Electronic Journal of Differential Equations, Vol. 2011 (2011), No. 166, pp. 1–8. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

POSITIVE NONDECREASING SOLUTIONS FOR A MULTI-TERM FRACTIONAL-ORDER FUNCTIONAL DIFFERENTIAL EQUATION WITH INTEGRAL CONDITIONS

AHMED M. A. EL-SAYED, EBTISAM O. BIN-TAHER

ABSTRACT. In this article, we prove the existence of positive nondecreasing solutions for a multi-term fractional-order functional differential equations. We consider Cauchy boundary problems with: nonlocal conditions, two-point boundary conditions, integral conditions, and deviated arguments.

1. INTRODUCTION

Problems with non-local conditions have been extensively studied by several authors in the previous two decades; see for example [1]-[6], [9]-[17] and references therein. In this work we study the existence of nondecreasing solutions for the fractional differential equation

$$x'(t) = f(t, D^{\alpha_1} x(m_1(t)), D^{\alpha_2} x(m_2 t)), \dots, D^{\alpha_n} x(m_n(t))), \quad \alpha_i \in (0, 1), \quad (1.1)$$

a.e. $t \in (0, 1)$, with the nonlocal condition

$$\sum_{k=1}^{m} a_k x(\tau_k) = \beta \sum_{j=1}^{p} b_j x(\eta_j),$$
(1.2)

where $a_k, b_j > 0, \ \tau_k \in (a, c), \ \eta_j \in (d, b), \ 0 < a < c \le d < b < 1, \ \sum_{k=1}^m a_k \ne \beta \sum_{j=1}^p b_j \ \text{and} \ \beta \ \text{is parameter.}$

As applications, we prove the existence of at least one nondecreasing solution for the Cauchy problem of (1.1) with the nonlocal integral condition

$$\int_{a}^{c} x(s) d\phi(s) = \beta \int_{d}^{b} x(s) d\psi(s), \quad 0 < a < c \le d < b < 1,$$
(1.3)

where ϕ and ψ are nondecreasing functions. Also we prove the existence of at least one positive nondecreasing solution for the Cauchy problems of (1.1) with the nonlocal condition

$$\sum_{k=1}^{m} a_k x(\tau_k) = 0, \tau_k \in (a, c) \subset (0, 1),$$
(1.4)

²⁰⁰⁰ Mathematics Subject Classification. 34B10, 26A33.

Key words and phrases. Fractional calculus; Cauchy problem; nonlocal condition;

integral condition; functional differential equation; integral equation; deviated argument. ©2011 Texas State University - San Marcos.

Submitted June 14, 2011. Published December 14, 2011.

and with the integral condition

$$\int_{a}^{c} x(s) d\phi(s) = 0, (a, c) \subset (0, 1).$$
(1.5)

As another applicatin, we problems with deviated arguments $m_i(t) \leq t, i = 1, 2 \dots n$.

2. Preliminaries

Let $L^1 = L^1(I)$ denote the class of Lebesgue integrable functions on the interval I = [0, 1] and $\Gamma(\cdot)$ denote the usual gamma function.

Definition 2.1. The fractional-order integral of the function $f \in L^1[a, b]$, of order $\beta > 0$, is defined by (see [19])

$$I_a^{\beta} f(t) = \int_a^t \frac{(t-s)^{\beta-1}}{\Gamma(\beta)} f(s) \, ds.$$

The Caputo fractional-order derivative of f(t) of order $\alpha \in (0, 1]$ is defined as (see [18, 19])

$$D_a^{\alpha}f(t) = I_a^{1-\alpha}\frac{d}{dt}f(t) = \int_a^t \frac{(t-s)^{-\alpha}}{\Gamma(1-\alpha)}\frac{d}{ds}f(s)\,ds.$$

Theorem 2.2 (Schauder fixed point theorem [7]). Let E be a Banach space and Q be a convex subset of E, and $T: Q \to Q$ is compact, continuous map, Then T has at least one fixed point in Q.

