begin{equation*}
\frac{\widetilde{h}(\varepsilon)}{\varepsilon}<\frac{1}{2 \lambda\|p\|_{\infty}} \tag{2.5}
\end{equation*}
$$

where $\|p\|_{\infty}=\max \left\{\left\|p_{1}\right\|_{\infty},\left\|p_{2}\right\|_{\infty}\right\}$.
$\left(\mathrm{H}^{\prime}\right),(2.3)$ and (2.4) imply that $\widetilde{h}(0)>0$, and therefore

$$
\begin{equation*}
\lim _{t \rightarrow 0+} \frac{\widetilde{h}(t)}{t}=+\infty \tag{2.6}
\end{equation*}
$$

Inequalities 2.5 and (2.6) imply that there exists $A_{\lambda} \in(0, \varepsilon)$ such that

$$
\begin{equation*}
\frac{\widetilde{h}\left(A_{\lambda}\right)}{A_{\lambda}}=\frac{1}{2 \lambda\|p\|_{\infty}} \tag{2.7}
\end{equation*}
$$

Now, let $(u, v) \in C(\bar{\Omega}) \times C(\bar{\Omega})$ and $\theta \in(0,1)$ be such that $(u, v)=\theta A(u, v)$. Then we have

$$
\begin{align*}
\|(u, v)\| & =\max \left\{\|u\|_{\infty},\|v\|_{\infty}\right\} \\
& \leq \max \left\{\lambda\left\|p_{1}\right\|_{\infty} \widetilde{f}\left(\|v\|_{\infty}\right), \lambda\left\|p_{2}\right\|_{\infty} \widetilde{g}\left(\|u\|_{\infty}\right)\right\} \\
& \leq \max \left\{\lambda\left\|p_{1}\right\|_{\infty} \widetilde{f}(\|(u, v)\|), \lambda\left\|p_{2}\right\|_{\infty} \widetilde{g}(\|(u, v)\|)\right\} \tag{2.8}\\
& \leq \max \left\{\lambda\|p\|_{\infty} \widetilde{f}(\|(u, v)\|), \lambda\|p\|_{\infty} \widetilde{g}(\|(u, v)\|)\right\} \\
& \leq \lambda\|p\|_{\infty} \widetilde{h}(\|(u, v)\|),
\end{align*}
$$

which implies that $\|(u, v)\| \neq A_{\lambda}$. Note that $A_{\lambda} \rightarrow 0$ as $\lambda \rightarrow 0$. By Lemma 1.2 , A has a fixed point $\left(\tilde{u}_{\lambda}, \tilde{v}_{\lambda}\right)$ with $\left\|\left(\tilde{u}_{\lambda}, \tilde{v}_{\lambda}\right)\right\| \leq A_{\lambda}<\varepsilon$. Consequently, from (2.2) it follows that

$$
\begin{equation*}
\tilde{u}_{\lambda}(x) \geq \lambda \delta f(0) p_{1}(x), \quad x \in \Omega ; \quad \tilde{v}_{\lambda}(x) \geq \lambda \delta g(0) p_{2}(x), \quad x \in \Omega \tag{2.9}
\end{equation*}
$$

The proof is complete.
Proof of Theorem 1.3. Let

$$
q_{1}(x)=\int_{\Omega} G(x, y) a^{-}(y) d y, \quad q_{2}(x)=\int_{\Omega} G(x, y) b^{-}(y) d y
$$

It follows from $(\mathrm{H} 2),(\mathrm{H} 3)$ and Lemma 2.1 that there exist four positive constants $\alpha_{1}, \alpha_{2}, \gamma_{1}, \gamma_{2} \in(0,1)$ such that

$$
\begin{aligned}
& q_{1}(x)|f(s)| \leq \gamma_{1} p_{1}(x) f(0), \quad \text { for } s \in\left[0, \alpha_{1}\right], x \in \Omega \\
& q_{2}(x)|g(s)| \leq \gamma_{2} p_{2}(x) g(0), \quad \text { for } s \in\left[0, \alpha_{2}\right], x \in \Omega
\end{aligned}
$$

Let $\alpha=\min \left\{\alpha_{1}, \alpha_{2}\right\}$. Then

$$
\begin{array}{ll}
q_{1}(x)|f(s)| \leq \gamma_{1} p_{1}(x) f(0), & \text { for } s \in[0, \alpha], x \in \Omega \\
q_{2}(x)|g(s)| \leq \gamma_{2} p_{2}(x) g(0), & \text { for } s \in[0, \alpha], x \in \Omega \tag{2.11}
\end{array}
$$

