Electronic Journal of Differential Equations, Vol. 2011 (2011), No. 17, pp. 1-9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

NONLOCAL BOUNDARY-VALUE PROBLEMS FOR N-TH ORDER ORDINARY DIFFERENTIAL EQUATIONS BY MATCHING SOLUTIONS

XUEYAN LIU

Abstract

We are concerned with the existence and uniqueness of solutions to nonlocal boundary-value problems on an interval $[a, c]$ for the differential equation $y^{(n)}=f\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right)$, where $n \geq 3$. We use the method of matching solutions, with some monotonicity conditions on f.

1. Introduction

In this article, we are concerned with the existence and uniqueness of solutions of boundary-value problems (BVP's) for the differential equation

$$
\begin{gather*}
y^{(n)}(x)=f\left(x, y(x), y^{\prime}(x), \ldots, y^{(n-1)}(x)\right), \quad n \geq 3, x \in[a, c] \tag{1.1}\\
y(a)-\sum_{i=1}^{s} \alpha_{i} y\left(\xi_{i}\right)=y_{1}, \quad y^{(i)}(b)=y_{i+2}, \quad 0 \leq i \leq n-3 \\
\sum_{j=1}^{t} \beta_{j} y\left(\eta_{j}\right)-y(c)=y_{n} \tag{1.2}
\end{gather*}
$$

where $a<\xi_{1}<\xi_{2}<\cdots<\xi_{s}<b<\eta_{1}<\eta_{2}<\cdots<\eta_{t}<c, s, t \in \mathbb{N}, \alpha_{i}>0$ for $1 \leq i \leq s, \beta_{j}>0$ for $1 \leq j \leq t, \sum_{i=1}^{s} \alpha_{i}=1, \sum_{j=1}^{t} \beta_{j}=1$, and $y_{1}, y_{2}, \ldots, y_{n} \in \mathbb{R}$.

It is assumed throughout that $f:[a, c] \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous and that solutions for the initial value problems (IVP's) for (1.1) are unique and exist on $[a, c]$. Moreover $a<\xi_{1}<\xi_{2}<\cdots<\xi_{s}<b<\eta_{1}<\eta_{2}<\cdots<\eta_{t}<c$ are fixed throughout.

Consider the following boundary conditions:

$$
\begin{align*}
& y(a)-\sum_{i=1}^{s} \alpha_{i} y\left(\xi_{i}\right)=y_{1}, \quad y^{(i)}(b)=y_{i+2}, \quad 0 \leq i \leq n-3, \quad y^{(n-2)}(b)=m \tag{1.3}\\
& y(a)-\sum_{i=1}^{s} \alpha_{i} y\left(\xi_{i}\right)=y_{1}, \quad y^{(i)}(b)=y_{i+2}, 0 \leq i \leq n-3, \quad y^{(n-1)}(b)=m \tag{1.4}
\end{align*}
$$

[^0]\[

$$
\begin{align*}
& y^{(i)}=y_{i+2}, 0 \leq i \leq n-3, \quad y^{(n-2)}(b)=m, \quad \sum_{j=1}^{t} \beta_{j} y\left(\eta_{j}\right)-y(c)=y_{n} \tag{1.5}\\
& y^{(i)}=y_{i+2}, 0 \leq i \leq n-3, \quad y^{(n-1)}(b)=m, \quad \sum_{j=1}^{t} \beta_{j} y\left(\eta_{j}\right)-y(c)=y_{n} \tag{1.6}
\end{align*}
$$
\]

where $m \in \mathbb{R}$. We show that $(1.1)-(1.2)$ has a unique solution by matching solutions of the BVP's $(\sqrt{1.1})-(\sqrt{1.3})$ on $[a, b]$ and (1.1)- (1.5) on $[b, c]$, or $(1.1)-(\sqrt{1.4})$ on $[a, b]$ and (1.1)-(1.6) on $[b, c]$.

The method of matching solutions was first used by Bailey et al. [1]. They considered the solutions of two-point boundary value problems for the second order differential equation $y^{\prime \prime}=f\left(x, y, y^{\prime}\right)$ by matching solutions of initial value problems. After that, in 1973, Barr and Sherman [2 applied the solution matching techniques to third order equations and generalized to equations of arbitrary order. A monotonicity condition on f played an important role. In 1981, Rao et al. [10] generalized the monotonicity of f of third order differential equations and introduced an auxiliary monotone function g. In 1983, Henderson [4] generalized to nth order BVP's and considered more general boundary conditions. Since then there has been a lot of literature dealing with solutions of third order BVP's or higher order BVP's by using matching solutions; see [3, 5, 6, 7, 8, 8, 9, etc.

