Electronic Journal of Differential Equations, Vol. 2011 (2011), No. 17, pp. 1–9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

NONLOCAL BOUNDARY-VALUE PROBLEMS FOR N-TH ORDER ORDINARY DIFFERENTIAL EQUATIONS BY MATCHING SOLUTIONS

XUEYAN LIU

ABSTRACT. We are concerned with the existence and uniqueness of solutions to nonlocal boundary-value problems on an interval [a, c] for the differential equation $y^{(n)} = f(x, y, y', \ldots, y^{(n-1)})$, where $n \geq 3$. We use the method of matching solutions, with some monotonicity conditions on f.

1. INTRODUCTION

In this article, we are concerned with the existence and uniqueness of solutions of boundary-value problems (BVP's) for the differential equation

$$y^{(n)}(x) = f(x, y(x), y'(x), \dots, y^{(n-1)}(x)), \quad n \ge 3, \ x \in [a, c],$$
(1.1)
$$y(a) - \sum_{i=1}^{s} \alpha_i y(\xi_i) = y_1, \quad y^{(i)}(b) = y_{i+2}, \quad 0 \le i \le n-3,$$

$$\sum_{j=1}^{t} \beta_j y(\eta_j) - y(c) = y_n,$$
(1.2)

where $a < \xi_1 < \xi_2 < \cdots < \xi_s < b < \eta_1 < \eta_2 < \cdots < \eta_t < c, s, t \in \mathbb{N}, \alpha_i > 0$ for $1 \le i \le s, \beta_j > 0$ for $1 \le j \le t, \sum_{i=1}^s \alpha_i = 1, \sum_{j=1}^t \beta_j = 1, \text{ and } y_1, y_2, \dots, y_n \in \mathbb{R}$. It is assumed throughout that $f : [a, c] \times \mathbb{R}^n \to \mathbb{R}$ is continuous and that solu-

It is assumed throughout that $f : [a, c] \times \mathbb{R}^n \to \mathbb{R}$ is continuous and that solutions for the initial value problems (IVP's) for (1.1) are unique and exist on [a, c]. Moreover $a < \xi_1 < \xi_2 < \cdots < \xi_s < b < \eta_1 < \eta_2 < \cdots < \eta_t < c$ are fixed throughout.

Consider the following boundary conditions:

$$y(a) - \sum_{i=1}^{s} \alpha_i y(\xi_i) = y_1, \quad y^{(i)}(b) = y_{i+2}, \ 0 \le i \le n-3, \quad y^{(n-2)}(b) = m, \quad (1.3)$$
$$y(a) - \sum_{i=1}^{s} \alpha_i y(\xi_i) = y_1, \quad y^{(i)}(b) = y_{i+2}, \ 0 \le i \le n-3, \quad y^{(n-1)}(b) = m, \quad (1.4)$$

Key words and phrases. Boundary value problem; nonlocal; matching solutions. ©2011 Texas State University - San Marcos.

²⁰⁰⁰ Mathematics Subject Classification. 34B15, 34B10.

Submitted June 26, 2010. Published February 3, 2011.

X. LIU

EJDE-2011/17

$$y^{(i)} = y_{i+2}, \ 0 \le i \le n-3, \quad y^{(n-2)}(b) = m, \quad \sum_{j=1}^{l} \beta_j y(\eta_j) - y(c) = y_n, \quad (1.5)$$

$$y^{(i)} = y_{i+2}, \ 0 \le i \le n-3, \quad y^{(n-1)}(b) = m, \quad \sum_{j=1}^{t} \beta_j y(\eta_j) - y(c) = y_n, \quad (1.6)$$

where $m \in \mathbb{R}$. We show that (1.1)-(1.2) has a unique solution by matching solutions of the BVP's (1.1)-(1.3) on [a, b] and (1.1)-(1.5) on [b, c], or (1.1)-(1.4) on [a, b] and (1.1)-(1.6) on [b, c].

The method of matching solutions was first used by Bailey et al. [1]. They considered the solutions of two-point boundary value problems for the second order differential equation y'' = f(x, y, y') by matching solutions of initial value problems. After that, in 1973, Barr and Sherman [2] applied the solution matching techniques to third order equations and generalized to equations of arbitrary order. A monotonicity condition on f played an important role. In 1981, Rao et al. [10] generalized the monotonicity of f of third order differential equations and introduced an auxiliary monotone function g. In 1983, Henderson [4] generalized to nth order BVP's and considered more general boundary conditions. Since then there has been a lot of literature dealing with solutions of third order BVP's or higher order BVP's by using matching solutions; see [3, 5, 6, 7, 8, 9], etc.

