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EXISTENCE OF POSITIVE SOLUTIONS FOR SEMILINEAR
ELLIPTIC SYSTEMS WITH INDEFINITE WEIGHT

RUIPENG CHEN

Abstract. This article concerns the existence of positive solutions of semi-
linear elliptic system

−∆u = λa(x)f(v), in Ω,

−∆v = λb(x)g(u), in Ω,

u = 0 = v, on ∂Ω,

where Ω ⊆ RN (N ≥ 1) is a bounded domain with a smooth boundary ∂Ω
and λ is a positive parameter. a, b : Ω → R are sign-changing functions.
f, g : [0,∞) → R are continuous with f(0) > 0, g(0) > 0. By applying Leray-
Schauder fixed point theorem, we establish the existence of positive solutions
for λ sufficiently small.

1. Introduction

Let Ω ⊆ RN (N ≥ 1) be a bounded domain with a smooth boundary ∂Ω and
λ > 0 a parameter. Let a, b : Ω → R be sign-changing functions. We are concerned
with the existence of positive solutions of the semilinear elliptic system

−∆u = λa(x)f(v), in Ω,

−∆v = λb(x)g(u), in Ω,
u = 0 = v, on ∂Ω.

(1.1)

In the past few years, the existence of positive solutions of the nonlinear eigen-
value problem

−∆u = λf(u) (1.2)
has been studied extensively by many authors. It is well-known that many prob-
lems in mathematical physics may lead to problem (1.2). See, for example, fluid
dynamics [1], combustion theory [2, 10], nonlinear field equations [3], wave phe-
nomena [15], etc. Lions [14] studied the existence of positive solutions of Dirichlet
problem

−∆u = λa(x)f(u), in Ω,
u = 0, on ∂Ω

(1.3)
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with the weight function and nonlinearity satisfy a ≥ 0, f ≥ 0, respectively. Prob-
lem (1.3) with indefinite weight a(·) is more interesting, and which has been studied
by Brown [4, 5], Cac [6], Hai [11] and the references therein.

In recent years, a good amount of research is established for reaction-diffusion
systems. Reaction-diffusion systems model many phenomena in Biology, Ecology,
combustion theory, chemical reactors, population dynamics etc. And the elliptic
system

−∆u = λf(v), in Ω,

−∆v = λg(u), in Ω,
u = 0 = v, on ∂Ω

(1.4)

has been considered as a typical example of these models. The existence of positive
solutions of (1.4) is established by de Figueiredo [9] et al, by an Orlicz space setting
for N ≥ 3. Hulshof et al [13] established the existence of positive solutions for
(1.4) by variational technique for N ≥ 1. Dalmasso [7] proved the existence of
positive solutions of (1.4) by Schauder’s fixed point theorem. Hai and Shivaji
[12] established the existence of positive solution of (1.4) for λ large, by using the
method of sub and supersolutions and Schauder’s fixed point theorem.

Recently, Tyagi [16] studied the existence of positive solutions of (1.1) by the
method of monotone iteration and Schauder’s fixed point theorem. He assumed
that a, b ∈ L∞(Ω) and

(H1) f, g : [0,∞) → [0,∞) which are continuous and nondecreasing on [0,∞);
(H2) There exists µ1 > 0 such that∫

Ω

G(x, y)a+(y)dy ≥ (1 + µ1)
∫

Ω

G(x, y)a−(y)dy, ∀x ∈ Ω;

(H3) There exists µ2 > 0 such that∫
Ω

G(x, y)b+(y)dy ≥ (1 + µ2)
∫

Ω

G(x, y)b−(y)dy, ∀x ∈ Ω,

where G(x, y) is the Green’s function of −∆ associated with Dirichlet
boundary condition.

Here a+, b+ are positive parts of a and b; while a− and b− are the negative parts.
The main result of Tyagi [16] reads as follows.

Theorem 1.1. Assume f(0) > 0, g(0) > 0, f and g both are nondecreasing, and
continuous functions. Also assume (H2), (H3). Then there exists λ∗ > 0 depending
on f, g, a, b, µi, i = 1, 2 such that (1.1) has a nonnegative solution for 0 ≤ λ ≤ λ∗.