In this article, we consider the n-th order BVP's with nonlocal boundary conditions $1.1-1.2$ and use a weaker condition on the auxiliary function g. In Section 2, we give some preliminary results, and in Section 3, we prove the existence and uniqueness of solutions of (1.1)- 1.2. In Section 4, we generalize our results to BVP's with more general boundary conditions:

$$
\begin{gather*}
y^{(\tau)}(a)-\sum_{i=1}^{s} \alpha_{i} y^{(\tau)}\left(\xi_{i}\right)=y_{1}, \quad y^{(i)}(b)=y_{i+2}, 0 \leq i \leq n-3 \tag{1.7}\\
\sum_{j=1}^{t} \beta_{j} y^{(\sigma)}\left(\eta_{j}\right)-y^{(\sigma)}(c)=y_{n}
\end{gather*}
$$

with $\tau, \sigma \in\{0,1, \ldots, n-3\}$ fixed.
We assume there is a continuous function $g:[a, c] \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ and that f and g satisfy the following conditions:
(A) For $u, v \in \mathbb{R}, f\left(x, v_{0}, v_{1}, \ldots, v_{n-2}, v\right)-f\left(x, u_{0}, u_{1}, \ldots, u_{n-2}, u\right)>g\left(x, v_{0}-\right.$ $\left.u_{0}, v_{1}-u_{1}, \ldots, v_{n-2}-u_{n-2}, v-u\right)$ when $x \in(a, b],(-1)^{n-i} v_{i} \geq(-1)^{n-i} u_{i}$, $0 \leq i \leq n-3$, and $v_{n-2}>u_{n-2}$; or when $x \in[b, c), v_{i} \geq u_{i}, 0 \leq i \leq n-3$, and $v_{n-2}>u_{n-2}$.
(B) There exists $\delta_{1}>0$, such that for all $0<\delta<\delta_{1}$, the IVP

$$
\begin{gather*}
z^{(n)}=g\left(x, z, z^{\prime}, \ldots, z^{(n-1)}\right) \tag{1.8}\\
z^{(i)}(b)=0, \quad 0 \leq i \leq n-1, \quad i \neq n-2, \quad z^{(n-2)}(b)=\delta \tag{1.9}
\end{gather*}
$$

has a solution z on $[a, c]$ such that $z^{(n-2)}(x) \geq 0$ on $[a, c]$.
(C) There exists $\delta_{2}>0$, such that for all $0<\delta<\delta_{2}$, the IVP

$$
\begin{gather*}
z^{(n)}=g\left(x, z, z^{\prime}, \ldots, z^{(n-1)}\right) \tag{1.10}\\
z^{(i)}(b)=0, \quad 0 \leq i \leq n-2, \quad z^{(n-1)}(b)=\delta,(-\delta) \tag{1.11}
\end{gather*}
$$

has a solution z on $[b, c]([a, b])$ such that $z^{(n-2)}(x) \geq 0$ on $[b, c],\left(z^{(n-2)}(x) \geq\right.$ 0 on $[a, b]$).
(D) For each $w \in \mathbb{R}, g\left(x, v_{0}, v_{1}, \ldots, v_{n-2}, w\right) \geq g\left(x, u_{0}, u_{1}, \ldots, u_{n-2}, w\right)$ when $x \in(a, b],(-1)^{n-i}\left(v_{i}-u_{i}\right) \geq 0, i=0,1, \ldots, n-3$, and $v_{n-2}>u_{n-2} \geq 0$, or when $x \in[b, c), v_{i} \geq u_{i}, i=0,1, \ldots, n-3$, and $v_{n-2}>u_{n-2} \geq 0$.

2. Preliminaries

In this section, we give two lemmas which show the relationship between the value of the $n-2$ nd order and the $n-1$ st order of two solutions of (1.1) at b that satisfy the boundary conditions (2), respectively, on the interval $[a, b]$ and the interval $[b, c]$. All of the results in Section 3 are based on two lemmas. We basically prove the lemmas by using contradiction.

Lemma 2.1. Suppose p and q are solutions of (1.1) on $[a, b]$ and $w=p-q$ satisfies the following boundary conditions:

$$
w(a)-\sum_{i=1}^{s} \alpha_{i} w\left(\xi_{i}\right)=0, \quad w^{(i)}(b)=0, \quad 0 \leq i \leq n-3 .
$$

Then, $w^{(n-2)}(b)=0$ if and only if $w^{(n-1)}(b)=0$. Also, $w^{(n-2)}(b)>0$ if and only if $w^{(n-1)}(b)>0$.
Proof. (\Rightarrow) The necessity of the first part. Suppose $w^{(n-2)}(b)=0$ and $w^{(n-1)}(b) \neq$ 0 . Without loss of generosity, we assume $w^{(n-1)}(b)<0$.

Since $0=w(a)-\sum_{i=1}^{s} \alpha_{i} w\left(\xi_{i}\right)=\sum_{i=1}^{s} \alpha_{i}\left(w(a)-w\left(\xi_{i}\right)\right)$ and $\alpha_{i}>0$, for some $i_{1}, w(a) \geq w\left(\xi_{i_{1}}\right)$, and for some $i_{2}, w(a) \leq w\left(\xi_{i_{2}}\right)$. Hence, there exists $r_{1} \in(a, b)$ such that $w^{\prime}\left(r_{1}\right)=0$ and $(-1)^{n-1} w^{\prime}(x)>0$ on $\left(r_{1}, b\right)$.

By repeated applications of Rolle's Theorem, there exists $r_{2} \in\left(r_{1}, b\right)$ such that $w^{(n-2)}\left(r_{2}\right)=0$ and $w^{(n-2)}(x)>0$, for $x \in\left(r_{2}, b\right)$. Hence, $(-1)^{n-j} w^{(j)}(x)>0$, for $j=0,1, \ldots, n-2$, on $\left(r_{2}, b\right)$.