In this article, we consider the *n*-th order BVP's with nonlocal boundary conditions (1.1)-(1.2) and use a weaker condition on the auxiliary function *g*. In Section 2, we give some preliminary results, and in Section 3, we prove the existence and uniqueness of solutions of (1.1)-(1.2). In Section 4, we generalize our results to BVP's with more general boundary conditions:

$$y^{(\tau)}(a) - \sum_{i=1}^{s} \alpha_{i} y^{(\tau)}(\xi_{i}) = y_{1}, \quad y^{(i)}(b) = y_{i+2}, \ 0 \le i \le n-3,$$

$$\sum_{j=1}^{t} \beta_{j} y^{(\sigma)}(\eta_{j}) - y^{(\sigma)}(c) = y_{n},$$
(1.7)

with $\tau, \sigma \in \{0, 1, ..., n - 3\}$ fixed.

We assume there is a continuous function $g:[a,c]\times\mathbb{R}^n\to\mathbb{R}$ and that f and g satisfy the following conditions:

- (A) For $u, v \in \mathbb{R}$, $f(x, v_0, v_1, \dots, v_{n-2}, v) f(x, u_0, u_1, \dots, u_{n-2}, u) > g(x, v_0 u_0, v_1 u_1, \dots, v_{n-2} u_{n-2}, v u)$ when $x \in (a, b], (-1)^{n-i}v_i \ge (-1)^{n-i}u_i, 0 \le i \le n-3$, and $v_{n-2} > u_{n-2}$; or when $x \in [b, c), v_i \ge u_i, 0 \le i \le n-3$, and $v_{n-2} > u_{n-2}$.
- (B) There exists $\delta_1 > 0$, such that for all $0 < \delta < \delta_1$, the IVP

$$z^{(n)} = g(x, z, z', \dots, z^{(n-1)}),$$
(1.8)

$$z^{(i)}(b) = 0, \quad 0 \le i \le n-1, \quad i \ne n-2, \quad z^{(n-2)}(b) = \delta$$
 (1.9)

has a solution z on [a, c] such that $z^{(n-2)}(x) \ge 0$ on [a, c].

(C) There exists $\delta_2 > 0$, such that for all $0 < \delta < \delta_2$, the IVP

$$z^{(n)} = g(x, z, z', \dots, z^{(n-1)}),$$
(1.10)

$$z^{(i)}(b) = 0, \quad 0 \le i \le n-2, \quad z^{(n-1)}(b) = \delta, (-\delta)$$
 (1.11)

EJDE-2011/17

has a solution z on [b, c] ([a, b]) such that $z^{(n-2)}(x) \ge 0$ on [b, c], $(z^{(n-2)}(x) \ge 0$ on [a, b]).

(D) For each $w \in \mathbb{R}$, $g(x, v_0, v_1, \dots, v_{n-2}, w) \ge g(x, u_0, u_1, \dots, u_{n-2}, w)$ when $x \in (a, b], (-1)^{n-i}(v_i - u_i) \ge 0, i = 0, 1, \dots, n-3, \text{ and } v_{n-2} > u_{n-2} \ge 0,$ or when $x \in [b, c), v_i \ge u_i, i = 0, 1, \dots, n-3, \text{ and } v_{n-2} > u_{n-2} \ge 0.$

2. Preliminaries

In this section, we give two lemmas which show the relationship between the value of the n - 2nd order and the n - 1st order of two solutions of (1.1) at b that satisfy the boundary conditions (2), respectively, on the interval [a, b] and the interval [b, c]. All of the results in Section 3 are based on two lemmas. We basically prove the lemmas by using contradiction.

Lemma 2.1. Suppose p and q are solutions of (1.1) on [a, b] and w = p-q satisfies the following boundary conditions:

$$w(a) - \sum_{i=1}^{s} \alpha_i w(\xi_i) = 0, \quad w^{(i)}(b) = 0, \quad 0 \le i \le n - 3.$$

Then, $w^{(n-2)}(b) = 0$ if and only if $w^{(n-1)}(b) = 0$. Also, $w^{(n-2)}(b) > 0$ if and only if $w^{(n-1)}(b) > 0$.

Proof. (\Rightarrow) The necessity of the first part. Suppose $w^{(n-2)}(b) = 0$ and $w^{(n-1)}(b) \neq 0$. Without loss of generosity, we assume $w^{(n-1)}(b) < 0$.