Theorem 2.3 (Kolmogorov compactness criterion [8]). Let $\Omega \subseteq L^p[0,1]$, $1 \le p < \infty$. If

- (i) Ω is bounded in $L^p[0,1]$, and
- (ii) $u_h \to u \text{ as } h \to 0$ uniformly with respect to $u \in \Omega$,

then Ω is relatively compact in $L^p[0,1]$, where

$$u_h(t) = \frac{1}{h} \int_t^{t+h} u(s) \, ds$$

3. Main results

We consider firstly the fractional-order functional integral equation

$$y(t) = f(t, I^{1-\alpha_1}m'_1(t)y(m_1(t)), \dots, I^{1-\alpha_n}m'_n(t)y(m_n(t))).$$
(3.1)

A function y is called a solution of the fractional-order functional integral equation (3.1) if $y \in L^1[0,1]$ and satisfies (3.1).

In this article, we use the following assumption:

- (i) $f: [0,1] \times \mathbb{R}^n_+ \to \mathbb{R}_+$ is a function with the following properties:
 - (a) for each $t \in [0, 1], f(t, .)$ is continuous,
 - (b) for each $x \in \mathbb{R}^n_+$, f(., x) is measurable;
- (ii) there exists an integral function $a \in L^1[0, 1]$ and constants $q_i > 0, i = 1, 2$, such that

$$|f(t,x)| \le a(t) + \sum_{i=1}^{n} q_i |x_i|$$
, for each $t \in [0,1], x \in R_n$;

(iii) $m_i: [0,1] \to [0,1]$ are absolutely continuous functions;

EJDE-2011/166

(iv)

$$\sum_{i=1}^{n} \frac{q_i}{\Gamma(2-\alpha_i)} < 1.$$

Theorem 3.1. Assume (i)-(iv). Then (3.1) has at least one positive solution $y \in L^1[0,1]$.

Proof. Define the operator T associated with (3.1) by

$$Ty(t) = f(t, I^{1-\alpha_1}m'_1(t)y(m_1(t)), \dots, I^{1-\alpha_n}m'_n(t)y(m_n(t))).$$

Let $B_r^+ = \{ y \in R^+ : \|y\|_{L^1} \le r \} \subset L^1$,

$$r = \frac{\|a\|}{1 - \sum_{i=1}^{n} \frac{q_i}{\Gamma(2 - \alpha_i)}}.$$

Let y be an arbitrary element in B_r^+ . Then from the assumptions (i) and (ii), we obtain

$$\begin{split} \|Ty\|_{L_{1}} &= \int_{0}^{1} |Ty(t)| dt \\ &= \int_{0}^{1} |f(t, I^{1-\alpha_{1}}m_{1}'(t)y(m_{1}(t)), \dots, I^{1-\alpha_{n}}m_{n}'(t)y(m_{n}(t)))| dt \\ &\leq \int_{0}^{1} |a(t)| dt + \sum_{i=1}^{n} q_{i} \int_{0}^{1} \int_{0}^{t} \frac{(t-s)^{-\alpha_{i}}}{\Gamma(1-\alpha_{i})} |y(m_{i}(s))| dm_{i}(s) dt \\ &\leq \|a\|_{L^{1}} + \sum_{i=1}^{n} q_{i} \int_{0}^{1} \Big(\int_{s}^{1} \frac{(t-s)^{-\alpha_{i}}}{\Gamma(1-\alpha_{i})} dt \Big) |y(m_{i}(s))| dm_{i}(s) \\ &\leq \|a\|_{L^{1}} + \sum_{i=1}^{n} q_{i} \int_{m_{i}(0)}^{m_{i}(1)} \frac{1}{\Gamma(2-\alpha_{i})} |y(m_{i}(s))| dm_{i}(s) \\ &\leq \|a\|_{L^{1}} + \sum_{i=1}^{n} q_{i} \int_{0}^{1} \frac{1}{\Gamma(2-\alpha_{i})} |y(u)| du \\ &\leq \|a\|_{L^{1}} + \sum_{i=1}^{n} \frac{q_{i}}{\Gamma(2-\alpha_{i})} \|y\|_{L_{1}} \leq r, \end{split}$$

which implies that the operator T maps B_r^+ into itself.