Let $\delta \in \mathbb{R}$ with $0<\delta<\min \left\{\delta_{2},-w^{(n-1)}(b)\right\}$. Then, by Condition (C), we have a solution z of 1.10 - 1.11) on $[a, b]$, such that $z^{(i)}(b)=0,0 \leq i \leq n-2$, $z^{(n-1)}(b)=-\delta$, and $z^{(n-2)}(x) \geq 0$ on $[a, b]$.

Let $h=w-z$. Then, we have

$$
\begin{gathered}
h^{(n)}=f\left(x, p, p^{\prime}, \ldots, p^{(n-1)}\right)-f\left(x, q, q^{\prime}, \ldots, q^{(n-1)}\right)-g\left(x, z, z^{\prime}, \ldots, z^{(n-1)}\right), \\
h^{(i)}(b)=0,0 \leq i \leq n-2, \quad h^{(n-1)}(b)=w^{(n-1)}(b)-z^{(n-1)}(b)<0 .
\end{gathered}
$$

Notice $h^{(n-2)}\left(r_{2}\right)=w^{(n-2)}\left(r_{2}\right)-z^{(n-2)}\left(r_{2}\right) \leq 0, h^{(n-2)}(b)=0$ and $h^{(n-1)}(b)<$ 0 . So there exists $r_{3} \in\left[r_{2}, b\right)$ such that $h^{(n-2)}\left(r_{3}\right)=0$ and $h^{(n-2)}(x)>0$ for $x \in\left(r_{3}, b\right)$. Then, it follows that $(-1)^{n-j} h^{(j)}(x)>0$ on $\left(r_{3}, b\right)$, for $j=0,1, \ldots, n-2$. Therefore, by Rolle's Theorem, there is $r_{4} \in\left(r_{3}, b\right)$ such that $h^{(n-1)}\left(r_{4}\right)=0$. Since $h^{(n-1)}(b)<0$, there is $r_{5} \in\left[r_{4}, b\right)$ such that $h^{(n-1)}\left(r_{5}\right)=0$ and $h^{(n-1)}(x)<0$ for $x \in\left(r_{5}, b\right)$. Then,

$$
h^{(n)}\left(r_{5}\right)=\lim _{x \rightarrow r_{5}^{+}} \frac{h^{(n-1)}(x)-h^{(n-1)}\left(r_{5}\right)}{x-r_{5}} \leq 0
$$

whereas by Conditions (A) and (D), (note that $\left.\left[r_{5}, b\right) \subset\left(r_{3}, b\right) \subset\left(r_{2}, b\right)\right)$,

$$
\begin{aligned}
h^{(n)}\left(r_{5}\right) & =f\left(r_{5}, p, p^{\prime}, \ldots, p^{(n-1)}\right)-f\left(r_{5}, q, q^{\prime}, \ldots, q^{(n-1)}\right)-g\left(r_{5}, z, z^{\prime}, \ldots, z^{(n-1)}\right) \\
& >g\left(r_{5}, w, w^{\prime}, \ldots, w^{(n-1)}\right)-g\left(r_{5}, z, z^{\prime}, \ldots, z^{(n-1)}\right) \geq 0
\end{aligned}
$$

which is a contradiction. Therefore, $w^{(n-1)}(b)=0$.
(\Leftarrow) The sufficiency of the first part. Suppose $w^{(n-1)}(b)=0$ and $w^{(n-2)}(b) \neq 0$. Without loss of generality, we assume $w^{(n-2)}(b)>0$.

Since $0=w(a)-\sum_{i=1}^{s} \alpha_{i} w\left(\xi_{i}\right)=\sum_{i=1}^{s} \alpha_{i}\left(w(a)-w\left(\xi_{i}\right)\right)$ and $\alpha_{i}>0$, there exists $r_{1} \in(a, b)$ such that $w^{\prime}\left(r_{1}\right)=0$, and $(-1)^{n-1} w^{\prime}(x)>0$ on $\left(r_{1}, b\right)$.

By repeated applications of Rolle's Theorem, there exists $r_{2} \in\left(r_{1}, b\right)$ such that $w^{(n-2)}\left(r_{2}\right)=0$ and $w^{(n-2)}(x)>0$ for $x \in\left(r_{2}, b\right)$. Hence, $(-1)^{n-j} w^{(j)}(x)>0$, for $j=0,1, \ldots, n-2$, on $\left(r_{2}, b\right)$.

Now let $0<\delta<\min \left\{\delta_{1}, w^{(n-2)}(b)\right\}$, and let z be a solution of 1.8$)-(1.9)$ satisfying Condition (B) and $z^{(n-2)}(x) \geq 0$ on $[a, b]$. Let $h=w-z$. Then,

$$
\begin{gathered}
h^{(n)}=f\left(x, p, p^{\prime}, \ldots, p^{(n-1)}\right)-f\left(x, q, q^{\prime}, \ldots, q^{(n-1)}\right)-g\left(x, z, z^{\prime}, \ldots, z^{(n-1)}\right) \\
h^{(i)}(b)=0,0 \leq i \leq n-1, i \neq n-2, \quad h^{(n-2)}(b)=w^{(n-2)}(b)-z^{(n-2)}(b)>0 .
\end{gathered}
$$

Note that $h^{(n-2)}\left(r_{2}\right)=w^{(n-2)}\left(r_{2}\right)-z^{(n-2)}\left(r_{2}\right) \leq 0$. Hence, there is $r_{3} \in\left[r_{2}, b\right)$ such that $h^{(n-2)}\left(r_{3}\right)=0, h^{(n-2)}(x)>0$ on $\left(r_{3}, b\right)$. By Rolle's Theorem, there is $r_{4} \in\left(r_{3}, b\right)$ such that $h^{(n-1)}\left(r_{4}\right)>0$ and $(-1)^{n-j} h^{(j)}(x)>0$ on $\left(r_{4}, b\right)$, for $j=0,1, \ldots, n-2$.