Since $0 = w(a) - \sum_{i=1}^{s} \alpha_i w(\xi_i) = \sum_{i=1}^{s} \alpha_i (w(a) - w(\xi_i))$ and $\alpha_i > 0$, for some $i_1, w(a) \ge w(\xi_{i_1})$, and for some $i_2, w(a) \le w(\xi_{i_2})$. Hence, there exists $r_1 \in (a, b)$ such that $w'(r_1) = 0$ and $(-1)^{n-1} w'(x) > 0$ on (r_1, b) .

By repeated applications of Rolle's Theorem, there exists $r_2 \in (r_1, b)$ such that $w^{(n-2)}(r_2) = 0$ and $w^{(n-2)}(x) > 0$, for $x \in (r_2, b)$. Hence, $(-1)^{n-j}w^{(j)}(x) > 0$, for $j = 0, 1, \ldots, n-2$, on (r_2, b) .

Let $\delta \in \mathbb{R}$ with $0 < \delta < \min\{\delta_2, -w^{(n-1)}(b)\}$. Then, by Condition (C), we have a solution z of (1.10)-(1.11) on [a, b], such that $z^{(i)}(b) = 0, 0 \leq i \leq n-2, z^{(n-1)}(b) = -\delta$, and $z^{(n-2)}(x) \geq 0$ on [a, b].

Let h = w - z. Then, we have

$$h^{(n)} = f(x, p, p', \dots, p^{(n-1)}) - f(x, q, q', \dots, q^{(n-1)}) - g(x, z, z', \dots, z^{(n-1)}),$$

$$h^{(i)}(b) = 0, \ 0 \le i \le n-2, \quad h^{(n-1)}(b) = w^{(n-1)}(b) - z^{(n-1)}(b) < 0.$$

Notice $h^{(n-2)}(r_2) = w^{(n-2)}(r_2) - z^{(n-2)}(r_2) \le 0$, $h^{(n-2)}(b) = 0$ and $h^{(n-1)}(b) < 0$. So there exists $r_3 \in [r_2, b)$ such that $h^{(n-2)}(r_3) = 0$ and $h^{(n-2)}(x) > 0$ for $x \in (r_3, b)$. Then, it follows that $(-1)^{n-j}h^{(j)}(x) > 0$ on (r_3, b) , for $j = 0, 1, \ldots, n-2$. Therefore, by Rolle's Theorem, there is $r_4 \in (r_3, b)$ such that $h^{(n-1)}(r_4) = 0$. Since $h^{(n-1)}(b) < 0$, there is $r_5 \in [r_4, b)$ such that $h^{(n-1)}(r_5) = 0$ and $h^{(n-1)}(x) < 0$ for $x \in (r_5, b)$. Then,

$$h^{(n)}(r_5) = \lim_{x \to r_5^+} \frac{h^{(n-1)}(x) - h^{(n-1)}(r_5)}{x - r_5} \le 0,$$

whereas by Conditions (A) and (D), (note that $[r_5, b) \subset (r_3, b) \subset (r_2, b)$), $h^{(n)}(r_5) = f(r_5, p, p', \dots, p^{(n-1)}) - f(r_5, q, q', \dots, q^{(n-1)}) - g(r_5, z, z', \dots, z^{(n-1)})$ $> g(r_5, w, w', \dots, w^{(n-1)}) - g(r_5, z, z', \dots, z^{(n-1)}) \ge 0,$ which is a contradiction. Therefore, $w^{(n-1)}(b) = 0$.

(\Leftarrow) The sufficiency of the first part. Suppose $w^{(n-1)}(b) = 0$ and $w^{(n-2)}(b) \neq 0$. Without loss of generality, we assume $w^{(n-2)}(b) > 0$.

X. LIU

Since $0 = w(a) - \sum_{i=1}^{s} \alpha_i w(\xi_i) = \sum_{i=1}^{s} \alpha_i (w(a) - w(\xi_i))$ and $\alpha_i > 0$, there exists $r_1 \in (a, b)$ such that $w'(r_1) = 0$, and $(-1)^{n-1} w'(x) > 0$ on (r_1, b) .

By repeated applications of Rolle's Theorem, there exists $r_2 \in (r_1, b)$ such that $w^{(n-2)}(r_2) = 0$ and $w^{(n-2)}(x) > 0$ for $x \in (r_2, b)$. Hence, $(-1)^{n-j}w^{(j)}(x) > 0$, for $j = 0, 1, \ldots, n-2$, on (r_2, b) .

