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A PRIORI ESTIMATES FOR SOLUTIONS TO A FOUR POINT
BOUNDARY VALUE PROBLEM FOR SINGULARLY

PERTURBED SEMILINEAR DIFFERENTIAL EQUATIONS

ROBERT VRABEL

Abstract. This article concerns the existence and asymptotic behavior of
solutions to a singularly perturbed second-order four-point boundary-value
problem for nonlinear differential equations. Our analysis relies on the method
of lower and upper solutions. We give accurate approximations of the solutions
up to order O(ε).

1. Preliminaries

We consider the four (or three) point boundary value problem

εy′′ + ky = f(t, y), t ∈ [a, b], k < 0, 0 < ε� 1, (1.1)

y(c)− y(a) = 0, y(b)− y(d) = 0, a < c ≤ d < b. (1.2)

We focus our attention on the existence and asymptotic behavior of the solutions
yε(t) for (1.1), (1.2) and on an estimate of the difference between yε(t) and a solution
u(t) of the equation ku = f(t, u).

The situation in the present case is complicated by the fact that there are inner
points in the boundary conditions, in contrast to “standard” boundary conditions
such as the Dirichlet, Neumann, Robin, or periodic problem [2, 3, 6, 7], for example.
We note that the equation εv′′ε −mvε = 0, m > 0, 0 < ε such that ṽε(c)− ṽε(a) =
u(c) − u(a) > 0 and ṽε(t) → 0+ for t ∈ (a, b] and ε → 0+, which could be used to
solve this problem by the method of lower and upper solutions. Instead we compose
barrier functions (α, β) for two-endpoint boundary conditions to construct barrier
functions for (1.1), (1.2), see e.g. [2].

In recent years multi-point boundary value problems have received a great deal
of attention (see e.g. [1], [4] and the references therein). The reader is referred to
[4] where a four-point boundary value problem with boundary conditions y(c) −
ν1y(a) = 0, y(b) − ν2y(d) = 0 where the constants ν1, ν2 are not simultaneously
equal to 1 and ε = 1 is studied.

We apply the method of lower and upper solutions to prove the existence of a
solution for problem (1.1), (1.2) and by taking ε→ 0+, the corresponding solutions
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converge uniformly on compact subsets of (a, b) to u, the solution of the reduced
problem. Moreover, we prove that these solutions converge to u up to order O(ε).

As usual, we say that αε ∈ C2([a, b]) is a lower solution for problem (1.1), (1.2)
if for every t ∈ (a, b) we have εα′′ε (t) + kαε(t) ≥ f(t, αε(t)), and αε(c)− αε(a) = 0,
αε(b) − αε(d) ≤ 0. An upper solution βε ∈ C2([a, b]) satisfies εβ′′ε (t) + kβε(t) ≤
f(t, βε(t)) and βε(c)− βε(a) = 0, βε(b)− βε(d) ≥ 0 for every t ∈ (a, b).

Lemma 1.1 ([5]). If αε, βε are respectively lower and upper solutions for (1.1),
(1.2) such that αε ≤ βε, then there exists solution yε of (1.1), (1.2) with αε ≤ yε ≤
βε.

Consider the set H(u) = {(t, y) : a ≤ t ≤ b, |y − u(t)| < d(t)}, where d(t) is the
positive continuous function on [a, b] defined by

d(t) =


|u(c)− u(a)|+ δ for a ≤ t ≤ a+ δ

2

δ for a+ δ ≤ t ≤ b− δ

|u(b)− u(d)|+ δ for b− δ
2 ≤ t ≤ b

where δ is a small positive constant and u ∈ C2 is a solution of the reduced problem
ky = f(t, y) defined on [a, b]. We write s(ε) = O(r(ε)) when 0 < limε→0+ | s(ε)r(ε) | <∞.

2. Main result

Theorem 2.1. Let f ∈ C1(H(u)) satisfy the condition∣∣∂f(t, y)
∂y

∣∣ ≤ w < −k for every (t, y) ∈ H(u).

Then there exists ε0 such that for every ε ∈ (0, ε0], problem (1.1), (1.2) has a unique
solution yε(t) satisfying the inequality

−v(corr)
ε (t)− v̂ε(t)− Cε ≤ yε(t)− (u(t) + vε(t)) ≤ v̂ε(t) + Cε if u(c)− u(a) ≥ 0

and

−v̂ε(t)− Cε ≤ yε(t)− (u(t) + vε(t)) ≤ v(corr)
ε (t) + v̂ε(t) + Cε if u(c)− u(a) ≤ 0

on [a, b] where

vε(t) =
u(c)− u(a)

D
·
(
e
√

m
ε (b−t) − e

√
m
ε (t−b) + e

√
m
ε (t−d) − e

√
m
ε (d−t)

)
,

v̂ε(t) =
|u(b)− u(d)|

D
·
(
e
√

m
ε (t−a) − e

√
m
ε (a−t) + e

√
m
ε (c−t) − e

√
m
ε (t−c)