By Conditions (A) and (D),

$$
\begin{aligned}
h^{(n)}(b) & =f\left(b, p, p^{\prime}, \ldots, p^{(n-1)}\right)-f\left(b, q, q^{\prime}, \ldots, q^{(n-1)}\right)-g\left(b, z, z^{\prime}, \ldots, z^{(n-1)}\right) \\
& >g\left(b, w, w^{\prime}, \ldots, w^{(n-1)}\right)-g\left(b, z, z^{\prime}, \ldots, z^{(n-1)}\right) \geq 0
\end{aligned}
$$

Together with $h^{(n-1)}(b)=0$, we have that $h^{(n-1)}(x)<0$ on a left neighborhood of b. Since $h^{(n-1)}\left(r_{4}\right)>0$, there is $r_{5} \in\left(r_{4}, b\right)$ such that $h^{(n-1)}\left(r_{5}\right)=0$ and $h^{(n-1)}(x)<0$ on $\left(r_{5}, b\right)$. Hence, $h^{(n)}\left(r_{5}\right) \leq 0$.

However, (note that $\left.\left[r_{5}, b\right) \subset\left(r_{4}, b\right) \subset\left(r_{2}, b\right)\right)$,

$$
\begin{aligned}
h^{(n)}\left(r_{5}\right) & =f\left(r_{5}, p, p^{\prime}, \ldots, p^{(n-1)}\right)-f\left(r_{5}, q, q^{\prime}, \ldots, q^{(n-1)}\right)-g\left(r_{5}, z, z^{\prime}, \ldots, z^{(n-1)}\right) \\
& >g\left(r_{5}, w, w^{\prime}, \ldots, w^{(n-1)}\right)-g\left(r_{5}, z, z^{\prime}, \ldots, z^{(n-1)}\right) \geq 0
\end{aligned}
$$

which is a contradiction. Hence, our assumption is false.
(\Rightarrow) The necessity of the second part. Assume $w^{(n-1)}(b)<0$ and $w^{(n-2)}(b)>0$. Similar to the proof of the first part, we have $r_{1} \in(a, b)$ such that $w^{(n-2)}\left(r_{1}\right)=0$ and $w^{(n-2)}(x)>0$, for $x \in\left(r_{1}, b\right)$ and $(-1)^{n-j} w^{(j)}(x)>0$ on $\left(r_{1}, b\right)$, for $j=$ $0,1, \ldots, n-2$.

Now let $0<\delta<\min \left\{\delta_{1}, w^{(n-2)}(b)\right\}$, and let z be a solution of 1.8$)-(1.9)$ satisfying Condition (B) and $z^{(n-2)}(x) \geq 0$ on $[a, b]$. Let $h=w-z$. Then,

$$
\begin{gathered}
h^{(n)}=f\left(x, p, p^{\prime}, \ldots, p^{(n-1)}\right)-f\left(x, q, q^{\prime}, \ldots, q^{(n-1)}\right)-g\left(x, z, z^{\prime}, \ldots, z^{(n-1)}\right) \\
h^{(i)}(b)=0,0 \leq i \leq n-3, \quad h^{(n-2)}(b)=w^{(n-2)}(b)-z^{(n-2)}(b)>0
\end{gathered}
$$

Note that $h^{(n-1)}(b)=w^{(n-1)}(b)-z^{(n-1)}(b)=w^{(n-1)}(b)<0, h^{(n-2)}(b)>0$ and $h^{(n-2)}\left(r_{1}\right)=w^{(n-2)}\left(r_{1}\right)-z^{(n-2)}\left(r_{1}\right)=-z^{(n-2)}\left(r_{1}\right) \leq 0$. So there exists $r_{2} \in\left[r_{1}, b\right)$ such that $h^{(n-2)}\left(r_{2}\right)=0, h^{(n-2)}(x)>0$, for $x \in\left(r_{2}, b\right)$. It follows that $(-1)^{n-j} h^{(j)}(x)>0$ on $\left(r_{2}, b\right)$, for $j=0,1, \ldots, n-2$.