Now let $0 < \delta < \min\{\delta_1, w^{(n-2)}(b)\}$, and let z be a solution of (1.8)-(1.9) satisfying Condition (B) and $z^{(n-2)}(x) \ge 0$ on [a, b]. Let h = w - z. Then,

$$h^{(n)} = f(x, p, p', \dots, p^{(n-1)}) - f(x, q, q', \dots, q^{(n-1)}) - g(x, z, z', \dots, z^{(n-1)}),$$

$$h^{(i)}(b) = 0, \ 0 \le i \le n-1, \ i \ne n-2, \quad h^{(n-2)}(b) = w^{(n-2)}(b) - z^{(n-2)}(b) > 0.$$

Note that $h^{(n-2)}(r_2) = w^{(n-2)}(r_2) - z^{(n-2)}(r_2) \le 0$. Hence, there is $r_3 \in [r_2, b)$ such that $h^{(n-2)}(r_3) = 0$, $h^{(n-2)}(x) > 0$ on (r_3, b) . By Rolle's Theorem, there is $r_4 \in (r_3, b)$ such that $h^{(n-1)}(r_4) > 0$ and $(-1)^{n-j}h^{(j)}(x) > 0$ on (r_4, b) , for $j = 0, 1, \ldots, n-2$.

By Conditions (A) and (D),

$$\begin{split} h^{(n)}(b) &= f(b, p, p', \dots, p^{(n-1)}) - f(b, q, q', \dots, q^{(n-1)}) - g(b, z, z', \dots, z^{(n-1)}) \\ &> g(b, w, w', \dots, w^{(n-1)}) - g(b, z, z', \dots, z^{(n-1)}) \geq 0. \end{split}$$

Together with $h^{(n-1)}(b) = 0$, we have that $h^{(n-1)}(x) < 0$ on a left neighborhood of *b*. Since $h^{(n-1)}(r_4) > 0$, there is $r_5 \in (r_4, b)$ such that $h^{(n-1)}(r_5) = 0$ and $h^{(n-1)}(x) < 0$ on (r_5, b) . Hence, $h^{(n)}(r_5) \leq 0$.

However, (note that $[r_5, b) \subset (r_4, b) \subset (r_2, b)$),

$$h^{(n)}(r_5) = f(r_5, p, p', \dots, p^{(n-1)}) - f(r_5, q, q', \dots, q^{(n-1)}) - g(r_5, z, z', \dots, z^{(n-1)})$$

> $g(r_5, w, w', \dots, w^{(n-1)}) - g(r_5, z, z', \dots, z^{(n-1)}) \ge 0,$

which is a contradiction. Hence, our assumption is false.

(⇒) The necessity of the second part. Assume $w^{(n-1)}(b) < 0$ and $w^{(n-2)}(b) > 0$. Similar to the proof of the first part, we have $r_1 \in (a, b)$ such that $w^{(n-2)}(r_1) = 0$ and $w^{(n-2)}(x) > 0$, for $x \in (r_1, b)$ and $(-1)^{n-j}w^{(j)}(x) > 0$ on (r_1, b) , for $j = 0, 1, \ldots, n-2$.

Now let $0 < \delta < \min\{\delta_1, w^{(n-2)}(b)\}$, and let z be a solution of (1.8)-(1.9) satisfying Condition (B) and $z^{(n-2)}(x) \ge 0$ on [a, b]. Let h = w - z. Then,

$$h^{(n)} = f(x, p, p', \dots, p^{(n-1)}) - f(x, q, q', \dots, q^{(n-1)}) - g(x, z, z', \dots, z^{(n-1)}),$$

$$h^{(i)}(b) = 0, \ 0 \le i \le n-3, \quad h^{(n-2)}(b) = w^{(n-2)}(b) - z^{(n-2)}(b) > 0.$$

Note that $h^{(n-1)}(b) = w^{(n-1)}(b) - z^{(n-1)}(b) = w^{(n-1)}(b) < 0, \ h^{(n-2)}(b) > 0$ and $h^{(n-2)}(r_1) = w^{(n-2)}(r_1) - z^{(n-2)}(r_1) = -z^{(n-2)}(r_1) \le 0$. So there exists $r_2 \in [r_1, b)$ such that $h^{(n-2)}(r_2) = 0, \ h^{(n-2)}(x) > 0$, for $x \in (r_2, b)$. It follows that $(-1)^{n-j}h^{(j)}(x) > 0$ on (r_2, b) , for $j = 0, 1, \ldots, n-2$.

By Rolle's Theorem and $h^{(n-1)}(b) < 0$, there is $r_3 \in (r_2, b)$ such that $h^{(n-1)}(r_3) = 0$ and $h^{(n-1)}(x) < 0$ on (r_3, b) . Therefore, $h^{(n)}(r_3) \le 0$, whereas by Conditions (A) and (D), (note that $[r_3, b) \subset (r_2, b) \subset (r_1, b)$),

$$h^{(n)}(r_3) = f(r_3, p, p', \dots, p^{(n-1)}) - f(r_3, q, q', \dots, q^{(n-1)}) - g(r_3, z, z', \dots, z^{(n-1)})$$

4

EJDE-2011/17

$$> g(r_3, w, w', \dots, w^{(n-1)}) - g(r_3, z, z', \dots, z^{(n-1)}) \ge 0,$$

which is a contradiction.