)
,

D =
(
e
√

m
ε (b−a) + e

√
m
ε (d−c) + e

√
m
ε (c−b) + e

√
m
ε (a−d)

)
−

(
e
√

m
ε (a−b) + e

√
m
ε (c−d) + e

√
m
ε (b−c) + e

√
m
ε (d−a)

)
,

m = −k − w, C = 1
m maxt∈[a,b] |u′′(t)| and the positive function

v(corr)
ε (t) =

w|u(c)− u(a)|√
mε

·
[
−O(1)

vε(t)
(u(c)− u(a))

+O
(
e
√

m
ε (a−d)

) v̂ε(t)
|u(b)− u(d)|

+ tO
(
e
√

m
ε χ(t)

)]
,

χ(t) < 0 for t ∈ (a, b] and v(corr)
ε (a) = v

(corr)
ε (c).

Remark 2.2. The function vε(t) satisfies
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(1) εv′′ε −mvε = 0,
(2) vε(c)− vε(a) = −(u(c)− u(a)), vε(b)− vε(d) = 0,
(3) If u(c)−u(a) ≥ 0 (≤ 0) then vε(t) ≥ 0 (≤ 0) and it is decreasing (increasing)

for a ≤ t ≤ b+d
2 and increasing (decreasing) for b+d

2 ≤ t ≤ b,
(4) If ε → 0+ then vε(t) converges uniformly to 0 on every compact subset of

(a, b],
(5) vε(t) = (u(c) − u(a))O

(
e
√

m
ε χ(t)

)
, where χ(t) = a − t for a ≤ t ≤ b+d

2 and
χ(t) = t− b+ a− d for b+d

2 < t ≤ b.

The function v̂ε(t) satisfies

(1) εv̂′′ε −mv̂ε = 0,
(2) v̂ε(c)− v̂ε(a) = 0, v̂ε(b)− v̂ε(d) = |u(b)− u(d)|,
(3) v̂ε(t) ≥ 0 and it is decreasing for a ≤ t ≤ a+c

2 and increasing for a+c
2 ≤ t ≤ b,

(4) If ε → 0+ then v̂ε(t) converges uniformly to 0 on every compact subset of
[a, b),

(5) v̂ε(t) = |u(b)− u(d)|O
(
e
√

m
ε χ̂(t)

)
where χ̂(t) = c− b+ a− t for a ≤ t < a+c

2

and χ̂(t) = t− b for a+c
2 ≤ t ≤ b.

The correction function v(corr)
ε (t) is determined precisely in the next section.

3. The correction function

Consider the linear problem

εy′′ −my = −2w|vε(t)|, t ∈ [a, b], ε > 0 (3.1)

with the boundary conditions (1.2). We apply the method of lower and upper
solutions in order to obtain a solution. We define

αε(t) = 0

and

βε(t) =
2w
m

max{|vε(t)|, t ∈ [a, b]} =
2w
m
|vε(a)|.

Obviously, |vε(a)| = |u(c)−u(a)|
(
1+O

(
e
√

m
ε (a−c)

))
and the constant functions α, β

are, respectively, a lower and an upper solution for (3.1), (1.2). Thus, in view of
Lemma 1.1, for every ε > 0 there exists unique solution v(corr)

ε (t) of linear problem
(3.1), (1.2) such that

0 ≤ v(corr)
ε (t) ≤ 2w

m
|u(c)− u(a)|

(
1 +O

(
e
√

m
ε (a−c)

))
on [a, b]. We compute v(corr)

ε (t) exactly:

v(corr)
ε (t) = − (ψε(a)− ψε(c))

(u(c)− u(a))
vε(t) +

(ψε(d)− ψε(b))
|u(b)− u(d)|

v̂ε(t) + ψε(t),

where

ψε(t) =
w|u(c)− u(a)|

D
√
mε

t
(
e
√

m
ε (b−t) + e

√
m
ε (t−b) − e

√
m
ε (d−t) − e

√
m
ε (t−d)

)
.
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Hence

ψε(a)− ψε(c)

=
w|u(c)− u(a)|

D
√
mε

a
(
e
√

m
ε (b−a) + e

√
m
ε (a−b) − e

√
m
ε (d−a) − e

√
m
ε (a−d)

)
− w|u(c)− u(a)|

D
√
mε

c
(
e
√

m
ε (b−c) + e

√
m
ε (c−b) − e

√
m
ε (d−c) − e

√
m
ε (c−d)

)
=
w|u(c)− u(a)|√

mε
O(1),

ψε(d)− ψε(b) =
w|u(c)− u(a)|

D
√
mε

d
(
e
√

m
ε (b−d) + e

√
m
ε (d−b) − 2

)
− w|u(c)− u(a)|

D
√
mε

b
(
2− e

√
m
ε (d−b) − e

√
m
ε (b−d)

)
=
w|u(c)− u(a)|√

mε
O

(
e
√

m
ε (a−d)

)
,

ψε(t) =
w|u(c)− u(a)|√

mε
O

(
e
√

m
ε χ(t)

)
.