By Rolle's Theorem and $h^{(n-1)}(b)<0$, there is $r_{3} \in\left(r_{2}, b\right)$ such that $h^{(n-1)}\left(r_{3}\right)=$ 0 and $h^{(n-1)}(x)<0$ on $\left(r_{3}, b\right)$. Therefore, $h^{(n)}\left(r_{3}\right) \leq 0$, whereas by Conditions (A) and (D), (note that $\left[r_{3}, b\right) \subset\left(r_{2}, b\right) \subset\left(r_{1}, b\right)$),

$$
h^{(n)}\left(r_{3}\right)=f\left(r_{3}, p, p^{\prime}, \ldots, p^{(n-1)}\right)-f\left(r_{3}, q, q^{\prime}, \ldots, q^{(n-1)}\right)-g\left(r_{3}, z, z^{\prime}, \ldots, z^{(n-1)}\right)
$$

$$
>g\left(r_{3}, w, w^{\prime}, \ldots, w^{(n-1)}\right)-g\left(r_{3}, z, z^{\prime}, \ldots, z^{(n-1)}\right) \geq 0
$$

which is a contradiction.
(\Leftarrow) The sufficiency of the second part. We assume that $w^{(n-1)}(b)>0$ and $w^{(n-2)}(b)<0$. Then, we get the same situation as the proof of necessity with opposite signs of $w^{(n-1)}(b)$ and $w^{(n-2)}(b)$, which also implies a contradiction. Hence, the sufficiency is true.

Lemma 2.2. Suppose p and q are solutions of 1.1) on $[b, c]$ and $w=p-q$ satisfies the following boundary conditions:

$$
w^{(i)}(b)=0,0 \leq i \leq n-3, \quad \sum_{j=1}^{t} \beta_{j} w\left(\eta_{j}\right)-w(c)=0
$$

Then, $w^{(n-2)}(b)=0$ if and only if $w^{(n-1)}(b)=0$. Also, $w^{(n-2)}(b)>0$ if and only if $w^{(n-1)}(b)<0$.

Proof. (\Rightarrow) The necessity of the first part. Assume $w^{(n-2)}(b)=0$ and for contradiction, without loss of generality, we assume $w^{(n-1)}(b)>0$.

By $\sum_{j=1}^{t} \beta_{j} w\left(\eta_{j}\right)-w(c)=0$, there exists $r_{1} \in(b, c)$ such that $w^{\prime}\left(r_{1}\right)=0$. By repeated applications of Rolle's Theorem, there exists $r_{2} \in\left(b, r_{1}\right)$ such that $w^{(n-2)}\left(r_{2}\right)=0$ and $w^{(n-2)}(x)>0$ on $\left(b, r_{2}\right)$. It follows that $w^{(j)}(x)>0$ on $\left(b, r_{2}\right)$, for $j=0,1, \ldots, n-2$.

Let $0<\delta<\min \left\{\delta_{2}, w^{(n-1)}(b)\right\}$. Then, by Condition (C), we have a solution z of (1.10)-1.11) on $[b, c]$ such that $z^{(i)}(b)=0,0 \leq i \leq n-2, z^{(n-1)}(b)=\delta$, and $z^{(n-2)}(x) \geq 0$ on $[b, c]$. Then, $z^{(j)}(x) \geq 0$, for $j=0,1, \ldots, n-2$, on $[b, c]$.

Let $h=w-z$. Then,

$$
\begin{gathered}
h^{(n)}=f\left(x, p, p^{\prime}, \ldots, p^{(n-1)}\right)-f\left(x, q, q^{\prime}, \ldots, q^{(n-1)}\right)-g\left(x, z, z^{\prime}, \ldots, z^{(n-1)}\right) \\
h^{(i)}(b)=0,0 \leq i \leq n-2, h^{(n-1)}(b)=w^{(n-1)}(b)-z^{(n-1)}(b)>0
\end{gathered}
$$

Note that $h^{(n-2)}\left(r_{2}\right)=w^{(n-2)}\left(r_{2}\right)-z^{(n-2)}\left(r_{2}\right) \leq 0$. Hence, there is $r_{3} \in\left(b, r_{2}\right]$ such that $h^{(n-2)}\left(r_{3}\right)=0, h^{(n-2)}(x)>0$ on $\left(b, r_{3}\right)$, and hence, $h^{(j)}(x)>0$, for $j=0,1, \ldots, n-2$ on $\left(b, r_{3}\right)$. By $h^{(n-2)}(b)=0$, Rolle's Theorem, and $h^{(n-1)}(b)>0$, there exists $r_{4} \in\left(b, r_{3}\right)$ such that $h^{(n-1)}\left(r_{4}\right)=0$ and $h^{(n-1)}(x)>0$ on $\left(b, r_{4}\right)$. Hence, $h^{(n)}\left(r_{4}\right) \leq 0$, but by Conditions (A) and (D) and $\left(b, r_{4}\right] \subset\left(b, r_{3}\right) \subset\left(b, r_{2}\right)$, we have

$$
\begin{aligned}
h^{(n)}\left(r_{4}\right) & =f\left(r_{4}, p, p^{\prime}, \ldots, p^{(n-1)}\right)-f\left(r_{4}, q, q^{\prime}, \ldots, q^{(n-1)}\right)-g\left(r_{4}, z, z^{\prime}, \ldots, z^{(n-1)}\right) \\
& >g\left(r_{4}, w, w^{\prime}, \ldots, w^{(n-1)}\right)-g\left(r_{4}, z, z^{\prime}, \ldots, z^{(n-1)}\right) \geq 0
\end{aligned}
$$

which is a contradiction.
(\Leftarrow) The sufficiency of the first part. Suppose $w^{(n-1)}(b)=0$ and $w^{(n-2)}(b)>0$. Similar to the above, we have $r_{1} \in(b, c)$ such that $w^{(n-2)}\left(r_{1}\right)=0$ and $w^{(j)}(x)>0$ on $\left(b, r_{1}\right)$ for $j=0,1, \ldots, n-2$.