 (\Leftarrow) The sufficiency of the second part. We assume that $w^{(n-1)}(b) > 0$ and $w^{(n-2)}(b) < 0$. Then, we get the same situation as the proof of necessity with opposite signs of $w^{(n-1)}(b)$ and $w^{(n-2)}(b)$, which also implies a contradiction. Hence, the sufficiency is true.

Lemma 2.2. Suppose p and q are solutions of (1.1) on [b, c] and w = p-q satisfies the following boundary conditions:

$$w^{(i)}(b) = 0, \ 0 \le i \le n-3, \quad \sum_{j=1}^{t} \beta_j w(\eta_j) - w(c) = 0.$$

Then, $w^{(n-2)}(b) = 0$ if and only if $w^{(n-1)}(b) = 0$. Also, $w^{(n-2)}(b) > 0$ if and only if $w^{(n-1)}(b) < 0$.

Proof. (\Rightarrow) The necessity of the first part. Assume $w^{(n-2)}(b) = 0$ and for contradiction, without loss of generality, we assume $w^{(n-1)}(b) > 0$.

By $\sum_{j=1}^{t} \beta_j w(\eta_j) - w(c) = 0$, there exists $r_1 \in (b, c)$ such that $w'(r_1) = 0$. By repeated applications of Rolle's Theorem, there exists $r_2 \in (b, r_1)$ such that $w^{(n-2)}(r_2) = 0$ and $w^{(n-2)}(x) > 0$ on (b, r_2) . It follows that $w^{(j)}(x) > 0$ on (b, r_2) , for $j = 0, 1, \ldots, n-2$.

Let $0 < \delta < \min\{\delta_2, w^{(n-1)}(b)\}$. Then, by Condition (C), we have a solution z of (1.10)-(1.11) on [b, c] such that $z^{(i)}(b) = 0, 0 \le i \le n-2, z^{(n-1)}(b) = \delta$, and $z^{(n-2)}(x) \ge 0$ on [b, c]. Then, $z^{(j)}(x) \ge 0$, for $j = 0, 1, \ldots, n-2$, on [b, c]. Let h = w - z. Then,

$$\begin{split} h^{(n)} &= f(x,p,p',\ldots,p^{(n-1)}) - f(x,q,q',\ldots,q^{(n-1)}) - g(x,z,z',\ldots,z^{(n-1)}), \\ h^{(i)}(b) &= 0, \ 0 \leq i \leq n-2, \ h^{(n-1)}(b) = w^{(n-1)}(b) - z^{(n-1)}(b) > 0. \end{split}$$

Note that $h^{(n-2)}(r_2) = w^{(n-2)}(r_2) - z^{(n-2)}(r_2) \leq 0$. Hence, there is $r_3 \in (b, r_2]$ such that $h^{(n-2)}(r_3) = 0$, $h^{(n-2)}(x) > 0$ on (b, r_3) , and hence, $h^{(j)}(x) > 0$, for $j = 0, 1, \ldots, n-2$ on (b, r_3) . By $h^{(n-2)}(b) = 0$, Rolle's Theorem, and $h^{(n-1)}(b) > 0$, there exists $r_4 \in (b, r_3)$ such that $h^{(n-1)}(r_4) = 0$ and $h^{(n-1)}(x) > 0$ on (b, r_4) . Hence, $h^{(n)}(r_4) \leq 0$, but by Conditions (A) and (D) and $(b, r_4] \subset (b, r_3) \subset (b, r_2)$, we have

$$h^{(n)}(r_4) = f(r_4, p, p', \dots, p^{(n-1)}) - f(r_4, q, q', \dots, q^{(n-1)}) - g(r_4, z, z', \dots, z^{(n-1)})$$

> $g(r_4, w, w', \dots, w^{(n-1)}) - g(r_4, z, z', \dots, z^{(n-1)}) \ge 0,$

which is a contradiction.

(\Leftarrow) The sufficiency of the first part. Suppose $w^{(n-1)}(b) = 0$ and $w^{(n-2)}(b) > 0$. Similar to the above, we have $r_1 \in (b, c)$ such that $w^{(n-2)}(r_1) = 0$ and $w^{(j)}(x) > 0$ on (b, r_1) for $j = 0, 1, \ldots, n-2$.

