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L2-WELL-POSED CAUCHY PROBLEM FOR FOURTH-ORDER
DISPERSIVE EQUATIONS ON THE LINE

SHIGEO TARAMA

Abstract. Mizuhara [2] obtained conditions for the Cauchy problem of a
fourth-order dispersive operator to be well posed in the L2 sense. Two of
those conditions were shown to be necessary under additional assumptions. In
this article, we prove the necessity without the additional assumptions.

1. Introduction

Let L be a fourth-order dispersive operator given by

L = Dt −D4
x − a(x)D3

x − b(x)D2
x − c(x)Dx − d(x) (1.1)

where Dt = 1
i ∂t, Dx = 1

i ∂x. We consider the Cauchy problem

Lu = f(x, t), (x, t) ∈ R2

with the initial data on the line t = 0, u(x, 0) = g(x).
Mizuhara [2], extending the arguments on [3], obtained the following result.

The above Cauchy problem is L2-well-posed if the coefficients a(x),
b(x), c(x) satisfy: ∣∣ ∫ x1

x0

=a(y) dy
∣∣ ≤ C, (1.2)

∣∣ ∫ x1

x0

=(b(y)− 3a(y)2/8) dy
∣∣ ≤ C|x1 − x0|1/3, (1.3)

∣∣ ∫ x1

x0

=(c(y)− 2a(y)b(y) + a(y)3/8) dy
∣∣ ≤ C|x1 − x0|2/3 (1.4)

for any x0, x1 ∈ R, where =(·) is the imaginary part of a complex
number.

In the same article, it was shown that (1.2) is necessary for the L2-well-posedness.
While the necessity of conditions (1.3) and (1.4) is shown under the additional
assumption that there exist a constant µ such that∣∣ ∫ x1

x0

<(b(y)− 3a(y)2/8− µ) dy
∣∣ ≤ C|x1 − x0|1/2, (1.5)
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where <(·) is the real part of a complex number.
In this article, we show that the conditions (1.3) and (1.4) are necessary for the

L2-well-posedness, without using the additional assumption (1.5).
The method of proof is almost same as that in [2]; that is, under the assumption

that the conditions are not satisfied, we construct the sequences of oscillating so-
lutions that are not consistent with the estimates required to be L2-well-posed. In
our construction, we use “time independent” phases. We remark that the idea of
the above method has its origin in Mizohata’s works on Schrödinger type equations
(see for example [1]).

To make our method clear, we consider dispersive operators

L[u] = Dtu−Dk
xu−

k∑
j=1

aj(x)Dk−j
x u

with k ≥ 3. In the next section we draw some necessary conditions for L2-well-
posedness. As for the case k = 4, we show the necessity of the conditions (1.3) and
(1.4).

In the following, we denote by B∞(R) the space of infinitely differentiable func-
tions on R that are bounded on R together with all their derivatives of any order.
We denote by ‖f(·)‖ L2-norm of f(x) given by ‖f(·)‖ =

( ∫
R |f(x)|2 dx

)1/2. We use
C or C with some subindex to denote positive constants that may be different, line
by line.

2. Main Result

Let L be a dispersive operator given by

L[u] = Dtu−Dk
xu−

k∑
j=1

aj(x)Dk−j
x u (2.1)

with k ≥ 3 and aj(x) ∈ B∞(R).
Let T be a positive number. Consider the Cauchy problem forward and backward

for L;
L[u] = f(x, t) (x, t) ∈ R× (−T, T ) (2.2)

with the initial condition
u(x, 0) = g(x) x ∈ R. (2.3)

We say that the Cauchy problem (2.2)–(2.3) is L2-well-posed, if for any f(x, t) ∈
L1([−T, T ], L2(R)) and any g(x) ∈ L2(R), there exists one and only one solution
u(x, t) in C0([−T, T ], L2(R)) to the above problem satisfying the following two
estimates: for any t ∈ [0, T ],

‖u(·, t)‖ ≤ C
(
‖g(·)‖+

∫ t

0

‖f(·, s)‖ ds
)
, (2.4)

‖u(·,−t)‖ ≤ C
(
‖g(·)‖+

∫ 0

−t

‖f(·, s)‖ ds
)
, (2.5)

where the constant C does not depend on t, f(x, t), or g(x).
We consider the behaviour of the oscillating solution u(x, t) = ei(ξx+ξkt)U(x, t, ξ)

to the equation L[u] = 0.
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Define the operator L0 by

L0[U ] = e−i(ξx+ξkt)L[ei(ξx+ξkt)U ].

