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POSITIVE NONDECREASING SOLUTIONS FOR A
MULTI-TERM FRACTIONAL-ORDER FUNCTIONAL

DIFFERENTIAL EQUATION WITH INTEGRAL CONDITIONS

AHMED M. A. EL-SAYED, EBTISAM O. BIN-TAHER

Abstract. In this article, we prove the existence of positive nondecreasing
solutions for a multi-term fractional-order functional differential equations.
We consider Cauchy boundary problems with: nonlocal conditions, two-point
boundary conditions, integral conditions, and deviated arguments.

1. Introduction

Problems with non-local conditions have been extensively studied by several
authors in the previous two decades; see for example [1]-[6], [9]-[17] and references
therein. In this work we study the existence of nondecreasing solutions for the
fractional differential equation

x′(t) = f(t,Dα1x(m1(t)), Dα2x(m2t)), . . . , Dαnx(mn(t))), αi ∈ (0, 1), (1.1)

a.e. t ∈ (0, 1), with the nonlocal condition
m∑

k=1

akx(τk) = β

p∑
j=1

bjx(ηj), (1.2)

where ak, bj > 0, τk ∈ (a, c), ηj ∈ (d, b), 0 < a < c ≤ d < b < 1,
∑m

k=1 ak 6=
β

∑p
j=1 bj and β is parameter.

As applications, we prove the existence of at least one nondecreasing solution for
the Cauchy problem of (1.1) with the nonlocal integral condition∫ c

a

x(s)dφ(s) = β

∫ b

d

x(s)dψ(s), 0 < a < c ≤ d < b < 1, (1.3)

where φ and ψ are nondecreasing functions. Also we prove the existence of at
least one positive nondecreasing solution for the Cauchy problems of (1.1) with the
nonlocal condition

m∑
k=1

akx(τk) = 0, τk ∈ (a, c) ⊂ (0, 1), (1.4)
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and with the integral condition∫ c

a

x(s)dφ(s) = 0, (a, c) ⊂ (0, 1). (1.5)

As another applicatin, we problems with deviated arguments mi(t) ≤ t, i =
1, 2 . . . n).

2. Preliminaries

Let L1 = L1(I) denote the class of Lebesgue integrable functions on the interval
I = [0, 1] and Γ(·) denote the usual gamma function.

Definition 2.1. The fractional-order integral of the function f ∈ L1[a, b], of order
β > 0, is defined by (see [19])

Iβ
a f(t) =

∫ t

a

(t− s)β−1

Γ(β)
f(s) ds.

The Caputo fractional-order derivative of f(t) of order α ∈ (0, 1] is defined as (see
[18, 19])

Dα
a f(t) = I1−α

a

d

dt
f(t) =

∫ t

a

(t− s)−α

Γ(1− α)
d

ds
f(s) ds.

Theorem 2.2 (Schauder fixed point theorem [7]). Let E be a Banach space and
Q be a convex subset of E, and T : Q → Q is compact, continuous map, Then T
has at least one fixed point in Q.

Theorem 2.3 (Kolmogorov compactness criterion [8]). Let Ω ⊆ Lp[0, 1], 1 ≤ p <
∞. If

(i) Ω is bounded in Lp[0, 1], and
(ii) uh → u as h→ 0 uniformly with respect to u ∈ Ω,

then Ω is relatively compact in Lp[0, 1], where

uh(t) =
1
h

∫ t+h

t

u(s) ds.

3. Main results

We consider firstly the fractional-order functional integral equation

y(t) = f(t, I1−α1m′
1(t)y(m1(t)), . . . , I1−αnm′

n(t)y(mn(t))). (3.1)

A function y is called a solution of the fractional-order functional integral equation
(3.1) if y ∈ L1[0, 1] and satisfies (3.1).

In this article, we use the following assumption:
(i) f : [0, 1]×Rn

+ → R+ is a function with the following properties:
(a) for each t ∈ [0, 1], f(t, .) is continuous,
(b) for each x ∈ Rn

+, f(., x) is measurable;
(ii) there exists an integral function a ∈ L1[0, 1] and constants qi > 0, i = 1, 2,

such that

|f(t, x)| ≤ a(t) +
n∑

i=1

qi|xi|, for each t ∈ [0, 1], x ∈ Rn;

(iii) mi : [0, 1] → [0, 1] are absolutely continuous functions;
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(iv)
n∑

i=1

qi
Γ(2− αi)

< 1.