Let $0 < \delta < \min\{\delta_1, w^{(n-2)}(b)\}$. Then, by Condition (B), we have a solution z of (1.8)-(1.9) on [b, c] such that $z^{(i)}(b) = 0, 0 \le i \le n-1, i \ne n-2, z^{(n-2)}(b) = \delta$, and $z^{(n-2)}(x) \ge 0$ on [b, c]. Then, $z^{(j)}(x) \ge 0$, for $j = 0, 1, \ldots, n-2$, on [b, c]. Let h = w - z. Then,

$$h^{(n)} = f(x, p, p', \dots, p^{(n-1)}) - f(x, q, q', \dots, q^{(n-1)}) - g(x, z, z', \dots, z^{(n-1)})$$

$$h^{(i)}(b) = 0, \ 0 \le i \le n-1, \ i \ne n-1, \quad h^{(n-2)}(b) = w^{(n-2)}(b) - z^{(n-2)}(b) > 0.$$

Note that $h^{(n-2)}(r_1) = w^{(n-2)}(r_1) - z^{(n-2)}(r_1) = -z^{(n-2)}(r_1) \leq 0$. So there is $r_2 \in (b, r_1]$ such that $h^{(n-2)}(r_2) = 0$ and $h^{(n-2)}(x) > 0$, for $x \in (b, r_2)$, and $h^{(j)}(x) > 0$ on (b, r_2) , for $j = 0, 1, \ldots, n-2$. By Rolle's Theorem, there is $r_3 \in (b, r_2)$ such that $h^{(n-1)}(r_3) < 0$.

Note that

$$\begin{aligned} h^{(n)}(b) &= f(b, p, p', \dots, p^{(n-1)}) - f(b, q, q', \dots, q^{(n-1)}) - g(b, z, z', \dots, z^{(n-1)}) \\ &> g(b, w, w', \dots, w^{(n-1)}) - g(b, z, z', \dots, z^{(n-1)}) \ge 0. \end{aligned}$$

Hence, there is $r_4 \in (b, r_3)$ such that $h^{(n-1)}(r_4) = 0$ and $h^{(n-1)}(x) > 0$ on (b, r_4) , which implies $h^{(n)}(r_4) \leq 0$. But by $(b, r_4] \subset (b, r_2) \subset (b, r_1)$ and Conditions (A) and (D), we have that

$$h^{(n)}(r_4) = f(r_4, p, p', \dots, p^{(n-1)}) - f(r_4, q, q', \dots, q^{(n-1)}) - g(r_4, z, z', \dots, z^{(n-1)})$$

> $g(r_4, w, w', \dots, w^{(n-1)}) - g(r_4, z, z', \dots, z^{(n-1)}) \ge 0,$

which is a contradiction.

 (\Rightarrow) The necessity of the second part. Suppose $w^{(n-2)}(b) > 0$ and $w^{(n-1)}(b) > 0$. Similar to the proof of the necessity of the first part, we also can get a contradiction. Hence, we omit the proof. Therefore, if $w^{(n-2)}(b) > 0$, then $w^{(n-1)}(b) < 0$.

(\Leftarrow) The sufficiency of the second part. Suppose $w^{(n-1)}(b) < 0$. If $w^{(n-2)}(b) < 0$, then similar to the proof of necessity, we can get $w^{(n-1)}(b) > 0$, which is a contradiction. Hence, the sufficiency is also true.

3. EXISTENCE AND UNIQUENESS OF SOLUTIONS TO (1.1)-(1.2)

Before discussing existence and uniqueness for (1.1)-(1.2), we consider the uniqueness of solutions to each of the BVP's for (1.1) satisfying any of (1.3), (1.4), (1.5), or (1.6).

Lemma 3.1. Let $y_1, y_2, \ldots, y_n \in \mathbb{R}$ be given and assume Conditions (A)–(D) are satisfied. Then, given $m \in \mathbb{R}$, each of the BVP's for (1.1) satisfying any of conditions (1.3), (1.4), (1.5), or (1.6) has at most one solution.

Proof. The case of (1.1)-(1.3): Suppose there are two distinct solutions p(x) and q(x) for some $m \in \mathbb{R}$. Let w = p - q. Then, w satisfies

$$w^{(n)} = f(x, p, p', \dots, p^{(n-1)}) - f(x, q, q', \dots, q^{(n-1)}),$$

$$w(a) - \sum_{i=1}^{s} \alpha_i w(\xi_i) = 0, \quad w^{(i)}(b) = 0, \quad 0 \le i \le n-2.$$

By Lemma 2.1, we can get that $w^{(n-1)}(b) = 0$. Then, by the uniqueness of solutions of IVP's for (1.1), we can conclude that $p \equiv q$ on [a, b]. Hence, (1.1)-(1.3) has at most one solution on [a, b].