Assumption (i) implies that T is continuous. Now, we will show that T is compact. Let Ω be a bounded subset of B_r^+ . Then $T(\Omega)$ is bounded in $L^1[0,1]$; i.e., condition (i) of Theorem 2.3 is satisfied. It remains to show that $(Ty)_h \to Ty$ in $L^1[0,1]$ as $h \to 0$, uniformly with respect to $Ty \in T\Omega$. Now

$$\begin{aligned} \| (Ty)_h - Ty \|_{L^1} \\ &= \int_0^1 |(Ty)_h(t) - (Ty)(t)| dt \\ &= \int_0^1 \left| \frac{1}{h} \int_t^{t+h} (Ty)(s) \, ds - (Ty)(t) \right| dt \\ &= \int_0^1 \left(\frac{1}{h} \int_t^{t+h} |(Ty)(s) - (Ty)(t)| \, ds \right) dt \end{aligned}$$

A. M. A. EL-SAYED, E. O. BIN-TAHER

$$\leq \int_0^1 \frac{1}{h} \int_t^{t+h} \left| f(s, I^{1-\alpha_1} m_1'(s) y(m_1(s)), \dots, I^{1-\alpha_n} m_n'(s) y(m_n(s))) - f(t, I^{1-\alpha_1} m_1'(t) y(m_1(t)), \dots, I^{1-\alpha_n} m_n'(t) y(m_n(t))) \right| ds dt.$$

Now, by assumption (ii), $y \in \Omega$ implies $f \in L^1[0, 1]$; then

$$\frac{1}{h} \int_{t}^{t+h} \left| f(s, I^{1-\alpha_1} m_1'(s) y(m_1(s)), \dots) - f(t, I^{1-\alpha_1} m_1'(t) y(m_1(t)), \dots) \right| ds \, dt \to 0.$$

Therefore, by Theorem 2.3, $T(\Omega)$ is relatively compact; that is, T is compact, then the operator T has a fixed point in B_r^+ , which proves the existence of positive solution $y \in B_r^+ \subset L^1[0, 1]$ of equation (3.1).

Let AC[0, 1] be the class of absolutely continuous functions defined on [0, 1]. For the existence of solution for the nonlocal problem (1.1)-(1.2), we have the following result.

Theorem 3.2. Under the assumptions of Theorem 3.1, problem (1.1)-(1.2) has at least one solution $x \in AC[0, 1]$.

Proof. Let y(t) = x'(t), then

$$x(t) = x(0) + Iy(t), (3.2)$$

$$x'(m_i(t)) = m'_i(t)y(m_i(t)), (3.3)$$

and y is the solution of the fractional-order functional integral equation (3.1). Let $t = \tau_k$ in equation (3.2). We obtain

$$x(\tau_k) = \int_0^{\tau_k} y(s) \, ds + x(0),$$
$$\sum_{k=1}^m a_k x(\tau_k) = \sum_{k=1}^m a_k \int_0^{\tau_k} y(s) \, ds + x(0) \sum_{k=1}^m a_k.$$

Let $t = \eta_j$ in equation (3.2). We obtain

$$x(\eta_j) = \int_0^{\eta_j} y(s) \, ds + x(0),$$

$$\sum_{j=1}^p b_j x(\eta_j) = \sum_{j=1}^p b_j \int_0^{\eta_j} y(s) \, ds + x(0) \sum_{j=1}^p b_j$$

From (1.2), we obtain

$$\sum_{k=1}^{m} a_k \int_0^{\tau_k} y(s) \, ds + x(0) \sum_{k=1}^{m} a_k = \beta \sum_{j=1}^{p} b_j \int_0^{\eta_j} y(s) \, ds + x(0)\beta \sum_{j=1}^{p} b_j.$$

Then

$$x(0) = A\Big(\sum_{k=1}^{m} a_k \int_0^{\tau_k} y(s) \, ds - \beta \sum_{j=1}^{p} b_j \int_0^{\eta_j} y(s) \, ds\Big),$$
$$A = (\beta \sum_{j=1}^{p} b_j - \sum_{k=1}^{m} a_k)^{-1},$$

 $\mathrm{EJDE}\text{-}2011/166$

and

$$x(t) = A\Big(\sum_{k=1}^{m} a_k \int_0^{\tau_k} y(s) \, ds - \beta \sum_{j=1}^{p} b_j \int_0^{\eta_j} y(s) \, ds\Big) + \int_0^t y(s) \, ds, \tag{3.4}$$

which, by Theorem 3.1, has at least one solution $x \in AC(0, 1)$.