Motivated by the above references, the purpose of the present article is to study
the existence of positive solutions of (1.1) by using the Leray-Schauder fixed point
theorem:

Lemma 1.2 ([8]). Let X be a Banach space and T : X → X a completely contin-
uous operator. Suppose that there exists a constant M > 0, such that each solution
(x, σ) ∈ X × [0, 1] of

x = σTx, σ ∈ [0, 1], x ∈ X
satisfies ‖x‖X ≤M . Then T has a fixed point.

Next, we state the main result of this article, under the assumption
(H1’) f, g : [0,∞) → R are continuous with f(0) > 0, g(0) > 0.
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Theorem 1.3. Let a, b be nonzero continuous functions on Ω. Assume that (H1’),
(H2), (H3) hold. Then there exists a positive number λ∗ such that (1.1) has a
positive solution for 0 < λ < λ∗.

Remark 1.4. Assumption (H1’) implies that the nonlinearities f and g can change
their signs, but can not be monotone; thus (H1’) is much weaker than the assump-
tion (H1) used in Tyagi [16]. We obtain a similar result as Theorem 1.1 under the
weaker condition (H1’). It is worth remarking that in proving the Theorem 1.3, we
extend the results in Hai [11].

As a consequence of Theorem 1.3, we have the following result.

Corollary 1.5. Assume that (H1’) holds. Let a, b be nonzero integrable functions
on [0, 1]. Suppose that there exist two positive constants k1 > 1 and k2 > 1 such
that ∫ t

0

sN−1a+(s)ds ≥ k1

∫ t

0

sN−1a−(s)ds, ∀t ∈ [0, 1],∫ t

0

sN−1b+(s)ds ≥ k2

∫ t

0

sN−1b−(s)ds, ∀t ∈ [0, 1].

Then there exists a positive number λ∗ such that the system

u′′ +
N − 1
t

u′ + λa(t)f(v) = 0, 0 < t < 1,

v′′ +
N − 1
t

v′ + λb(t)g(u) = 0, 0 < t < 1,

u′(0) = u(1) = 0, v′(0) = v(1) = 0

(1.5)

has a positive solution for 0 < λ < λ∗.

Remark 1.6. It is worth remarking that Hai [11] considered only the single equation

u′′ +
N − 1
t

u′ + λa(t)f(u) = 0, 0 < t < 1,

u′(0) = u(1) = 0.

Here we extend [7, Corollary 1.2] to system (1.5).

2. Proof of main results

Let
C(Ω)× C(Ω) :=

{
(u, v) : u, v are continuous on Ω

}
,

with the norm ‖(u, v)‖ = max{‖u‖∞, ‖v‖∞}, where ‖u‖∞ = maxx∈Ω |u(x)|. Then(
C(Ω)× C(Ω), ‖(·, ·)‖

)
is a Banach space.

In this article, we assume that

f(v) = f(0), v ≤ 0; g(u) = g(0), u ≤ 0.

To prove our main result, we need the following lemma.

Lemma 2.1. Let 0 < δ < 1. Then there exists a positive number λ such that for
0 < λ < λ,

−∆u = λa+(x)f(v), in Ω,

−∆v = λb+(x)g(u), in Ω,
u = 0 = v, on ∂Ω

(2.1)
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has a positive solution (ũλ, ṽλ) with ‖(ũλ, ṽλ)‖ → 0 as λ→ 0, and

ũλ(x) ≥ λδf(0)p1(x), x ∈ Ω; ṽλ(x) ≥ λδg(0)p2(x), x ∈ Ω,

where

p1(x) =
∫

Ω

G(x, y)a+(y)dy, p2(x) =
∫

Ω

G(x, y)b+(y)dy,

and G(x, y) is the Green’s function of −∆ associated with Dirichlet boundary con-
dition.

Proof. Let A : C(Ω)× C(Ω) → C(Ω)× C(Ω) be defined by

A(u, v)(x) =
(
λ

∫
Ω

G(x, y)a+(y)f(v)dy, λ
∫

Ω

G(x, y)b+(y)g(u)dy
)
.