The other cases: By using similar ideas and Lemma 2.1 and Lemma 2.2, we resolve the other cases. $\hfill\square$

Lemma 3.2. Let $y_1, y_2, \ldots, y_n \in \mathbb{R}$ be given. Assume Conditions (A)-(D) are satisfied. Then, the BVP (1.1)-(1.2) has at most one solution.

Proof. We argue by contradiction. Suppose for some values $y_1, y_2, \ldots, y_n \in \mathbb{R}$, there exist distinct solutions p and q of (1.1)-(1.2). Also, let w = p - q. Then, from Lemma 2.1 and Lemma 2.2, we get $w^{(n-2)}(b) \neq 0$, $w^{(n-1)}(b) \neq 0$.

Without loss of generality, we suppose $w^{(n-2)}(b) > 0$. Then, by Lemma 2.1, $w^{(n-1)}(b) > 0$. But by Lemma 2.2, $w^{(n-1)}(b) < 0$. This is a contradiction. Hence, $p \equiv q$ on [a, c].

Next, we show that solutions of (1.1) satisfying each of (1.3), (1.4), (1.5), or (1.6) respectively are monotone functions of m at b. For notation purposes, given any $m \in \mathbb{R}$, let $\alpha(x,m)$, u(x,m), $\beta(x,m)$, v(x,m) denote the solutions, when they exist, of the boundary value problems of (1.1) satisfying (1.3), (1.4), (1.5), or (1.6), respectively.

Lemma 3.3. Suppose that (A)–(D) are satisfied and that for each $m \in \mathbb{R}$, there exist solutions of (1.1) satisfying each of the conditions (1.3), (1.4), (1.5), (1.6), respectively. Then, $\alpha^{(n-1)}(b,m)$ and $\beta^{(n-1)}(b,m)$ are, respectively, strictly increasing and strictly decreasing functions of m with ranges all of \mathbb{R} .

Proof. The proof of $\{\alpha^{(n-1)}(b,m)|m \in \mathbb{R}\} = \mathbb{R}$ is the same as that in [4, Theorem 2.4]. We omit it here.

Similarly, we obtain monotonicity conditions on $u^{(n-2)}(b,m)$ and $v^{(n-2)}(b,m)$.

Lemma 3.4. Under the assumption of Lemma 3.3, the functions $u^{(n-2)}(b,m)$ and $v^{(n-2)}(b,m)$ are, respectively, strictly increasing and strictly decreasing functions of m, with ranges all \mathbb{R} .

Finally, we arrive at our existence result for (1.1)-(1.2), which is obtained by solution matching.

Theorem 3.5. Assume the hypotheses of Lemma 3.3. Then, (1.1)-(1.2) has a unique solution.

Proof. We prove the existence from either Lemma 3.3 or Lemma 3.4. Making use of Lemma 3.4, there exists a unique $m_0 \in \mathbb{R}$ such that $u^{(n-2)}(b, m_0) = v^{(n-2)}(b, m_0)$. Then,

$$y(x) = \begin{cases} u(x, m_0), & a \le x \le b, \\ v(x, m_0), & b \le x \le c, \end{cases}$$

is a solution of (1.1)-(1.2) and by Lemma 3.2, y(x) is the unique solution.

4. EXISTENCE AND UNIQUENESS OF SOLUTIONS TO (1.1)-(1.7)

We can obtain analogous results to those of Section 3 for (1.1)-(1.7) with $\tau, \sigma \in \{0, 1, \ldots, n-3\}$ fixed. We obtain solutions to (1.1)-(1.7) by matching solutions satisfying the following types of boundary conditions:

$$y^{(\tau)}(a) - \sum_{i=1}^{s} \alpha_i y^{(\tau)}(\xi_i) = y_1, \quad y^{(i)}(b) = y_{i+2}, \ 0 \le i \le n-3, \quad y^{(n-2)}(b) = m,$$
(4.1)

$$y^{(\tau)}(a) - \sum_{i=1}^{s} \alpha_i y^{(\tau)}(\xi_i) = y_1, \quad y^{(i)}(b) = y_{i+2}, \ 0 \le i \le n-3, \quad y^{(n-1)}(b) = m,$$
(4.2)

$$y^{(i)}(b) = y_{i+2}, \ 0 \le i \le n-3, \quad y^{(n-2)}(b) = m, \quad \sum_{j=1}^{t} \beta_j y^{(\sigma)}(\eta_j) - y^{(\sigma)}(c) = y_n,$$
(4.3)