Then we see that

L0 = Dt − ξk−1(kDx + a1(x))−
k∑

j=2

ξk−j
((

k

k − j

)
Dj

x +
j∑

l=1

al(x)
(

k − l

k − j

)
Dj−l

x

)
.

Setting d1(x) = −a1(x)/k and multiplying eiS1(x) with S1(x) =
∫ x

x0
d1(y) dy, we

eliminate the term −ξk−1a1(x) from L0. That is, defining the operator L1 by

L1[U ] = e−iS1(x)L0[eiS1(x)U ],

we obtain

L1 = Dt − ξk−1kDx −
k∑

j=2

ξk−jP1,j(x,Dx)

where

P1,j(x,Dx) =
j∑

l=0

bj,l(x)Dl
x.

Next, we eliminate the term −ξk−2b2,0(x) from L1 by multiplying eiS2(x)/ξ with
S2(x) =

∫ x

x0
d2(y) dy with d2(x) = −b2,0(x)/k. That is, defining the operator L2 by

L2[U ] = e−iS2(x)/ξL1[eiS2(x)/ξU ],

we see that L2 satisfies

L2 = Dt − ξk−1kDx −
2k∑

j=2

ξk−jP2,j(x,Dx)

where

P2,2(x,Dx) =
2∑

l=1

c2,l(x)Dl
x.

and, for j > 2

P2,j(x,Dx) =
min{j,k}∑

l=0

cj,l(x)Dl
x.

Repeating this process, we obtain the following result.

Proposition 2.1. There exist the functions d1(x), d2(x), . . . , dk(x) ∈ B∞(R), such
that with S(x, x0, ξ) defined by

S(x, x0, ξ) =
k∑

j=1

1
ξj−1

∫ x

x0

dj(y) dy

the operator L00 defined by

L00[U ] = e−iS(x,x0,ξ)L0[eiS(x,x0,ξ)U ],

which has the form

L00 = Dt − ξk−1kDx −
k+k(k−1)∑

j=2

ξk−jPj(x,Dx) (2.6)
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where Pj(x,Dx) is a differential operator of order at most k. In particular for
j = 2, . . . , k,

Pj(x,Dx) =
j∑

q=1

pj,q(x)Dq
x . (2.7)

Here the functions dj(x) are uniquely determined by the coefficients of L.

Remark 2.2. We see from (2.6) and (2.7) that L00[1] =
∑k(k−1)

j=1 ξ−jrj(x) with
some rj(x).

Proof of Proposition 2.1. We have to show only the uniqueness. Assume that there
exist some d̃j(x) (1 ≤ j ≤ k) such that the operator L̃00 given by

L̃00[U ] = e−iS̃(x,x0,ξ)L0[eiS̃(x,x0,ξ)U ],

where S̃(x, x0, ξ) =
∑k

j=1
1

ξj−1

∫ x

x0
d̃j(y) dy, has the form similar to L00, that is,

L̃00[1] =
∑k(k−1)

j=1 ξ−j r̃j(x) with some r̃j(x).
Since L0[U ] = eiS(x,x0,ξ)L00[e−iS(x,x0,ξ)U ], we obtain

L̃00[U ] = e−i(S̃(x,x0,ξ)−S(x,x0,ξ)L00[ei(S̃(x,x0,ξ)−S(x,x0,ξ)U ].

Then
k(k−1)∑

j=1

ξ−j r̃j(x) = e−i(S̃(x,x0,ξ)−S(x,x0,ξ)L00[ei(S̃(x,x0,ξ)−S(x,x0,ξ)].