Theorem 3.1. Assume (i)-(iv). Then (3.1) has at least one positive solution y ∈
L1[0, 1].

Proof. Define the operator T associated with (3.1) by

Ty(t) = f(t, I1−α1m′
1(t)y(m1(t)), . . . , I1−αnm′

n(t)y(mn(t))).

Let B+
r = {y ∈ R+ : ‖y‖L1 ≤ r} ⊂ L1,

r =
‖a‖

1−
∑n

i=1
qi

Γ(2−αi)

.

Let y be an arbitrary element in B+
r . Then from the assumptions (i) and (ii), we

obtain

‖Ty‖L1 =
∫ 1

0

|Ty(t)|dt

=
∫ 1

0

|f(t, I1−α1m′
1(t)y(m1(t)), . . . , I1−αnm′

n(t)y(mn(t)))|dt

≤
∫ 1

0

|a(t)|dt+
n∑

i=1

qi

∫ 1

0

∫ t

0

(t− s)−αi

Γ(1− αi)
|y(mi(s))|dmi(s)dt

≤ ‖a‖L1 +
n∑

i=1

qi

∫ 1

0

( ∫ 1

s

(t− s)−αi

Γ(1− αi)
dt

)
|y(mi(s))|dmi(s)

≤ ‖a‖L1 +
n∑

i=1

qi

∫ mi(1)

mi(0)

1
Γ(2− αi)

|y(mi(s))|dmi(s)

≤ ‖a‖L1 +
n∑

i=1

qi

∫ 1

0

1
Γ(2− αi)

|y(u)|du

≤ ‖a‖L1 +
n∑

i=1

qi
Γ(2− αi)

‖y‖L1 ≤ r,

which implies that the operator T maps B+
r into itself.

Assumption (i) implies that T is continuous. Now, we will show that T is com-
pact. Let Ω be a bounded subset of B+

r . Then T (Ω) is bounded in L1[0, 1]; i.e.,
condition (i) of Theorem 2.3 is satisfied. It remains to show that (Ty)h → Ty in
L1[0, 1] as h→ 0, uniformly with respect to Ty ∈ TΩ. Now

‖(Ty)h − Ty‖L1

=
∫ 1

0

|(Ty)h(t)− (Ty)(t)|dt

=
∫ 1

0

∣∣ 1
h

∫ t+h

t

(Ty)(s) ds− (Ty)(t)
∣∣dt

=
∫ 1

0

( 1
h

∫ t+h

t

|(Ty)(s)− (Ty)(t)| ds
)
dt
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≤
∫ 1

0

1
h

∫ t+h

t

∣∣∣f(s, I1−α1m′
1(s)y(m1(s)), . . . , I1−αnm′

n(s)y(mn(s)))

− f(t, I1−α1m′
1(t)y(m1(t)), . . . , I1−αnm′

n(t)y(mn(t)))
∣∣∣ ds dt.

Now, by assumption (ii), y ∈ Ω implies f ∈ L1[0, 1]; then

1
h

∫ t+h

t

∣∣f(s, I1−α1m′
1(s)y(m1(s)), . . . )− f(t, I1−α1m′

1(t)y(m1(t)), . . . )
∣∣ ds dt→ 0.

Therefore, by Theorem 2.3, T (Ω) is relatively compact; that is, T is compact, then
the operator T has a fixed point in B+

r , which proves the existence of positive
solution y ∈ B+

r ⊂ L1[0, 1] of equation (3.1). �

Let AC[0, 1] be the class of absolutely continuous functions defined on [0, 1]. For
the existence of solution for the nonlocal problem (1.1)-(1.2), we have the following
result.

Theorem 3.2. Under the assumptions of Theorem 3.1, problem (1.1)-(1.2) has at
least one solution x ∈ AC[0, 1].

Proof. Let y(t) = x′(t), then

x(t) = x(0) + Iy(t), (3.2)

x′(mi(t)) = m′
i(t)y(mi(t)), (3.3)

and y is the solution of the fractional-order functional integral equation (3.1). Let
t = τk in equation (3.2). We obtain

x(τk) =
∫ τk

0

y(s) ds+ x(0),

m∑
k=1

akx(τk) =
m∑

k=1

ak

∫ τk

0

y(s) ds+ x(0)
m∑

k=1

ak.