Fix $\delta \in(\gamma, 1)$, where $\gamma=\max \left\{\gamma_{1}, \gamma_{2}\right\}$. Let $h(0)=\max \{f(0), g(0)\}$ and let $\lambda_{1}^{*}, \lambda_{2}^{*}$ be so small such that

$$
\begin{array}{ll}
\left\|\tilde{u}_{\lambda}\right\|_{\infty}+\lambda \delta h(0)\|p\|_{\infty} \leq \alpha, & \text { for } \lambda \in\left(0, \lambda_{1}^{*}\right) \\
\left\|\tilde{v}_{\lambda}\right\|_{\infty}+\lambda \delta h(0)\|p\|_{\infty} \leq \alpha, & \text { for } \lambda \in\left(0, \lambda_{2}^{*}\right)
\end{array}
$$

where \tilde{u}_{λ} and \tilde{v}_{λ} are given by Lemma 2.1, and

$$
\begin{aligned}
& |f(t)-f(s)| \leq f(0) \frac{\delta-\gamma_{1}}{2}, \quad \text { for } t, s \in[-\alpha, \alpha],|t-s| \leq \lambda_{1}^{*} \delta h(0)\|p\|_{\infty} \\
& |g(t)-g(s)| \leq g(0) \frac{\delta-\gamma_{2}}{2}, \quad \text { for } t, s \in[-\alpha, \alpha],|t-s| \leq \lambda_{2}^{*} \delta h(0)\|p\|_{\infty}
\end{aligned}
$$

Let $\lambda^{*}=\min \left\{\lambda_{1}^{*}, \lambda_{2}^{*}\right\}$. Then for $\lambda \in\left(0, \lambda^{*}\right)$, we have

$$
\begin{equation*}
\left\|\tilde{u}_{\lambda}\right\|_{\infty}+\lambda \delta h(0)\|p\|_{\infty} \leq \alpha, \quad\left\|\tilde{v}_{\lambda}\right\|_{\infty}+\lambda \delta h(0)\|p\|_{\infty} \leq \alpha \tag{2.12}
\end{equation*}
$$

and for $t, s \in[-\alpha, \alpha],|t-s| \leq \lambda^{*} \delta h(0)\|p\|_{\infty}$, we have

$$
\begin{equation*}
|f(t)-f(s)| \leq f(0) \frac{\delta-\gamma_{1}}{2}, \quad|g(t)-g(s)| \leq g(0) \frac{\delta-\gamma_{2}}{2} \tag{2.13}
\end{equation*}
$$

Now, let $\lambda<\lambda^{*}$. We look for a solution $\left(u_{\lambda}, v_{\lambda}\right)$ of 1.1 of the form $\left(\tilde{u}_{\lambda}+m_{\lambda}, \tilde{v}_{\lambda}+\right.$ $\left.w_{\lambda}\right)$. Thus $\left(m_{\lambda}, w_{\lambda}\right)$ solves the system

$$
\Delta m_{\lambda}=-\lambda a^{+}(x)\left(f\left(\tilde{v}_{\lambda}+w_{\lambda}\right)-f\left(\tilde{v}_{\lambda}\right)\right)+\lambda a^{-}(x) f\left(\tilde{v}_{\lambda}+w_{\lambda}\right), \quad \text { in } \Omega
$$

$$
\begin{gathered}
\Delta w_{\lambda}=-\lambda b^{+}(x)\left(g\left(\tilde{u}_{\lambda}+m_{\lambda}\right)-g\left(\tilde{u}_{\lambda}\right)\right)+\lambda b^{-}(x) g\left(\tilde{u}_{\lambda}+m_{\lambda}\right), \quad \text { in } \Omega \\
m_{\lambda}=0=w_{\lambda} . \quad \text { on } \partial \Omega
\end{gathered}
$$

For each $(\psi, \varphi) \in C(\bar{\Omega}) \times C(\bar{\Omega})$, let $(m, w)=A(\psi, \varphi)$ be the solution of the system

$$
\begin{array}{cl}
\Delta m=-\lambda a^{+}(x)\left(f\left(\tilde{v}_{\lambda}+\varphi\right)-f\left(\tilde{v}_{\lambda}\right)\right)+\lambda a^{-}(x) f\left(\tilde{v}_{\lambda}+\varphi\right), & \text { in } \Omega \\
\Delta w=-\lambda b^{+}(x)\left(g\left(\tilde{u}_{\lambda}+\psi\right)-g\left(\tilde{u}_{\lambda}\right)\right)+\lambda b^{-}(x) g\left(\tilde{u}_{\lambda}+\psi\right), & \text { in } \Omega, \\
m=0=w, \quad \text { on } \partial \Omega
\end{array}
$$