Comparing the coefficient of ξk−j (j = 1, 2, . . . , k), we see that d̃j(x) = dj(x) by
the induction on j. �

Note that for the fourth-order operator in (1.1), we have the following: (see also
[2])

d1(x) =
−a(x)

4
(2.8)

d2(x) =
−1
4

(b(x)− 3
8
a(x)2 − 3

2
Dxa(x)) (2.9)

d3(x) =
−1
4

(
c(x) +

a(x)3

8
− a(x)b(x)

2
+ Dx(4Dxd1(x) + 6d2(x))

)
. (2.10)

In this note, we show the following result.

Theorem 2.3. If the Cauchy problem (2.2)–(2.3) is L2-well-posed, then the func-
tions d1(x), d2(x), . . . , dk−1(x) given in Proposition 2.1, satisfy: For 1 ≤ j ≤ k − 1
and any x0, x1 ∈ R, ∣∣ ∫ x1

x0

=dj(y) dy
∣∣ ≤ C|x1 − x0|

j−1
k−1 . (2.11)

By Theorem 2.3, it follows from (2.8), (2.9) and (2.10) that it is necessary that
(1.2), (1.3) and (1.4) hold for the Cauchy problem, for the operator given by (1.1),
to be L2-well-posed.

To prove Theorem 2.3, we prepare following propositions.
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Proposition 2.4. If the Cauchy problem (2.2)-(2.3) is L2-well-posed, then we have∣∣ ∫ x1

x0

=d1(y) dy
∣∣ ≤ C (2.12)

for any x0, x1 ∈ R.

Proof. Assuming that
∫ x1

x0
=d1(y) dy is not bounded, we construct the sequence of

solutions un(x, t) that are not consistent with the estimates (2.4) or (2.5). Indeed,
if

∫ x1

x0
=d1(y) dy is not bounded, for any positive integer n we can find x0,n, x1,n ∈ R

satisfying ∣∣ ∫ x1,n

x0,n

=d1(y) dy
∣∣ > n.

Here, we may assume that

−
∫ x1,n

x0,n

=d1(y) dy > n

by exchanging x0,n and x1,n if necessary. Now we set ξn = n|x1,n − x0,n|. We
remark that the boundedness of d1(x) implies that |x1,n − x0,n| → ∞ as n → ∞.
Hence ξn → ∞ as n → ∞. We choose tn so that x1,n = x0,n − ktnξk−1

n . That is,
tn = −(x1,n − x0,n)/(kn|x1,n − x0,n|ξk−2

n ). We note that |tnξk−2
n | = 1/(kn) and

tn → 0 as n →∞.
Since ξn = n|x1,n − x0,n|, it follows that, if j ≥ 2,∣∣ 1

ξj−1
n

∫ x1,n

x0,n

dj(y) dy
∣∣ ≤ C.

Then, by setting x0 = x0,n and ξ = ξn in S(x, x0, ξ); that is, S(x, x0,n, ξn) =∑k
j=1

1

ξj−1
n

∫ x

x0,n
dj(y) dy, we have, for large n,

|S(x1,0, x0,n, ξn)−
∫ x1,n

x0,n

d1(y) dy| ≤ C, −=S(x1,n, x0,n, ξn) ≥ n

2
.

Consider the case where there exist infinitely many n’s such that tn > 0. Then,
by choosing a subsequence, we may assume tn > 0 for all n > 0. Let sn ∈ [0, tn] be
a number satisfying

−=S(x0,n − ksnξk−1
n , x0,n, ξn) = max

0≤t≤tn

−=S(x0,n − ktξk−1
n , x0,n, ξn).

Since x0,n−ktnξk−1
n = x1,n, we see that −=S(x0,n−ksnξk−1

n , x0,n, ξn) ≥ n/2. Pick
a non-negative function g(x) ∈ C∞(R) satisfying:

g(x) = 0 for |x| ≥ 1, (2.13)∫
R

g(x)2 dx = 1. (2.14)

Set
un(x, t) = ei(xξn+tξk

n+S(x,x0,n,ξn))g(x + tkξk−1
n − x0,n).