Let t = ηj in equation (3.2). We obtain

x(ηj) =
∫ ηj

0

y(s) ds+ x(0),

p∑
j=1

bjx(ηj) =
p∑

j=1

bj

∫ ηj

0

y(s) ds+ x(0)
p∑

j=1

bj .

From (1.2), we obtain
m∑

k=1

ak

∫ τk

0

y(s) ds+ x(0)
m∑

k=1

ak = β

p∑
j=1

bj

∫ ηj

0

y(s) ds+ x(0)β
p∑

j=1

bj .

Then

x(0) = A
( m∑

k=1

ak

∫ τk

0

y(s) ds− β

p∑
j=1

bj

∫ ηj

0

y(s) ds
)
,

A = (β
p∑

j=1

bj −
m∑

k=1

ak)−1,



EJDE-2011/166 POSITIVE NONDECREASING SOLUTIONS 5

and

x(t) = A
( m∑

k=1

ak

∫ τk

0

y(s) ds− β

p∑
j=1

bj

∫ ηj

0

y(s) ds
)

+
∫ t

0

y(s) ds, (3.4)

which, by Theorem 3.1, has at least one solution x ∈ AC(0, 1).
Now, from equation (3.4), we have

x(0) = lim
t→0+

x(t) = A

m∑
k=1

ak

∫ τk

0

y(s) ds−Aβ

p∑
j=1

bj

∫ ηj

0

y(s) ds

and

x(1) = lim
t→1−

x(t) = A

m∑
k=1

ak

∫ τk

0

y(s) ds−Aβ

p∑
j=1

bj

∫ ηj

0

y(s) ds+
∫ 1

0

y(s) ds,

from which we deduce that (3.4) has at least one solution x ∈ AC[0, 1].
Next we differentiate (3.4), to obtain

dx

dt
= y(t),

Dαix(mi(t)) = I1−αi
d

dt
x(mi(t)) = I1−αim′

i(t)y(mi(t)),

x′(t) = f(t,Dα1x(t), Dα2x(t), . . . , Dαnx(t)).

By direct calculation, we can prove that (3.4) satisfies the nonlocal condition (1.2).
This completes the proof. �

From the above theorem we have the following corollaries.

Corollary 3.3. Under the assumptions of Theorem 3.1, the solution of (1.1)-(1.2)
is nondecreasing.

Proof. Let t1, t2 ∈ (0, 1) and t1 < t2, then from (3.4) we have

x(t1) = A
( m∑

k=1

ak

∫ τk

0

y(s) ds− β

p∑
j=1

bj

∫ ηj

0

y(s) ds
)

+
∫ t1

0

y(s) ds

≤ A
( m∑

k=1

ak

∫ τk

0

y(s) ds− β

p∑
j=1

bj

∫ ηj

0

y(s) ds
)

+
∫ t2

0

y(s) ds

= x(t2)

and the solution of the nonlocal problem (1.1)-(1.2) is nondecreasing. �

Corollary 3.4. Under the assumptions of Theorem 3.1, problem (1.1) with the
nonlocal condition

m∑
k=1

akx(τk) = 0, τk ∈ (a, c) ⊂ (0, 1). (3.5)

has at least one nondecreasing solution x ∈ AC[0, 1], represented by

x(t) =
∫ t

0

y(s) ds−A∗
m∑

k=1

ak

∫ τk

0

y(s) ds, A∗ = (
m∑

k=1

ak)−1. (3.6)

This solution is positive in the interval [c, 1].
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Proof. Letting β = 0 in (1.2) and (3.4), then from Theorem 3.2 we deduce that the
nonlocal problem (1.1) and (3.5) has at least one nondecreasing solution given by
(3.6). Let t ∈ [c, 1], then τk < t and

A∗
m∑

k=1

ak

∫ τk

0

y(s) ds ≤ A∗
m∑

k=1

ak

∫ t

0

y(s) ds =
∫ t

0

y(s) ds,

which proves that the solution (3.6) is positive in [c, 1]. �

Corollary 3.5. Under the assumptions of Theorem 3.1, the two point problem

x′(t) = f(t,Dα1x(m1(t)), Dα2x(m2(t)), . . . , Dαnx(mn(t))), αi ∈ (0, 1),

a.e.t ∈ (0, 1),

x(τ) = βx(η), τ, η ∈ (a, c) ⊂ (0, 1).

has at least one nondecreasing solution x ∈ AC[0, 1] represented by

x(t) = A(
∫ τ

0

y(s) ds− β

∫ η

0

y(s) ds) +
∫ t

0

y(s) ds,A = (β − 1)−1. (3.7)

This solution is positive in the interval [c, 1].