Then $A: C(\bar{\Omega}) \times C(\bar{\Omega}) \rightarrow C(\bar{\Omega}) \times C(\bar{\Omega})$ is completely continuous. Let $(m, w) \in$ $C(\bar{\Omega}) \times C(\bar{\Omega})$ and $\theta \in(0,1)$ be such that $(m, w)=\theta A(m, w)$. Then

$$
\begin{array}{cc}
\Delta m=-\lambda \theta a^{+}(x)\left(f\left(\tilde{v}_{\lambda}+w\right)-f\left(\tilde{v}_{\lambda}\right)\right)+\lambda \theta a^{-}(x) f\left(\tilde{v}_{\lambda}+w\right), & \text { in } \Omega, \\
\Delta w=-\lambda \theta b^{+}(x)\left(g\left(\tilde{u}_{\lambda}+m\right)-g\left(\tilde{u}_{\lambda}\right)\right)+\lambda \theta b^{-}(x) g\left(\tilde{u}_{\lambda}+m\right), & \text { in } \Omega, \\
m=0=w, \quad \text { on } \partial \Omega
\end{array}
$$

Now, we claim that $\|(m, w)\| \neq \lambda \delta h(0)\|p\|_{\infty}$. Suppose to the contrary that $\|(m, w)\|=\lambda \delta h(0)\|p\|_{\infty}$, then there are three possible cases.

Case 1. $\|m\|_{\infty}=\|w\|_{\infty}=\lambda \delta h(0)\|p\|_{\infty}$. Then we have from 2.12 that $\| \tilde{v}_{\lambda}+$ $w\left\|_{\infty} \leq\right\| \tilde{v}_{\lambda}\left\|_{\infty}+\lambda \delta h(0)\right\| p \|_{\infty} \leq \alpha$, and so $\left\|\tilde{v}_{\lambda}\right\|_{\infty} \leq \alpha$. Thus by (2.13) we obtain

$$
\begin{equation*}
\left|f\left(\tilde{v}_{\lambda}+w\right)-f\left(\tilde{v}_{\lambda}\right)\right| \leq f(0) \frac{\delta-\gamma_{1}}{2} \tag{2.14}
\end{equation*}
$$

On the other hand, 2.14 implies

$$
\begin{aligned}
|m(x)| & \leq \lambda p_{1}(x) f(0) \frac{\delta-\gamma_{1}}{2}+\lambda \gamma_{1} p_{1}(x) f(0) \\
& =\lambda p_{1}(x) f(0) \frac{\delta+\gamma_{1}}{2} \\
& <\lambda p_{1}(x) f(0) \delta \\
& \leq \lambda \delta h(0)\|p\|_{\infty}, \quad \text { for } x \in \Omega
\end{aligned}
$$

which implies that $\|m\|_{\infty}<\lambda \delta h(0)\|p\|_{\infty}$, a contradiction.
Case 2. $\|w\|_{\infty}<\|m\|_{\infty}=\lambda \delta h(0)\|p\|_{\infty}$. Then $\left\|\tilde{v}_{\lambda}+w\right\|_{\infty}<\left\|\tilde{v}_{\lambda}\right\|_{\infty}+$ $\lambda \delta h(0)\|p\|_{\infty} \leq \alpha$, and so $\left\|\tilde{v}_{\lambda}\right\|_{\infty} \leq \alpha$. Thus

$$
\left|f\left(\tilde{v}_{\lambda}+w\right)-f\left(\tilde{v}_{\lambda}\right)\right| \leq f(0) \frac{\delta-\gamma_{1}}{2}
$$

By the same method used to prove Case 1, we can show that $\|m\|_{\infty}<\lambda \delta h(0)\|p\|_{\infty}$, which is a desired contradiction.

Case 3. $\|m\|_{\infty}<\|w\|_{\infty}=\lambda \delta h(0)\|p\|_{\infty}$. As in Case 2, we obtain $\|w\|_{\infty}<$ $\lambda \delta h(0)\|p\|_{\infty}$, a contradiction.