Let $0<\delta<\min \left\{\delta_{1}, w^{(n-2)}(b)\right\}$. Then, by Condition (B), we have a solution z of (1.8)- (1.9) on $[b, c]$ such that $z^{(i)}(b)=0,0 \leq i \leq n-1, i \neq n-2, z^{(n-2)}(b)=\delta$, and $z^{(n-2)}(x) \geq 0$ on $[b, c]$. Then, $z^{(j)}(x) \geq 0$, for $j=0,1, \ldots, n-2$, on $[b, c]$.

Let $h=w-z$. Then,

$$
\begin{gathered}
h^{(n)}=f\left(x, p, p^{\prime}, \ldots, p^{(n-1)}\right)-f\left(x, q, q^{\prime}, \ldots, q^{(n-1)}\right)-g\left(x, z, z^{\prime}, \ldots, z^{(n-1)}\right) \\
h^{(i)}(b)=0,0 \leq i \leq n-1, i \neq n-1, \quad h^{(n-2)}(b)=w^{(n-2)}(b)-z^{(n-2)}(b)>0
\end{gathered}
$$

Note that $h^{(n-2)}\left(r_{1}\right)=w^{(n-2)}\left(r_{1}\right)-z^{(n-2)}\left(r_{1}\right)=-z^{(n-2)}\left(r_{1}\right) \leq 0$. So there is $r_{2} \in\left(b, r_{1}\right]$ such that $h^{(n-2)}\left(r_{2}\right)=0$ and $h^{(n-2)}(x)>0$, for $x \in\left(b, r_{2}\right)$, and $h^{(j)}(x)>0$ on $\left(b, r_{2}\right)$, for $j=0,1, \ldots, n-2$. By Rolle's Theorem, there is $r_{3} \in\left(b, r_{2}\right)$ such that $h^{(n-1)}\left(r_{3}\right)<0$.

Note that

$$
\begin{aligned}
h^{(n)}(b) & =f\left(b, p, p^{\prime}, \ldots, p^{(n-1)}\right)-f\left(b, q, q^{\prime}, \ldots, q^{(n-1)}\right)-g\left(b, z, z^{\prime}, \ldots, z^{(n-1)}\right) \\
& >g\left(b, w, w^{\prime}, \ldots, w^{(n-1)}\right)-g\left(b, z, z^{\prime}, \ldots, z^{(n-1)}\right) \geq 0
\end{aligned}
$$

Hence, there is $r_{4} \in\left(b, r_{3}\right)$ such that $h^{(n-1)}\left(r_{4}\right)=0$ and $h^{(n-1)}(x)>0$ on $\left(b, r_{4}\right)$, which implies $h^{(n)}\left(r_{4}\right) \leq 0$. But by $\left(b, r_{4}\right] \subset\left(b, r_{2}\right) \subset\left(b, r_{1}\right)$ and Conditions (A) and (D), we have that

$$
\begin{aligned}
h^{(n)}\left(r_{4}\right) & =f\left(r_{4}, p, p^{\prime}, \ldots, p^{(n-1)}\right)-f\left(r_{4}, q, q^{\prime}, \ldots, q^{(n-1)}\right)-g\left(r_{4}, z, z^{\prime}, \ldots, z^{(n-1)}\right) \\
& >g\left(r_{4}, w, w^{\prime}, \ldots, w^{(n-1)}\right)-g\left(r_{4}, z, z^{\prime}, \ldots, z^{(n-1)}\right) \geq 0
\end{aligned}
$$

which is a contradiction.
(\Rightarrow) The necessity of the second part. Suppose $w^{(n-2)}(b)>0$ and $w^{(n-1)}(b)>0$. Similar to the proof of the necessity of the first part, we also can get a contradiction. Hence, we omit the proof. Therefore, if $w^{(n-2)}(b)>0$, then $w^{(n-1)}(b)<0$.
(\Leftarrow) The sufficiency of the second part. Suppose $w^{(n-1)}(b)<0$. If $w^{(n-2)}(b)<$ 0 , then similar to the proof of necessity, we can get $w^{(n-1)}(b)>0$, which is a contradiction. Hence, the sufficiency is also true.

3. Existence and uniqueness of solutions to (1.1)-(1.2)

Before discussing existence and uniqueness for (1.1)- (1.2), we consider the uniqueness of solutions to each of the BVP's for (1.1) satisfying any of (1.3), (1.4), (1.5), or (1.6).
Lemma 3.1. Let $y_{1}, y_{2}, \ldots, y_{n} \in \mathbb{R}$ be given and assume Conditions (A)-(D) are satisfied. Then, given $m \in \mathbb{R}$, each of the BVP's for 1.1 satisfying any of conditions (1.3), 1.4), 1.5), or (1.6) has at most one solution.