Then
L[un(x, t)] = ei(xξn+tξk

n+S(x,x0,n,ξn))L00[g(x + tkξk−1
n − x0,n)].

Noting (Dt − kξk−1
n Dx)g(x + tkξk−1

n − x0,n) = 0, we see that

L00[g(x + tkξk−1
n − x0,n)] =

∑
0≤j≤k, 0≤q≤k2−2

ξk−2−q
n rq,j(x)g(j)(x + tkξk−1

n − x0,n)
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and

L[un(x, t)] = ei(xξn+tξk
n+S(x,x0,n,ξn))

×
∑

0≤j≤k, 0≤q≤k2−2

ξk−2−q
n rq,j(x)g(j)(x + tkξk−1

n − x0,n).

On the support of g(j)(x+ tkξk−1
n −x0,n), where |x− (x0,n− ktξk−1

n )| ≤ 1, we have

|S(x, x0,n, ξn)− S(x0,n − ktξk−1
n , x0,n, ξn)| ≤ C. (2.15)

By the definition of sn, if 0 ≤ t ≤ sn, −=S(x0,n − ktξk−1
n , x0,n, ξn) ≤ −=S(x0,n −

ksnξk−1
n , x0,n, ξn). Then, if 0 ≤ t ≤ sn, we obtain

|L[un(x, t)]| ≤ Ce−=S(x0,n−ksnξk−1
n ,x0,n,ξn)ξk−2

n

k∑
j=0

|g(j)(x + tkξk−1
n − x0,n)|,

from which we obtain∫ sn

0

‖L[un(·, t)]‖ dt ≤ Csnξk−2
n e−=S(x0,n−ksnξk−1

n ,x0,n,ξn)

≤ C
1
kn

e−=S(x0,n−ksnξk−1
n ,x0,n,ξn).

(2.16)

While we obtain
‖un(·, 0)‖ ≤ C (2.17)

from
un(x, 0) = ei(xξn+S(x,x0,n,ξn))g(x− x0,n)

and (2.15). Here we remark S(x0,n, x0,n, ξn) = 0.
On the other hand, from

un(x, sn) = ei(xξn+S(x,x0,n,ξn))g(x + ksnξk−1
n − x0,n)

and (2.15), it follows that

‖un(·, sn)‖ ≥ C0e
−=S(x0,n−ksnξk−1

n ,x0,n,ξn). (2.18)

If the Cauchy problem is L2-well-posed, we have estimate (2.4):

‖un(·, sn)‖ ≤ C(‖u(·, 0)]‖+
∫ sn

0

‖L[u(·, t)]‖ dt).

Hence estimates (2.16),(2.17) and (2.18) imply

e−=S(x0,n−ksnξk−1
n ,x0,n,ξn) ≤ C−1

0 C(1 +
1
n

e−=S(x0,n−ksnξk−1
n ,x0,n,ξn)).

But since −=S(x0,n − ksnξk−1
n , x0,n, ξn) → ∞ as n → ∞, the above estimate is

impossible for large n. Then (2.12) has to hold. In the case where there exists an
N such that tn < 0 for n > N , we can construct similarly to the previous case, a
sequence of functions un(x, t) that are not consistent with estimate (2.5). �

Proposition 2.5. Let l ∈ {1, 2, . . . , k − 2}. Assume that, for any j ∈ {1, 2, . . . , l}
and any x, ξ ∈ R, ∣∣ ∫ x+ξl

x

=dj(y) dy
∣∣ ≤ C|ξ|j−1. (2.19)
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If the Cauchy problem (2.2)–(2.3) is L2-well-posed, then

∣∣ l+1∑
j=1

1
ξj−1

∫ x+ξl+1

x

=dj(y) dy
∣∣ ≤ C (2.20)

for any x, ξ ∈ R with ξ 6= 0.