Now, from equation (3.4), we have

$$x(0) = \lim_{t \to 0^+} x(t) = A \sum_{k=1}^m a_k \int_0^{\tau_k} y(s) \, ds - A\beta \sum_{j=1}^p b_j \int_0^{\eta_j} y(s) \, ds$$

and

$$x(1) = \lim_{t \to 1^{-}} x(t) = A \sum_{k=1}^{m} a_k \int_0^{\tau_k} y(s) \, ds - A\beta \sum_{j=1}^{p} b_j \int_0^{\eta_j} y(s) \, ds + \int_0^1 y(s) \, ds,$$

from which we deduce that (3.4) has at least one solution $x \in AC[0, 1]$.

Next we differentiate (3.4), to obtain

$$\frac{dx}{dt} = y(t),$$

$$D^{\alpha_i}x(m_i(t)) = I^{1-\alpha_i}\frac{d}{dt}x(m_i(t)) = I^{1-\alpha_i}m'_i(t)y(m_i(t)),$$

$$x'(t) = f(t, D^{\alpha_1}x(t), D^{\alpha_2}x(t), \dots, D^{\alpha_n}x(t)).$$

By direct calculation, we can prove that (3.4) satisfies the nonlocal condition (1.2). This completes the proof.

From the above theorem we have the following corollaries.

Corollary 3.3. Under the assumptions of Theorem 3.1, the solution of (1.1)-(1.2) is nondecreasing.

Proof. Let $t_1, t_2 \in (0, 1)$ and $t_1 < t_2$, then from (3.4) we have

$$\begin{aligned} x(t_1) &= A\Big(\sum_{k=1}^m a_k \int_0^{\tau_k} y(s) \, ds - \beta \sum_{j=1}^p b_j \int_0^{\eta_j} y(s) \, ds\Big) + \int_0^{t_1} y(s) \, ds \\ &\leq A\Big(\sum_{k=1}^m a_k \int_0^{\tau_k} y(s) \, ds - \beta \sum_{j=1}^p b_j \int_0^{\eta_j} y(s) \, ds\Big) + \int_0^{t_2} y(s) \, ds \\ &= x(t_2) \end{aligned}$$

and the solution of the nonlocal problem (1.1)-(1.2) is nondecreasing.

Corollary 3.4. Under the assumptions of Theorem 3.1, problem (1.1) with the nonlocal condition

$$\sum_{k=1}^{m} a_k x(\tau_k) = 0, \quad \tau_k \in (a, c) \subset (0, 1).$$
(3.5)

has at least one nondecreasing solution $x \in AC[0,1]$, represented by

$$x(t) = \int_0^t y(s) \, ds - A^* \sum_{k=1}^m a_k \int_0^{\tau_k} y(s) \, ds, \quad A^* = (\sum_{k=1}^m a_k)^{-1}. \tag{3.6}$$

This solution is positive in the interval [c, 1].

Proof. Letting $\beta = 0$ in (1.2) and (3.4), then from Theorem 3.2 we deduce that the nonlocal problem (1.1) and (3.5) has at least one nondecreasing solution given by (3.6). Let $t \in [c, 1]$, then $\tau_k < t$ and

$$A^* \sum_{k=1}^m a_k \int_0^{\tau_k} y(s) \, ds \le A^* \sum_{k=1}^m a_k \int_0^t y(s) \, ds = \int_0^t y(s) \, ds,$$

which proves that the solution (3.6) is positive in [c, 1].

Corollary 3.5. Under the assumptions of Theorem 3.1, the two point problem

$$x'(t) = f(t, D^{\alpha_1} x(m_1(t)), D^{\alpha_2} x(m_2(t)), \dots, D^{\alpha_n} x(m_n(t))), \alpha_i \in (0, 1),$$

a.e.t \equiv (0, 1),
$$x(\tau) = \beta x(\eta), \quad \tau, \eta \in (a, c) \subset (0, 1).$$

has at least one nondecreasing solution $x \in AC[0, 1]$ represented by

$$x(t) = A(\int_0^\tau y(s) \, ds - \beta \int_0^\eta y(s) \, ds) + \int_0^t y(s) \, ds, A = (\beta - 1)^{-1}.$$
 (3.7)

This solution is positive in the interval [c, 1].