Proof. The case of $(1.1)-(1.3)$: Suppose there are two distinct solutions $p(x)$ and $q(x)$ for some $m \in \mathbb{R}$. Let $w=p-q$. Then, w satisfies

$$
\begin{gathered}
w^{(n)}=f\left(x, p, p^{\prime}, \ldots, p^{(n-1)}\right)-f\left(x, q, q^{\prime}, \ldots, q^{(n-1)}\right) \\
w(a)-\sum_{i=1}^{s} \alpha_{i} w\left(\xi_{i}\right)=0, \quad w^{(i)}(b)=0, \quad 0 \leq i \leq n-2
\end{gathered}
$$

By Lemma 2.1, we can get that $w^{(n-1)}(b)=0$. Then, by the uniqueness of solutions of IVP's for (1.1), we can conclude that $p \equiv q$ on $[a, b]$. Hence, $(1.1)-(1.3)$ has at most one solution on $[a, b]$.

The other cases: By using similar ideas and Lemma 2.1 and Lemma 2.2, we resolve the other cases.

Lemma 3.2. Let $y_{1}, y_{2}, \ldots, y_{n} \in \mathbb{R}$ be given. Assume Conditions (A)-(D) are satisfied. Then, the BVP (1.1)-1.2 has at most one solution.
Proof. We argue by contradiction. Suppose for some values $y_{1}, y_{2}, \ldots, y_{n} \in \mathbb{R}$, there exist distinct solutions p and q of $\sqrt{1.1}-\sqrt{1.2}$. Also, let $w=p-q$. Then, from Lemma 2.1 and Lemma 2.2, we get $w^{(n-2)}(b) \neq 0, w^{(n-1)}(b) \neq 0$.

Without loss of generality, we suppose $w^{(n-2)}(b)>0$. Then, by Lemma 2.1, $w^{(n-1)}(b)>0$. But by Lemma 2.2, $w^{(n-1)}(b)<0$. This is a contradiction. Hence, $p \equiv q$ on $[a, c]$.

Next, we show that solutions of (1.1) satisfying each of (1.3), 1.4, (1.5), or (1.6) respectively are monotone functions of m at b. For notation purposes, given any $m \in \mathbb{R}$, let $\alpha(x, m), u(x, m), \beta(x, m), v(x, m)$ denote the solutions, when they exist, of the boundary value problems of (1.1) satisfying $(1.3),(1.4),(1.5)$, or (1.6), respectively.
Lemma 3.3. Suppose that $(\mathrm{A})-(\mathrm{D})$ are satisfied and that for each $m \in \mathbb{R}$, there exist solutions of (1.1) satisfying each of the conditions (1.3, , 1.4, (1.5), 1.6, respectively. Then, $\alpha^{(n-1)}(b, m)$ and $\beta^{(n-1)}(b, m)$ are, respectively, strictly increasing and strictly decreasing functions of m with ranges all of \mathbb{R}.
Proof. The proof of $\left\{\alpha^{(n-1)}(b, m) \mid m \in \mathbb{R}\right\}=\mathbb{R}$ is the same as that in 4, Theorem 2.4]. We omit it here.

Similarly, we obtain monotonicity conditions on $u^{(n-2)}(b, m)$ and $v^{(n-2)}(b, m)$.
Lemma 3.4. Under the assumption of Lemma 3.3. the functions $u^{(n-2)}(b, m)$ and $v^{(n-2)}(b, m)$ are, respectively, strictly increasing and strictly decreasing functions of m, with ranges all \mathbb{R}.

Finally, we arrive at our existence result for $\sqrt{1.1})-(\sqrt{1.2})$, which is obtained by solution matching.
Theorem 3.5. Assume the hypotheses of Lemma 3.3. Then, (1.1)-(1.2) has a unique solution.
Proof. We prove the existence from either Lemma 3.3 or Lemma 3.4. Making use of Lemma 3.4, there exists a unique $m_{0} \in \mathbb{R}$ such that $u^{(n-2)}\left(b, m_{0}\right)=v^{(n-2)}\left(b, m_{0}\right)$. Then,

$$
y(x)= \begin{cases}u\left(x, m_{0}\right), & a \leq x \leq b \\ v\left(x, m_{0}\right), & b \leq x \leq c\end{cases}
$$

is a solution of $(1.1)-(1.2)$ and by Lemma $3.2, y(x)$ is the unique solution.

4. Existence and uniqueness of solutions to 1.1-1.7

We can obtain analogous results to those of Section 3 for 1.1 - 1.7 with $\tau, \sigma \in$ $\{0,1, \ldots, n-3\}$ fixed. We obtain solutions to 1.1 - 1.7 by matching solutions satisfying the following types of boundary conditions:

$$
\begin{align*}
& y^{(\tau)}(a)-\sum_{i=1}^{s} \alpha_{i} y^{(\tau)}\left(\xi_{i}\right)=y_{1}, \quad y^{(i)}(b)=y_{i+2}, \quad 0 \leq i \leq n-3, \quad y^{(n-2)}(b)=m \tag{4.1}\\
& y^{(\tau)}(a)-\sum_{i=1}^{s} \alpha_{i} y^{(\tau)}\left(\xi_{i}\right)=y_{1}, \quad y^{(i)}(b)=y_{i+2}, \quad 0 \leq i \leq n-3, \quad y^{(n-1)}(b)=m \tag{4.2}\\
& y^{(i)}(b)=y_{i+2}, 0 \leq i \leq n-3, \quad y^{(n-2)}(b)=m, \quad \sum_{j=1}^{t} \beta_{j} y^{(\sigma)}\left(\eta_{j}\right)-y^{(\sigma)}(c)=y_{n} \tag{4.3}
\end{align*}
$$