Proof. Similarly to the proof of Proposition 2.4, assuming that (2.20) is not valid,
we construct the sequence of solutions un(x, t) that are not consistent with the

estimates (2.4) or (2.5). Indeed, if
∑l+1

j=1
1

ξj−1

∫ x+ξl+1

x
=dj(y) dy is not bounded, for

any positive integer n we can find xn ∈ R and ξn ∈ R \ {0} such that

∣∣ l+1∑
j=1

1
ξj−1
n

∫ xn+ξl+1
n

xn

=dj(y) dy
∣∣ > n2.

We note that the boundedness of dj(x) implies that |ξn| → ∞ as n → ∞. We set
yp = xn + p

nξl+1
n (p = 0, 1, 2, . . . , n). Then, noting

n∑
p=1

∫ yp

yp−1

dj(y) dy =
∫ xn+ξl+1

n

xn

dj(y) dy,

we see that there exists some p such that∣∣ l+1∑
j=1

1
ξj−1
n

∫ yp

yp−1

=dj(y) dy
∣∣ > n.

Then, redefining xn by xn = yp−1, we have

∣∣ l+1∑
j=1

1
ξj−1
n

∫ xn+
ξl+1

n
n

xn

=dj(y) dy
∣∣ > n.

First we consider the case where for infinitely many n, we have

−
l+1∑
j=1

1
ξj−1
n

∫ xn+
ξl+1

n
n

xn

=dj(y) dy > n.

Then we consider only such n.
We define tn by ktnξk−1

n = − ξl+1
n

n ; that is, tn = −1

nξk−2−l
n

. We see that tn → 0
as n → ∞. Similarly to the proof of Proposition 2.4, using the phase function
S(x, xn, ξn) =

∑k
j=1

1

ξj−1
n

∫ x

xn
dj(y) dy and a non-negative function g(x) ∈ C∞(R)

satisfying (2.13) and (2.14), we consider un(x, t) given by

un(x, t) = ei(ξx+tξk+S(x,xn,ξn))g(
x + ktξk−1

n − xn

ξl
n

)|ξn|−l/2.

We note that, if |x + ktξk−1
n − xn| ≤ |ξn|l and |t| ≤ |tn|,

|x− xn| ≤ |ξn|l + |ktξk−1
n | ≤ |ξn|l + |ξl+1

n /n|

from which we obtain, on the support of un(x, t),∣∣ 1
ξj−1
n

∫ x

xn

dj(y) dy
∣∣ ≤ C
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for j ≥ l + 2. Hence, on the support of un(x, t),

|S(x, xn, ξn)−
l+1∑
j=1

1
ξj−1
n

∫ x

xn

dj(y) dy| ≤ C (2.21)

On the other hand, if |x + ktξk−1
n − xn| ≤ |ξn|l, the assumption (2.19) on dj(x)

(j = 1, . . . , l) of Proposition 2.5 implies that∣∣ ∫ x

xn

=dj(y) dy −
∫ xn−ktξk−1

n

xn

=dj(y) dy
∣∣ ≤ C|ξn|j−1

which implies that∣∣ l+1∑
j=1

1
ξj−1
n

∫ x

xn

=dj(y) dy −
l+1∑
j=1

1
ξj−1
n

∫ xn−ktξk−1
n

xn

=dj(y) dy
∣∣ ≤ C (2.22)

on the support of un(x, t).
Similarly to the proof of Proposition 2.4, we assume tn > 0 and choose sn ∈ [0, tn]

so that

−
l+1∑
j=1

1
ξj−1
n

∫ xn−ksnξk−1
n

xn

=dj(y) dy = max
0≤t≤tn

(
−

l+1∑
j=1

1
ξj−1
n

∫ xn−ktξk−1
n

xn

=dj(y) dy
)
.

We have

L[un(x, t)] = ei(ξx+tξk+S(x,xn,ξn))L00[g(
x + ktξk−1

n − xn

ξl
n

)|ξn|−l/2].

Note that (Dt − kξk−1
n Dx)g(x+ktξk−1

n −xn

ξl
n

) = 0 and

Dj
xg(

x + ktξk−1
n − xn

ξl
n

) = g(j)(
x + ktξk−1

n − xn

ξl
n

)ξ−jl
n .