Then A : C(Ω) × C(Ω) → C(Ω) × C(Ω) is completely continuous, and the fixed
points of A are solutions of system (2.1). We shall apply Lemma 1.2 to prove that
A has a fixed point for λ small.

Let ε > 0 be such that

f(x) ≥ δf(0), g(x) ≥ δg(0), for 0 ≤ x ≤ ε. (2.2)

In fact, it follows from (H1’) that there exist two positive constants ε1, ε2 small
such that

f(x) ≥ δf(0), 0 ≤ x ≤ ε1; g(x) ≥ δg(0), 0 ≤ x ≤ ε2.

Choosing ε = min{ε1, ε2}, then (2.2) holds. Define

f̃(t) = max
s∈[0,t]

f(s), g̃(t) = max
s∈[0,t]

g(s), (2.3)

then f̃ and g̃ are continuous and nondecreasing. Let

h̃(t) = max{f̃(t), g̃(t)}, (2.4)

then h̃ is continuous.
Suppose that λ < ε

2‖p‖∞eh(ε)
, thus

h̃(ε)
ε

<
1

2λ‖p‖∞
, (2.5)

where ‖p‖∞ = max{‖p1‖∞, ‖p2‖∞}.
(H1’), (2.3) and (2.4) imply that h̃(0) > 0, and therefore

lim
t→0+

h̃(t)
t

= +∞. (2.6)

Inequalities (2.5)and (2.6) imply that there exists Aλ ∈ (0, ε) such that

h̃(Aλ)
Aλ

=
1

2λ‖p‖∞
. (2.7)
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Now, let (u, v) ∈ C(Ω)× C(Ω) and θ ∈ (0, 1) be such that (u, v) = θA(u, v). Then
we have

‖(u, v)‖ = max{‖u‖∞, ‖v‖∞}

≤ max
{
λ‖p1‖∞f̃(‖v‖∞), λ‖p2‖∞g̃(‖u‖∞)

}
≤ max

{
λ‖p1‖∞f̃(‖(u, v)‖), λ‖p2‖∞g̃(‖(u, v)‖)

}
≤ max

{
λ‖p‖∞f̃(‖(u, v)‖), λ‖p‖∞g̃(‖(u, v)‖)

}
≤ λ‖p‖∞h̃(‖(u, v)‖),

(2.8)

which implies that ‖(u, v)‖ 6= Aλ. Note that Aλ → 0 as λ → 0. By Lemma 1.2,
A has a fixed point (ũλ, ṽλ) with ‖(ũλ, ṽλ)‖ ≤ Aλ < ε. Consequently, from (2.2) it
follows that

ũλ(x) ≥ λδf(0)p1(x), x ∈ Ω; ṽλ(x) ≥ λδg(0)p2(x), x ∈ Ω. (2.9)

The proof is complete. �

Proof of Theorem 1.3. Let

q1(x) =
∫

Ω

G(x, y)a−(y)dy, q2(x) =
∫

Ω

G(x, y)b−(y)dy.

It follows from (H2), (H3) and Lemma 2.1 that there exist four positive constants
α1, α2, γ1, γ2 ∈ (0, 1) such that

q1(x)|f(s)| ≤ γ1p1(x)f(0), for s ∈ [0, α1], x ∈ Ω;

q2(x)|g(s)| ≤ γ2p2(x)g(0), for s ∈ [0, α2], x ∈ Ω.

Let α = min{α1, α2}. Then

q1(x)|f(s)| ≤ γ1p1(x)f(0), for s ∈ [0, α], x ∈ Ω; (2.10)

q2(x)|g(s)| ≤ γ2p2(x)g(0), for s ∈ [0, α], x ∈ Ω. (2.11)

Fix δ ∈ (γ, 1), where γ = max{γ1, γ2}. Let h(0) = max{f(0), g(0)} and let λ∗1, λ
∗
2

be so small such that

‖ũλ‖∞ + λδh(0)‖p‖∞ ≤ α, for λ ∈ (0, λ∗1),

‖ṽλ‖∞ + λδh(0)‖p‖∞ ≤ α, for λ ∈ (0, λ∗2),

where ũλ and ṽλ are given by Lemma 2.1, and

|f(t)− f(s)| ≤ f(0)
δ − γ1

2
, for t, s ∈ [−α, α], |t− s| ≤ λ∗1δh(0)‖p‖∞,

|g(t)− g(s)| ≤ g(0)
δ − γ2

2
, for t, s ∈ [−α, α], |t− s| ≤ λ∗2δh(0)‖p‖∞.