4. Integral condition

Letx ∈ AC[0, 1] be the solution of the nonlocal problem (1.1)-(1.2). Letak =
φ(τk) − φ(τk−1), tk ∈ (τk−1, τk), a = τ0 < τ1 < τ2, · · · < τm = c and bj =
ψ(ηj) − ψ(ηj−1), tj ∈ (ηj−1, ηj), d = η0 < η1 < η2, · · · < ηp = b then the nonlocal
condition (1.2) will be

m∑
k=1

(φ(τk)− φ(τk−1))x(tk) = β

p∑
j=1

(ψ(ηj)− ψ(ηj−1))x(tj).

From the continuity of the solution x of (1.1)-(1.2) we can obtain

lim
m→∞

m∑
k=1

(φ(τk)− φ(τk−1))x(tk) = β lim
p→∞

p∑
j=1

(ψ(ηj)− ψ(ηj−1))x(tj).

and the nonlocal condition (1.2) transformed to the integral condition∫ c

a

x(s)dφ(s) = β

∫ b

d

x(s)dψ(s). (4.1)

Also from the continuity of the function Iy(t), where y is the solution of (3.1), we
deduce that the solution (3.4) will be

x(t) = (β(b− d)− (c− a))−1
( ∫ c

a

∫ s

0

y(θ) dφ(θ) ds− β

∫ b

d

∫ s

0

y(θ)dψ(θ) ds
)

+
∫ t

0

y(s) ds.

Theorem 4.1. Under the assumptions of Theorem 3.2, there exists at least one
nondecreasing solution x ∈ AC[0, 1] of the nonlocal problem with integral condition,

x′(t) = f(t,Dα1x(m1(t)), Dα2x(m2(t)), . . . , Dαnx(mn(t))), αi ∈ (0, 1),

a.e.t ∈ (0, 1),
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a

x(s) ds = β

∫ b

d

y(s) ds, β(b− d) 6= (c− a).

Letting β = 0 in (4.1), the we can easily prove the following corollary.

Corollary 4.2. Under the assumptions of Theorem 3.2, the nonlocal problem

x′(t) = f(t,Dα1x(m1(t)), Dα2x(m2(t)), . . . , Dαnx(mn(t))),

αi ∈ (0, 1), a.e.t ∈ (0, 1),∫ c

a

x(s) ds = 0, (a, c) ⊂ (0, 1)

has at least one nondecreasing solution x ∈ AC[0, 1] represented by

x(t) =
∫ t

0

y(s) ds− (c− a)−1

∫ c

a

∫ s

0

y(θ)dθ ds.

This solution is positive in the interval [c, 1].

5. Equations with deviated arguments

As a first example, let mi(t) = βit, βi ∈ (0, 1), then mi : [0, 1] → [0, 1] is
absolutely continuous deviated functions and all our results here can be applied
to the multi-term fractional-order functional differential equation with deviated
arguments

x′(t) = f(t,Dα1x(β1t), Dα2x(β2t), . . . , Dαnx(βnt)), αi ∈ (0, 1), a.e. t ∈ (0, 1).
(5.1)

As a second example, let mi(t) = tγi , γi ≥ 1, then mi : [0, 1] → [0, 1] is absolutely
continuous deviated functions and all our results here can be applied to the multi-
term fractional-order functional differential equation with deviated arguments

x′(t) = f(t,Dα1x(tγ1), Dα2x(tγ2), . . . , Dαnx(tγn)), αi ∈ (0, 1), a.e. t ∈ (0, 1).
(5.2)

References

[1] Boucherif, A.; First-order differential inclusions with nonlocal initial conditions, Applied
Mathematics Letters 15 (2002), 409-414.