Then the claim is proved. By Lemma 1.2 , A has a fixed point $\left(m_{\lambda}, w_{\lambda}\right)$ with $\left\|\left(m_{\lambda}, w_{\lambda}\right)\right\| \leq \lambda \delta h(0)\|p\|_{\infty}$. Using Lemma 2.1. we obtain

$$
\begin{aligned}
u_{\lambda}(x) & \geq \tilde{u}_{\lambda}(x)-\left|m_{\lambda}(x)\right| \\
& \geq \lambda \delta p_{1}(x) f(0)-\lambda \frac{\delta+\gamma_{1}}{2} f(0) p_{1}(x) \\
& =\lambda \frac{\delta-\gamma_{1}}{2} f(0) p_{1}(x) \\
& >0, \quad x \in \Omega
\end{aligned}
$$

Similarly, we can prove that $v_{\lambda}(x)>0, x \in \Omega$. The proof is complete.

Proof of Corollary 1.5. Multiplying the both sides of the equation

$$
\begin{equation*}
u^{\prime \prime}+\frac{N-1}{t} u^{\prime}=-a^{ \pm}(t), \quad u^{\prime}(0)=u(1)=0 \tag{2.15}
\end{equation*}
$$

by t^{N-1}, we obtain

$$
\begin{equation*}
\left(t^{N-1} u^{\prime}\right)^{\prime}=-a^{ \pm}(t) t^{N-1} \tag{2.16}
\end{equation*}
$$

Integrating the both sides of 2.16 from 0 to t, we have

$$
t^{N-1} u^{\prime}(t)=-\int_{0}^{t} a^{ \pm}(s) s^{N-1} d s
$$

Integrating the both sides of above equation from t to 1 , we have

$$
\begin{equation*}
u^{ \pm}(t)=\int_{t}^{1} \frac{1}{s^{N-1}}\left(\int_{0}^{s} a^{ \pm}(\tau) \tau^{N-1} d \tau\right) d s \tag{2.17}
\end{equation*}
$$

Therefore the solution of problem 2.15 is given by (2.17). This implies that $u^{+} \geq k_{1} u^{-}$. By the same method, we can show that $v^{+} \geq k_{2} v^{-}$, and the result follows from Theorem 1.3 .

$$
\text { 3. } n \times n \text { SYSTEMS }
$$

In this section, we consider the existence of positive solutions of the $n \times n$ system

$$
\begin{gather*}
-\Delta u_{1}=\lambda a_{1}(x) f_{1}\left(u_{2}\right), \quad \text { in } \Omega, \\
-\Delta u_{2}=\lambda a_{2}(x) f_{2}\left(u_{3}\right), \quad \text { in } \Omega \\
\cdots \tag{3.1}\\
-\Delta u_{n-1}=\lambda a_{n-1}(x) f_{n-1}\left(u_{n}\right), \quad \text { in } \Omega, \\
-\Delta u_{n}=\lambda a_{n}(x) f_{n}\left(u_{1}\right), \quad \text { in } \Omega \\
u_{1}=u_{2}=\cdots=u_{n}=0, \quad \text { on } \partial \Omega,
\end{gather*}
$$

where $a_{i} \in L^{\infty}(\Omega)(i=1,2, \ldots, n)$ may be sign-changing in Ω and $\lambda>0$ is a parameter.

We assume the following conditions:
(H4) $f_{i}:[0, \infty) \rightarrow \mathbb{R}$ which is continuous and $f_{i}(0)>0(i=1,2, \ldots, n)$;
(H5) $a_{i}(i=1,2, \ldots, n)$ is continuous on $\bar{\Omega}$ and there exists $k_{i}>1(i=$ $1,2, \ldots, n)$ such that

$$
\int_{\Omega} G(x, y) a_{i}^{+}(y) d y \geq k_{i} \int_{\Omega} G(x, y) a_{i}^{-}(y) d y, \quad \forall x \in \Omega
$$

where $G(x, y)$ is defined as in Section 2.
Define the integral equation

$$
\left(u_{1}, u_{2}, \ldots, u_{n}\right)=A\left(u_{1}, u_{2}, \ldots, u_{n}\right)
$$

where $A:(C(\bar{\Omega}))^{n} \rightarrow(C(\bar{\Omega}))^{n}$ is defined by

$$
\begin{aligned}
& A\left(u_{1}, u_{2}, \ldots, u_{n}\right)(x) \\
& =\left(\lambda \int_{\Omega} G(x, y) a_{1}(y) f_{1}\left(u_{2}\right) d y, \ldots, \lambda \int_{\Omega} G(x, y) a_{n}(y) f_{n}\left(u_{1}\right) d y\right) .
\end{aligned}
$$

Theorem 3.1. Let (H4), (H5) hold. Then there exists a positive number λ^{*} such that (3.1) has a positive solution for $0<\lambda<\lambda^{*}$.

As a consequence of the above theorem we have the following corollary.