Let λ∗ = min{λ∗1, λ∗2}. Then for λ ∈ (0, λ∗), we have

‖ũλ‖∞ + λδh(0)‖p‖∞ ≤ α, ‖ṽλ‖∞ + λδh(0)‖p‖∞ ≤ α, (2.12)

and for t, s ∈ [−α, α], |t− s| ≤ λ∗δh(0)‖p‖∞, we have

|f(t)− f(s)| ≤ f(0)
δ − γ1

2
, |g(t)− g(s)| ≤ g(0)

δ − γ2

2
. (2.13)

Now, let λ < λ∗. We look for a solution (uλ, vλ) of (1.1) of the form (ũλ +mλ, ṽλ +
wλ). Thus (mλ, wλ) solves the system

∆mλ = −λa+(x)(f(ṽλ + wλ)− f(ṽλ)) + λa−(x)f(ṽλ + wλ), in Ω,
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∆wλ = −λb+(x)(g(ũλ +mλ)− g(ũλ)) + λb−(x)g(ũλ +mλ), in Ω,
mλ = 0 = wλ. on ∂Ω.

For each (ψ,ϕ) ∈ C(Ω)×C(Ω), let (m,w) = A(ψ,ϕ) be the solution of the system

∆m = −λa+(x)(f(ṽλ + ϕ)− f(ṽλ)) + λa−(x)f(ṽλ + ϕ), in Ω,

∆w = −λb+(x)(g(ũλ + ψ)− g(ũλ)) + λb−(x)g(ũλ + ψ), in Ω,
m = 0 = w, on ∂Ω.

Then A : C(Ω) × C(Ω) → C(Ω) × C(Ω) is completely continuous. Let (m,w) ∈
C(Ω)× C(Ω) and θ ∈ (0, 1) be such that (m,w) = θA(m,w). Then

∆m = −λθa+(x)(f(ṽλ + w)− f(ṽλ)) + λθa−(x)f(ṽλ + w), in Ω,

∆w = −λθb+(x)(g(ũλ +m)− g(ũλ)) + λθb−(x)g(ũλ +m), in Ω,
m = 0 = w, on ∂Ω.

Now, we claim that ‖(m,w)‖ 6= λδh(0)‖p‖∞. Suppose to the contrary that
‖(m,w)‖ = λδh(0)‖p‖∞, then there are three possible cases.

Case 1. ‖m‖∞ = ‖w‖∞ = λδh(0)‖p‖∞. Then we have from (2.12) that ‖ṽλ +
w‖∞ ≤ ‖ṽλ‖∞ + λδh(0)‖p‖∞ ≤ α, and so ‖ṽλ‖∞ ≤ α. Thus by (2.13) we obtain

|f(ṽλ + w)− f(ṽλ)| ≤ f(0)
δ − γ1

2
. (2.14)

On the other hand, (2.14) implies

|m(x)| ≤ λp1(x)f(0)
δ − γ1

2
+ λγ1p1(x)f(0)

= λp1(x)f(0)
δ + γ1

2
< λp1(x)f(0)δ

≤ λδh(0)‖p‖∞, for x ∈ Ω,

which implies that ‖m‖∞ < λδh(0)‖p‖∞, a contradiction.
Case 2. ‖w‖∞ < ‖m‖∞ = λδh(0)‖p‖∞. Then ‖ṽλ + w‖∞ < ‖ṽλ‖∞ +

λδh(0)‖p‖∞ ≤ α, and so ‖ṽλ‖∞ ≤ α. Thus

|f(ṽλ + w)− f(ṽλ)| ≤ f(0)
δ − γ1

2
.

By the same method used to prove Case 1, we can show that ‖m‖∞ < λδh(0)‖p‖∞,
which is a desired contradiction.