[2] Boucherif, A.; Nonlocal Cauchy problems for first-order multivalued differential equations,
Electronic Journal of Differential Equations, Vol. 2002 (2002), No. 47, pp. 1-9.

[3] Boucherif, A; Precup, R.; On The nonlocal initial value problem for first order differential
equations, Fixed Point Theory Vol. 4, No 2, (2003) 205-212.

[4] Boucherif, A.; Semilinear evolution inclusions with nonlocal conditions, Applied Mathematics
Letters 22 (2009), 1145-1149.

[5] Benchohra, M.; Gatsori, E. P.; Ntouyas, S. K.; Existence results for seme-linear integrodif-
ferential inclusions with nonlocal conditions. Rocky Mountain J. Mat. Vol. 34, No. 3, Fall
(2004), 833-848.

[6] Benchohra, M.; Hamani, M. S.; Ntouyas, S.; Boundary value problems for differential equa-
tions with fractional order and nonlocal conditions, Nonlinear Analysis 71 (2009), 23912396.

[7] Deimling, K.; Nonlinear Functional Analysis, Springer-Verlag 1985.
[8] Dugundji, J.; Granas, A.; Fixed Point Theory, Monografie Mathematyczne, PWN, Warsaw

1982.
[9] El-Sayed, A. M. A.; Abd El-Salam, Sh. A.; On the stability of a fractional order differential

equation with nonlocal initial condtion, EJQTDE Vol. 2009 No. 29 (2008) 1-8.
[10] El-Sayed, A. M. A.; Bin-Taher E.O,; A nonlocal problem of an arbitrary (fractional) orders

differential equation, Alexandria J. of Math. Vol. 1 No. 2 (2010), 1-7.



8 A. M. A. EL-SAYED, E. O. BIN-TAHER EJDE-2011/166

[11] El-Sayed, A. M. A.; Bin-Taher E.O.; A nonlocal problem for a multi-term fractional-orders
differential equation, Int. J. of Math. Analysis Vol. 5 No. 29 (2010), 1445-1451.

[12] El-Sayed, A. M. A.; Bin-Taher E.O.; An arbitrary (fractional) orders differential equation
with internal nonlocal and integral conditions, Advances in Pure Mathematics, 2011, 1, 59-62.

[13] El-Sayed, A. M. A.; Hamdallah, E. M.; Elkadeky, Kh. W.; Solutions of a class of nonlocal
problems for the differential inclusion x′(t) ∈ F (t, x(t)), Appl. Math. and information sciences
Vol. 5(3) (2011), 4135-4215.

[14] El-Sayed, A. M. A.; Hamdallah, E. M.; Elkadeky, Kh. W.; Solutions of a class of deviated-
advanced nonlocal problem for the differential inclusion x′(t) ∈ F (t, x(t)), Abstract Analysis
and Applications, Vol. 2011. Article ID 476392 (2011), 1-9.

[15] Gatsori, E.; Ntouyas., S. K,.; Sficas, Y. G.; On a nonlocal cauchy problem for differential
inclusions, Abstract and Applied Analysis (2004), 425-434.

[16] Guerekata, G. M.; A Cauchy problem for some fractional abstract differential e quation with
non local conditions, Nonlinear Analysis 70 (2009), 1873-1876.

[17] Ntouyas, S. K.; Nonlocal initial and boundary value problems: A Survey. Hand book of
differential equations Vol. II, Edited by A. Canada, P. Drabek and A. Fonda, Elsevier 2005

[18] Podlubny, I.; EL-Sayed, A. M. A.; On two definitions of fractional calculus, Preprint UEF 03-
96 (ISBN 80-7099-252-2), Slovak Academy of Science-Institute of Experimental phys. (1996).

[19] Podlubny, I.; Fractional Differential Equations, Acad. press, San Diego-New York-London
1999.

Ahmed M. A El-Sayed
Faculty of Science, Alexandria University, Alexandria, Egypt

E-mail address: amasayed5@yahoo.com, amasayed@hotmail.com

Ebtisam O. Bin-Taher
Faculty of Science, Hadhramout University of Sci. and Tech., Hadhramout, Yemen

E-mail address: ebtsamsam@yahoo.com


	1. Introduction
	2. Preliminaries
	3. Main results
	4. Integral condition
	5. Equations with deviated arguments
	References