Corollary 3.2. Let $f_{i}(i=1,2, \ldots, n)$ satisfy (H4). Let $a_{i}(i=1,2, \ldots, n)$ be nonzero integrable functions on $[0,1]$. Suppose that there exist positive constants $k_{i}>1$ such that

$$
\int_{0}^{t} s^{N-1} a_{i}^{+}(s) d s \geq k_{i} \int_{0}^{t} s^{N-1} a_{i}^{-}(s) d s, \quad \text { for } t \in[0,1],(i=1,2, \ldots, n) .
$$

Then there exists a positive number λ^{*} such that the system

$$
\begin{gathered}
u_{1}^{\prime \prime}+\frac{N-1}{t} u_{1}^{\prime}+\lambda a_{1}(t) f_{1}\left(u_{2}\right)=0, \quad 0<t<1, \\
u_{2}^{\prime \prime}+\frac{N-1}{t} u_{2}^{\prime}+\lambda a_{2}(t) f_{2}\left(u_{3}\right)=0, \quad 0<t<1, \\
\ldots \\
u_{n}^{\prime \prime}+\frac{N-1}{t} u_{n}^{\prime}+\lambda a_{n}(t) f_{n}\left(u_{1}\right)=0, \quad 0<t<1, \\
u_{i}^{\prime}(0)=u_{i}(1)=0
\end{gathered}
$$

has a positive solution for $0<\lambda<\lambda^{*}$.

References

[1] D. Aronson, M. G. Crandall, L. A. Peletier; Stabilization of solutions of a degenerate nonlinear diffusion problem, Nonlinear Anal. 6 (1982), 1001-1022.
[2] J. W. Bebernes, D. R. Kassoy; A mathematical analysis of blow up for thermal reactions-the spatially inhomogeneous case, SIAM J. Appl. Math. 40(1) (1981), 476-484.
[3] H. Berestycki, P. L. Lions; Existence of a Groud State in Nonlinear Equations of the Type Klein-Gordon, in Variational Inequalities, Cottle Gianessi, J. L. Lions, Eds., J. Wiley, New York, 1980.
[4] K. J. Brown, A. Tertikas; On the bifurcation of radially symmetric steady-state solutions arising in population genetics, SIAM J. Math. Anal. 22(2) (1991), 400-413.
[5] K. J. Brown, N. M. Stavrakakis; On the construction of sup and subsolutions for elliptic equations on all of $\mathbb{R}^{\mathbb{N}}$, Nonlinear Anal. 32 (1998), 87-95.
[6] N. P. Cac, A. M. Fink, J. A. Gatica; Nonnegative solutions of the radial Laplacian with nonlinearity that changes sign, Proc. Amer. Math. Soc. 123(5) (1995), 1393-1398.
[7] R. Dalmasso; Existence and uniqueness of positive solutions of semilinear elliptic systems, Nonlinear Anal. 39 (2000), 559-568.
[8] K. Deimling; Nonlinear Functional Analysis, New York, Springer-Verlag, 1985.
[9] D. G. de Figueiredo, J. Marcos do Ó. B. Ruf; An Orlicz-space approach to superlinear elliptic system, J. Funct. Anal. 224 (2005), 471-496.
[10] A. M. Fink; The radial Laplacian Gelfand problem, in: Delay and Differential Equations, World Scientific, New Jersey, 1992, pp.93-98.
[11] D. D. Hai; Positive solutions to a class of elliptic boundary value problems, J. Math. Anal. Appl. 227 (1998), 195-199.
[12] D. D. Hai, R. Shivaji; An existence result on positive solutions for a class of semilinear elliptic systems, Proc. Roy. Soc. Edinburgh. 134 A (2004), 137-141.
[13] D. Hulshof, R. Van der Vorst; Differential systems with strongly indefinite variational structure, J. Funct. Anal. 114 (1993), 32-58.
[14] P. L. Lions; On the existence of positive solutions of semilinear elliptic equations, SIAM Rev. 24 (1982), 441-467.
[15] W. A. Strauss; Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), 149-162.
[16] J. Tyagi; Existence of nonnegative solutions for a class of semilinear elliptic systems with indefinite weight, Nonlinear Anal. 73 (2010), 2882-2889.

Ruipeng Chen
Department of Mathematics, Northwest Normal University, Lanzhou, 730070, China
E-mail address: ruipengchen@126.com

[^0]: 2000 Mathematics Subject Classification. 35J45.
 Key words and phrases. Semilinear elliptic systems; indefinite weight; positive solutions; existence of solutions.
 © 2011 Texas State University - San Marcos.
 Submitted September 13, 2011. Published December 13, 2011.