4. INTEGRAL CONDITION

Let $x \in AC[0,1]$ be the solution of the nonlocal problem (1.1)-(1.2). Let $a_k = \phi(\tau_k) - \phi(\tau_{k-1}), t_k \in (\tau_{k-1}, \tau_k), a = \tau_0 < \tau_1 < \tau_2, \dots < \tau_m = c$ and $b_j = \psi(\eta_j) - \psi(\eta_{j-1}), t_j \in (\eta_{j-1}, \eta_j), d = \eta_0 < \eta_1 < \eta_2, \dots < \eta_p = b$ then the nonlocal condition (1.2) will be

$$\sum_{k=1}^{m} (\phi(\tau_k) - \phi(\tau_{k-1})) x(t_k) = \beta \sum_{j=1}^{p} (\psi(\eta_j) - \psi(\eta_{j-1})) x(t_j).$$

From the continuity of the solution x of (1.1)-(1.2) we can obtain

$$\lim_{m \to \infty} \sum_{k=1}^{m} (\phi(\tau_k) - \phi(\tau_{k-1})) x(t_k) = \beta \lim_{p \to \infty} \sum_{j=1}^{p} (\psi(\eta_j) - \psi(\eta_{j-1})) x(t_j).$$

and the nonlocal condition (1.2) transformed to the integral condition

$$\int_{a}^{c} x(s)d\phi(s) = \beta \int_{d}^{b} x(s)d\psi(s).$$
(4.1)

Also from the continuity of the function Iy(t), where y is the solution of (3.1), we deduce that the solution (3.4) will be

$$\begin{aligned} x(t) &= (\beta(b-d) - (c-a))^{-1} \Big(\int_a^c \int_0^s y(\theta) \, d\phi(\theta) \, ds - \beta \int_d^b \int_0^s y(\theta) d\psi(\theta) \, ds \Big) \\ &+ \int_0^t y(s) \, ds. \end{aligned}$$

Theorem 4.1. Under the assumptions of Theorem 3.2, there exists at least one nondecreasing solution $x \in AC[0,1]$ of the nonlocal problem with integral condition,

$$x'(t) = f(t, D^{\alpha_1} x(m_1(t)), D^{\alpha_2} x(m_2(t)), \dots, D^{\alpha_n} x(m_n(t))), \alpha_i \in (0, 1),$$

a.e.t \equiv (0, 1),

$$\square$$

EJDE-2011/166

x'

$$\int_{a}^{c} x(s) ds = \beta \int_{d}^{b} y(s) ds, \quad \beta(b-d) \neq (c-a).$$

Letting $\beta = 0$ in (4.1), the we can easily prove the following corollary.

Corollary 4.2. Under the assumptions of Theorem 3.2, the nonlocal problem

$$(t) = f(t, D^{\alpha_1} x(m_1(t)), D^{\alpha_2} x(m_2(t)), \dots, D^{\alpha_n} x(m_n(t))),$$

$$\alpha_i \in (0, 1), \ a.e.t \in (0, 1),$$

$$\int_{-}^{c} x(s) \, ds = 0, \quad (a, c) \subset (0, 1)$$

has at least one nondecreasing solution $x \in AC[0,1]$ represented by

$$x(t) = \int_0^t y(s) \, ds - (c-a)^{-1} \int_a^c \int_0^s y(\theta) d\theta \, ds.$$

This solution is positive in the interval [c, 1].

5. Equations with deviated arguments

As a first example, let $m_i(t) = \beta_i t$, $\beta_i \in (0,1)$, then $m_i : [0,1] \to [0,1]$ is absolutely continuous deviated functions and all our results here can be applied to the multi-term fractional-order functional differential equation with deviated arguments

$$x'(t) = f(t, D^{\alpha_1} x(\beta_1 t), D^{\alpha_2} x(\beta_2 t), \dots, D^{\alpha_n} x(\beta_n t)), \alpha_i \in (0, 1), \quad \text{a.e. } t \in (0, 1).$$
(5.1)

As a second example, let $m_i(t) = t^{\gamma_i}, \gamma_i \ge 1$, then $m_i : [0, 1] \to [0, 1]$ is absolutely continuous deviated functions and all our results here can be applied to the multiterm fractional-order functional differential equation with deviated arguments

$$x'(t) = f(t, D^{\alpha_1} x(t^{\gamma_1}), D^{\alpha_2} x(t^{\gamma_2}), \dots, D^{\alpha_n} x(t^{\gamma_n})), \alpha_i \in (0, 1), \quad \text{a.e. } t \in (0, 1).$$
(5.2)