Case 3. ‖m‖∞ < ‖w‖∞ = λδh(0)‖p‖∞. As in Case 2, we obtain ‖w‖∞ <
λδh(0)‖p‖∞, a contradiction.

Then the claim is proved. By Lemma 1.2, A has a fixed point (mλ, wλ) with
‖(mλ, wλ)‖ ≤ λδh(0)‖p‖∞. Using Lemma 2.1, we obtain

uλ(x) ≥ ũλ(x)− |mλ(x)|

≥ λδp1(x)f(0)− λ
δ + γ1

2
f(0)p1(x)

= λ
δ − γ1

2
f(0)p1(x)

> 0, x ∈ Ω.

Similarly, we can prove that vλ(x) > 0, x ∈ Ω. The proof is complete. �
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Proof of Corollary 1.5. Multiplying the both sides of the equation

u′′ +
N − 1
t

u′ = −a±(t), u′(0) = u(1) = 0 (2.15)

by tN−1, we obtain
(tN−1u′)′ = −a±(t)tN−1. (2.16)

Integrating the both sides of (2.16) from 0 to t, we have

tN−1u′(t) = −
∫ t

0

a±(s)sN−1ds.

Integrating the both sides of above equation from t to 1, we have

u±(t) =
∫ 1

t

1
sN−1

( ∫ s

0

a±(τ)τN−1dτ
)
ds. (2.17)

Therefore the solution of problem (2.15) is given by (2.17). This implies that
u+ ≥ k1u

−. By the same method, we can show that v+ ≥ k2v
−, and the result

follows from Theorem 1.3. �

3. n× n systems

In this section, we consider the existence of positive solutions of the n×n system
−∆u1 = λa1(x)f1(u2), in Ω,

−∆u2 = λa2(x)f2(u3), in Ω,
· · ·

−∆un−1 = λan−1(x)fn−1(un), in Ω,

−∆un = λan(x)fn(u1), in Ω,
u1 = u2 = · · · = un = 0, on ∂Ω,

(3.1)

where ai ∈ L∞(Ω) (i = 1, 2, . . . , n) may be sign-changing in Ω and λ > 0 is a
parameter.

We assume the following conditions:
(H4) fi : [0,∞) → R which is continuous and fi(0) > 0 (i = 1, 2, . . . , n);
(H5) ai (i = 1, 2, . . . , n) is continuous on Ω and there exists ki > 1 (i =

1, 2, . . . , n) such that∫
Ω

G(x, y)a+
i (y)dy ≥ ki

∫
Ω

G(x, y)a−i (y)dy, ∀x ∈ Ω,

where G(x, y) is defined as in Section 2.
Define the integral equation

(u1, u2, . . . , un) = A(u1, u2, . . . , un),

where A : (C(Ω))n → (C(Ω))n is defined by

A(u1, u2, . . . , un)(x)

=
(
λ

∫
Ω

G(x, y)a1(y)f1(u2)dy, . . . , λ
∫

Ω

G(x, y)an(y)fn(u1)dy
)
.

Theorem 3.1. Let (H4), (H5) hold. Then there exists a positive number λ∗ such
that (3.1) has a positive solution for 0 < λ < λ∗.

As a consequence of the above theorem we have the following corollary.
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Corollary 3.2. Let fi (i = 1, 2, . . . , n) satisfy (H4). Let ai (i = 1, 2, . . . , n) be
nonzero integrable functions on [0, 1]. Suppose that there exist positive constants
ki > 1 such that∫ t

0

sN−1a+
i (s)ds ≥ ki

∫ t

0

sN−1a−i (s)ds, for t ∈ [0, 1], (i = 1, 2, . . . , n).

Then there exists a positive number λ∗ such that the system

u′′1 +
N − 1
t

u′1 + λa1(t)f1(u2) = 0, 0 < t < 1,

u′′2 +
N − 1
t

u′2 + λa2(t)f2(u3) = 0, 0 < t < 1,

· · ·

u′′n +
N − 1
t

u′n + λan(t)fn(u1) = 0, 0 < t < 1,

u′i(0) = ui(1) = 0

has a positive solution for 0 < λ < λ∗.
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