$$
\begin{equation*}
y^{(i)}(b)=y_{i+2}, \quad 0 \leq i \leq n-3, \quad y^{(n-1)}(b)=m, \quad \sum_{j=1}^{t} \beta_{j} y^{(\sigma)}\left(\eta_{j}\right)-y^{(\sigma)}(c)=y_{n} \tag{4.4}
\end{equation*}
$$

where $m \in \mathbb{R}, a<\xi_{1}<\xi_{2}<\cdots<\xi_{s}<b<\eta_{1}<\eta_{2}<\cdots<\eta_{t}<c, s, t \in \mathbb{N}$, $\alpha_{i}>0$ for $1 \leq i \leq s, \beta_{j}>0$ for $1 \leq j \leq t, \sum_{i=1}^{s} \alpha_{i}=1, \sum_{j=1}^{t} \beta_{j}=1$ and $y_{1}, y_{2}, \ldots, y_{n} \in \mathbb{R}$.

We omit the proofs of the following results since they are essentially the same as those presented in Section 2 with only small modifications.

Lemma 4.1. Let $y_{1}, y_{2}, \ldots, y_{n} \in \mathbb{R}$ be given and assume conditions (A)-(D) are satisfied. Then, given $m \in \mathbb{R}$, each of the BVP's for (1.1) satisfying any of conditions (4.1), (4.2), (4.3), or (4.4) has at most one solution.

Lemma 4.2. Let $y_{1}, y_{2}, \ldots, y_{n} \in \mathbb{R}$ be given and assume conditions (A)-(D) are satisfied. Then (1.1)-(1.7) has at most one solution.

Now, given any $m \in \mathbb{R}$, let $\theta(x, m), l(x, m), \vartheta(x, m), o(x, m)$ denote the solutions, when they exist, of the boundary value problems of (1.1) satisfying 4.1, (4.2), (4.3), (4.4), respectively.

Lemma 4.3. Suppose that $(\mathrm{A})-(\mathrm{D})$ are satisfied and that for each $m \in \mathbb{R}$, there exist solutions of (1.1) satisfying each of the conditions (4.1), (4.2), (4.3), (4.4). Then, $\theta^{(n-1)}(b, m)$ and $\vartheta^{(n-1)}(b, m)$ are respectively strictly increasing and strictly decreasing functions of m with ranges all of \mathbb{R}. Also, $l^{(n-2)}(b, m)$ and $o^{(n-2)}(b, m)$ are respectively strictly increasing and strictly decreasing functions of m with ranges all of \mathbb{R}.

Theorem 4.4. Assume the hypotheses of Lemma 4.3. Then (1.1)-(1.7) has a unique solution.

Acknowledgements. I am grateful to Prof. Johnny Henderson who is my mentor and has given me a lot of encouragement, professional advice, and great comments about the original draft.

References

[1] P. Bailey, L. Shampine, and P. Waltman; Nonlinear Two Point Boundary Value Problems, Academic Press, New York, 1968.
[2] D. Barr and T. Sherman; Existence and uniqueness of solutions of three-point boundary value problems, J. Differential Equations 13 (1973), 197-212.
[3] D. Barr and P. Miletta; An existence and uniqueness criterion for solutions of boundary value problems, J. Differential Equations 16 (1974), 460-471.
[4] J. Henderson; Three-point boundary value problems for ordinary differential equations by matching solutions, Nonlinear Analysis 7 (1983), 411-417.
[5] J. Henderson; Boundary value problems for third order differential equations by solution matching, Electronic Journal of Qualitative Theory of Differential Equations, Spec. Ed. I, (2009), 1-9.
[6] J. Henderson and K. R. Prasad; Existence and uniqueness of solutions of three-point boundary value problems on time scales, Nonlinear Studies 8 (2001), 1-12.
[7] J. Henderson and R. D. Taunton; Solutions of boundary value problems by matching methods, Applicable Analysis 49 (1993), 235-246.
[8] J. Henderson and C. C. Tisdell; Five-point boundary value problems for third-order differntial equations by solution matching, Mathematical and Computer Modelling 42 (2005), 133-137.
[9] V. R. G. Moorti and J. B. Garner; Existence-uniqueness theorems for three-point boundary value problems for n th-order nonlinear differential euqations, J. Differential Equations 29 (1978), 205-213.
[10] D. R. K. S. Rao, K. N. Murty, and A. S. Rao; On three-point boundary value problems associated with third order differential equations, Nonlinear Analysis 5 (1981), 669-673.

Xueyan (Sherry) Liu
Department of Mathematics, Baylor University, Waco, TX 76798-7328, USA
E-mail address: Xueyan_Liu@baylor.edu

[^0]: 2000 Mathematics Subject Classification. 34B15, 34B10.
 Key words and phrases. Boundary value problem; nonlocal; matching solutions.
 © 2011 Texas State University - San Marcos.
 Submitted June 26, 2010. Published February 3, 2011.