X. LIU

EJDE-2011/17

$$y^{(i)}(b) = y_{i+2}, \ 0 \le i \le n-3, \quad y^{(n-1)}(b) = m, \quad \sum_{j=1}^{t} \beta_j y^{(\sigma)}(\eta_j) - y^{(\sigma)}(c) = y_n,$$

$$(4.4)$$

where $m \in \mathbb{R}$, $a < \xi_1 < \xi_2 < \dots < \xi_s < b < \eta_1 < \eta_2 < \dots < \eta_t < c, s, t \in \mathbb{N}$, $\alpha_i > 0$ for $1 \le i \le s$, $\beta_j > 0$ for $1 \le j \le t$, $\sum_{i=1}^s \alpha_i = 1$, $\sum_{j=1}^t \beta_j = 1$ and $y_1, y_2, \dots, y_n \in \mathbb{R}$.

We omit the proofs of the following results since they are essentially the same as those presented in Section 2 with only small modifications.

Lemma 4.1. Let $y_1, y_2, \ldots, y_n \in \mathbb{R}$ be given and assume conditions (A)–(D) are satisfied. Then, given $m \in \mathbb{R}$, each of the BVP's for (1.1) satisfying any of conditions (4.1), (4.2), (4.3), or (4.4) has at most one solution.

Lemma 4.2. Let $y_1, y_2, \ldots, y_n \in \mathbb{R}$ be given and assume conditions (A)-(D) are satisfied. Then (1.1)-(1.7) has at most one solution.

Now, given any $m \in \mathbb{R}$, let $\theta(x, m)$, l(x, m), $\vartheta(x, m)$, o(x, m) denote the solutions, when they exist, of the boundary value problems of (1.1) satisfying (4.1), (4.2), (4.3), (4.4), respectively.

Lemma 4.3. Suppose that (A)–(D) are satisfied and that for each $m \in \mathbb{R}$, there exist solutions of (1.1) satisfying each of the conditions (4.1), (4.2), (4.3), (4.4). Then, $\theta^{(n-1)}(b,m)$ and $\vartheta^{(n-1)}(b,m)$ are respectively strictly increasing and strictly decreasing functions of m with ranges all of \mathbb{R} . Also, $l^{(n-2)}(b,m)$ and $o^{(n-2)}(b,m)$ are respectively strictly increasing functions of m with ranges all of \mathbb{R} .

Theorem 4.4. Assume the hypotheses of Lemma 4.3. Then (1.1)-(1.7) has a unique solution.

Acknowledgements. I am grateful to Prof. Johnny Henderson who is my mentor and has given me a lot of encouragement, professional advice, and great comments about the original draft.

References

- P. Bailey, L. Shampine, and P. Waltman; Nonlinear Two Point Boundary Value Problems, Academic Press, New York, 1968.
- [2] D. Barr and T. Sherman; Existence and uniqueness of solutions of three-point boundary value problems, J. Differential Equations 13 (1973), 197–212.
- [3] D. Barr and P. Miletta; An existence and uniqueness criterion for solutions of boundary value problems, J. Differential Equations 16 (1974), 460–471.
- [4] J. Henderson; Three-point boundary value problems for ordinary differential equations by matching solutions, Nonlinear Analysis 7 (1983), 411–417.
- [5] J. Henderson; Boundary value problems for third order differential equations by solution matching, *Electronic Journal of Qualitative Theory of Differential Equations*, Spec. Ed. I, (2009), 1–9.
- [6] J. Henderson and K. R. Prasad; Existence and uniqueness of solutions of three-point boundary value problems on time scales, *Nonlinear Studies* 8 (2001), 1–12.
- [7] J. Henderson and R. D. Taunton; Solutions of boundary value problems by matching methods, *Applicable Analysis* 49 (1993), 235–246.
- [8] J. Henderson and C. C. Tisdell; Five-point boundary value problems for third-order differntial equations by solution matching, *Mathematical and Computer Modelling* 42 (2005), 133–137.

- [9] V. R. G. Moorti and J. B. Garner; Existence-uniqueness theorems for three-point boundary value problems for nth-order nonlinear differential equations, J. Differential Equations 29 (1978), 205–213.
- [10] D. R. K. S. Rao, K. N. Murty, and A. S. Rao; On three-point boundary value problems associated with third order differential equations, *Nonlinear Analysis* 5 (1981), 669–673.

Xueyan (Sherry) Liu

Department of Mathematics, Baylor University, Waco, TX 76798-7328, USA $E\text{-}mail\ address:$ Xueyan.Liu@baylor.edu