Then we see from (2.6), (2.7) and l + 2 ≤ k that

L00[g(
x + ktξk−1

n − xn

ξl
n

)|ξn|−l/2]

=
∑

k≥j≥0,k2−2−l≥p≥0

ξk−2−l−p
n rp,j(x)g(j)(

x + ktξk−1
n − xn

ξl
n

)|ξn|−l/2.

On the support of g(x+ktξk−1
n −xn

ξl
n

) with 0 ≤ t ≤ sn, we have

∣∣=S(x, xn, ξn)−
l+1∑
j=1

1
ξj−1
n

∫ xn−ktξk−1
n

xn

=dj(y) dy
∣∣ ≤ C

Then if 0 ≤ t ≤ sn, we have

‖L[un(x, t)]‖ ≤ C|ξn|k−2−le−=S(xn−ksnξk−1
n ,xn,ξn).

Hence ∫ sn

0

‖L[un(x, t)]‖ dt ≤ Csn|ξn|k−2−le−=S(xn−ksnξk−1
n ,xn,ξn)

≤ C

n
e−=S(xn−ksnξk−1

n ,xn,ξn).

(2.23)
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Noting un(x, 0) = ei(ξx+S(x,xn,ξn))g(x−xn

ξl
n

)|ξn|−l/2, we obtain |=S(x, xn, ξn)| ≤ C

on the support of un(x, 0) from (2.21) and (2.22). Then we have

‖un(x, 0)‖ ≤ C. (2.24)

Finally we see from (2.21) and (2.22) that, on the support of un(x, sn),

−=S(x, xn, ξn) ≥ −=S(xn − ksnξk−1
n , xn, ξn) + C,

from which we obtain

‖un(x, sn)‖ ≥ C0e
−=S(xn−ksnξk−1

n ,xn,ξn). (2.25)

If the Cauchy problem is L2-well-posed, we have the estimate (2.4), to which we
apply (2.23), (2.24) and (2.25). Then we obtain the inequality that is not valid for
large n. Hence the estimate (2.20) has to hold.

In the case where there exists some integer N > 0 such that tn < 0 for n > N .
Then we can construct the series of functions un(x, t) for which the estimate (2.5)
is not valid for large n.

If there exists some integer N > 0 such that, for n > N ,

l+1∑
j=1

− 1
ξj−1
n

∫ xn+ξl+1
n

xn

=dj(y) dy < −n,

then, by setting, yn = xn + ξl+1
n , we have

l+1∑
j=1

− 1
ξj−1
n

∫ yn−ξl+1
n

yn

=dj(y) dy > n.

By setting tn = −ξl−k
n /n, as the above argument, we can construct the series of

functions un(x, t) which are not consistent with the estimates (2.4) or (2.5). �

Remark 2.6. If the coefficient a1(x) of L is zero, we can obtain the oscillating
solutions un(x, t) having smaller L[un(x, t)] in the power of ξn by solving the trans-
port equation. We note that, if a1(x) = 0, the operator P2(x,Dx) appearing in
(2.6) is P2(x,Dx) =

(
k
2

)
D2

x.

Note that L00[g(x−(xn−ktξk−1
n )

ξl
n

)|ξn|−l/2] is a sum of

ξp
nrp,j(x)g(j)(

x− (xn − ktξk−1
n )

ξl
n

)|ξn|−l/2

with 0 ≤ j ≤ k and −k(k − 1) ≤ p ≤ k − 2− l. We choose

gj,p(x, t) = ξp
n

−i

kξk−1
n

∫ x

xn

rp,j(y) dy g(j)(
x− (xn − ktξk−1

n )
ξl
n

)|ξn|−l/2

as a solution of the transport equation

Dtg − kξk−1
n Dxg = ξp

nrp,j(x)g(j)(
x− (xn − ktξk−1

n )
ξl
n

)|ξn|−l/2.
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We have
ξk−2
n D2

xgj,p(x, t)