References

- Boucherif, A.; First-order differential inclusions with nonlocal initial conditions, Applied Mathematics Letters 15 (2002), 409-414.
- [2] Boucherif, A.; Nonlocal Cauchy problems for first-order multivalued differential equations, Electronic Journal of Differential Equations, Vol. 2002 (2002), No. 47, pp. 1-9.
- [3] Boucherif, A; Precup, R.; On The nonlocal initial value problem for first order differential equations, Fixed Point Theory Vol. 4, No 2, (2003) 205-212.
- Boucherif, A.; Semilinear evolution inclusions with nonlocal conditions, Applied Mathematics Letters 22 (2009), 1145-1149.
- [5] Benchohra, M.; Gatsori, E. P.; Ntouyas, S. K.; Existence results for seme-linear integrodifferential inclusions with nonlocal conditions. Rocky Mountain J. Mat. Vol. 34, No. 3, Fall (2004), 833-848.
- Benchohra, M.; Hamani, M. S.; Ntouyas, S.; Boundary value problems for differential equations with fractional order and nonlocal conditions, Nonlinear Analysis 71 (2009), 23912396.
- [7] Deimling, K.; Nonlinear Functional Analysis, Springer-Verlag 1985.
- [8] Dugundji, J.; Granas, A.; Fixed Point Theory, Monografie Mathematyczne, PWN, Warsaw 1982.
- [9] El-Sayed, A. M. A.; Abd El-Salam, Sh. A.; On the stability of a fractional order differential equation with nonlocal initial condition, EJQTDE Vol. 2009 No. 29 (2008) 1-8.
- [10] El-Sayed, A. M. A.; Bin-Taher E.O.; A nonlocal problem of an arbitrary (fractional) orders differential equation, Alexandria J. of Math. Vol. 1 No. 2 (2010), 1-7.

- [11] El-Sayed, A. M. A.; Bin-Taher E.O.; A nonlocal problem for a multi-term fractional-orders differential equation, Int. J. of Math. Analysis Vol. 5 No. 29 (2010), 1445-1451.
- [12] El-Sayed, A. M. A.; Bin-Taher E.O.; An arbitrary (fractional) orders differential equation with internal nonlocal and integral conditions, Advances in Pure Mathematics, 2011, 1, 59-62.
- [13] El-Sayed, A. M. A.; Hamdallah, E. M.; Elkadeky, Kh. W.; Solutions of a class of nonlocal problems for the differential inclusion $x'(t) \in F(t, x(t))$, Appl. Math. and information sciences Vol. 5(3) (2011), 4135-4215.
- [14] El-Sayed, A. M. A.; Hamdallah, E. M.; Elkadeky, Kh. W.; Solutions of a class of deviatedadvanced nonlocal problem for the differential inclusion $x'(t) \in F(t, x(t))$, Abstract Analysis and Applications, Vol. 2011. Article ID 476392 (2011), 1-9.
- [15] Gatsori, E.; Ntouyas., S. K.; Sficas, Y. G.; On a nonlocal cauchy problem for differential inclusions, Abstract and Applied Analysis (2004), 425-434.
- [16] Guerekata, G. M.; A Cauchy problem for some fractional abstract differential e quation with non local conditions, Nonlinear Analysis 70 (2009), 1873-1876.
- [17] Ntouyas, S. K.; Nonlocal initial and boundary value problems: A Survey. Hand book of differential equations Vol. II, Edited by A. Canada, P. Drabek and A. Fonda, Elsevier 2005
- [18] Podlubny, I.; EL-Sayed, A. M. A.; On two definitions of fractional calculus, Preprint UEF 03-96 (ISBN 80-7099-252-2), Slovak Academy of Science-Institute of Experimental phys. (1996).
- [19] Podlubny, I.; Fractional Differential Equations, Acad. press, San Diego-New York-London 1999.

Ahmed M. A El-Sayed

 $\label{eq:Faculty} \mbox{ Faculty of Science, Alexandria University, Alexandria, Egypt E-mail address: amasayed50yahoo.com, amasayed0hotmail.com $$$

Ebtisam O. Bin-Taher

FACULTY OF SCIENCE, HADHRAMOUT UNIVERSITY OF SCI. AND TECH., HADHRAMOUT, YEMEN *E-mail address:* ebtsamsam@yahoo.com