= ξp
n

−1
kξn

Dxrp,j(x)g(j)
(x− (xn − ktξk−1

n )
ξl
n

)
|ξn|−l/2

+ ξp
n

2i

kξ1+l
n

rp,j(x)g(j+1)
(x− (xn − ktξk−1

n )
ξl
n

)
|ξn|−l/2

+ ξp
n

iξk−2−2l
n

kξk−1
n

∫ x

xn

rp,j(y) dy g(j+2)
(x− (xn − ktξk−1

n )
ξl
n

)
|ξn|−l/2

(2.26)

and
ξk−3
n Dxgj,p(x, t)

= ξp
n

−1
kξ2

n

rp,j(x)g(j)
(x− (xn − ktξk−1

n )
ξl
n

)
|ξn|−l/2

+ ξp
n

−ξk−3−l
n

kξk−1
n

∫ x

xn

rp,j(y) dy g(j+1)
(x− (xn − ktξk−1

n )
ξl
n

)
|ξn|−l/2.

(2.27)

Then it follows from 1 ≤ l ≤ k − 2, |x − xn| ≤ |ξn|l + k|t|ξk−1
n on the support

of g(j)(x−(xn−ktξk−1
n )

ξl
n

), and |snξk−2−l
n | ≤ 1/n, that, if 0 ≤ t ≤ sn and n is large,

L2 norm of L00[g(x, t) −
∑

gj,p(x, t)] is smaller than that of L00[g(x, t)] where

g(x, t) = g(x−(xn−ktξk−1
n )

ξl
n

)|ξn|−l/2 and we assume sn > 0. We see also that L2

norm of gj,p(x, 0) is smaller than that of g(x, 0) for large n. Taking into account of
(2.26) and (2.27), we see that L00[g(x, t)−

∑
gj,p(x, t)] is also a linear combination

of terms like: ξp
nrp,j(x)g(j)(x−(xn−ktξk−1

n )
ξl

n
)|ξn|−l/2. Then we can repeat this process.

Proposition 2.7. Let l ∈ {1, 2, . . . , k − 2}. Assume that the estimate (2.20) holds
for any x0, ξ ∈ R with ξ 6= 0.

Then we see that, for j = 1, 2, . . . , l + 1,∣∣ ∫ x1

x0

=dj(y) dy
∣∣ ≤ C|x1 − x0|(j−1)/(l+1). (2.28)

Proof. Indeed, for any integer p ≥ 1, any y ∈ R and any η ∈ R \ {0}, we see that

2p(j−1)

ηj−1

∫ y+ηl+1

y

dj(y) dy =
2p(l+1)∑

q=1

1
(2−pη)j−1

∫ (y+(2−pη)l+1(q−1))+(2−pη)l+1

y+(2−pη)l+1(q−1)

dj(y) dy.

Then from (2.20) we obtain∣∣ l+1∑
j=1

2p(j−1)

ηj−1

∫ y+ηl+1

y

=dj(y) dy
∣∣ ≤ Cp. (2.29)

Here the constant Cp may depend on p, but not on y or on η. Hence, by setting

Xj = 1
ηj−1

∫ y+ηl+1

y
=dj(y) dy (j = 1, 2, . . . , l + 1), for p = 0, 1, . . . , l, we have

l+1∑
j=1

2p(j−1)Xj = Kp

with |Kp| ≤ Cp.
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Since the l + 1-th order matrix whose (i, j) element is 2(i−1)(j−1) is invertible,

we see that Xj = 1
ηj−1

∫ y+ηl+1

y
=dj(y) dy is bounded on Ry × Rη \ {0}. Hence

∣∣ ∫ y+ηl+1

y

=dj(y) dy
∣∣ ≤ C|η|j−1

which implies ∣∣ ∫ w

y

=dj(y) dy
∣∣ ≤ C|w − y|(j−1)/(l+1)

for any y, w ∈ R, where j = 1, 2, . . . , l + 1. The proof is complete. �

Proof of Theorem 2.3. Using Proposition 2.4, 2.5 and 2.7, we see obviously that
the assertion of Theorem 2.3 is valid. �

Remark 2.8. For the operator L, defined in the Introduction, Mizuhara [2] proved
Proposition 2.4, Proposition 2.5 in the case of l = 1, and Proposition 2.7 in the
case of l = 2.
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