Thus, we obtain

v(corr)
ε (t) =

w|u(c)− u(a)|√
mε

·
[
−O(1)

vε(t)
(u(c)− u(a))

+O
(
e
√

m
ε (a−d)

) v̂ε(t)
|u(b)− u(d)|

+ tO
(
e
√

m
ε χ(t)

) ]
.

(3.2)

Hence, taking into consideration (3.2) and the fact that v(corr)
ε (a) = v

(corr)
ε (c), the

correction function v(corr)
ε converges uniformly to 0 on [a, b] as ε→ 0+.

4. Proof of main theorem

First we analyze the case u(c)− u(a) ≥ 0. Consider the lower solutions

αε(t) = u(t) + vε(t)− v(corr)
ε (t)− v̂ε(t)− Γε

and the upper solutions

βε(t) = u(t) + vε(t) + v̂ε(t) + Γε.

Here Γε = ε∆/m, where ∆ is a constant to be defined below, αε ≤ βε on [a, b] and
they satisfy the correspondent prescribed boundary conditions.

Now we show that εα′′ε (t)+kαε(t) ≥ f(t, αε(t)) and εβ′′ε (t)+kβε(t) ≤ f(t, βε(t)).
Denoting h(t, y) = f(t, y)− ky, by the Taylor we have

h(t, αε(t)) = h(t, αε(t))− h(t, u(t))

=
∂h(t, θε(t))

∂y
(vε(t)− v(corr)

ε (t)− v̂ε(t)− Γε),
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where αε(t) < θε(t) < βε(t) and (t, θε(t)) ∈ H(u) for ε sufficiently small. Hence,
from the inequalities m ≤ ∂h(t,θε(t))

∂y ≤ m+ 2w in H(u) we have

εα′′ε (t)− h(t, αε(t))

≥ εu′′(t) + εv′′ε (t)− εv(corr)′′

ε (t)− εv̂′′ε (t)

− (m+ 2w)vε(t) +mv(corr)
ε (t) +mv̂ε(t) +mΓε.

Since vε(t) = |vε(t)|, we have −εv(corr)′′

ε (t) − 2wvε(t) + mv
(corr)
ε (t) = 0 and using

((3.1), we obtain

εα′′ε (t)− h(t, αε(t)) ≥ εu′′(t) +mΓε ≥ −ε|u′′(t)|+ ε∆.

For βε(t)) we have the inequality

h(t, βε(t))− εβ′′ε (t)

=
∂h(t, θ̃ε(t))

∂y
(vε(t) + v̂ε(t) + Γε)− εβ′′ε (t)

= m(vε(t) + v̂ε(t) + Γε)− ε(u′′(t) + v′′ε (t) + v̂′′ε (t))

≥ ε∆− ε|u′′(t)|,

where αε(t) < θ̃ε(t) < βε(t) and (t, θ̃ε(t)) ∈ H(u) for ε sufficiently small.
Let us now analyse the case u(c)− u(a) ≤ 0: The lower solutions

αε(t) = u(t) + vε(t)− v̂ε(t)− Γε

and the upper solutions

βε(t) = u(t) + vε(t) + v(corr)
ε (t) + v̂ε(t) + Γε

satisfy

εα′′ε − h(t, αε) = εu′′ + εv′′ε − εv̂′′ε −
∂h

∂y
(vε − v̂ε − Γε)

= εu′′ + εv′′ε − εv̂′′ε +
∂h

∂y
(−vε + v̂ε + Γε)

≥ εu′′ + εv′′ε − εv̂′′ε +m(−vε + v̂ε + Γε)

= εu′′ + ε∆ ≥ ε∆− ε|u′′|

and

h(t, βε)− εβ′′ε =
∂h

∂y

(
vε + v(corr)

ε + v̂ε + Γε

)
− εu′′ − εv′′ε − εv(corr)′′

ε − εv̂′′ε

≥ (m+ 2w)vε +m
(
v(corr)

ε + v̂ε + Γε

)
− εu′′ − εv′′ε − εv(corr)′′

ε − εv̂′′ε

= −2w|vε|+mv(corr)
ε − εv(corr)′′

ε + ε∆− εu′′

= ε∆− εu′′ ≥ ε∆− ε|u′′|.

Now, if we choose a constant ∆ such that ∆ ≥ |u′′(t)|, t ∈ [a, b] then εα′′ε (t) ≥
h(t, αε(t)) and εβ′′ε (t) ≤ h(t, βε(t)) in [a, b].

The existence of a solution for (1.1), (1.2) satisfying the above inequality follows
from Lemma 1.1. The uniqueness follows from the fact that the function h(t, y) is
increasing in the variable y on the set H.
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Remark 4.1. Theorem 2.1 implies yε(t) = u(t) + O(ε) on every compact subset
of (a, b) and limε→0+ yε(a) = u(c), limε→0+ yε(b) = u(d). The boundary layer effect
occurs at the point a (b) whenever u(a) 6= u(c) (u(b) 6= u(d)).

5. Approximation of the solutions for (1.1), (1.2)

In this section we consider only the case u(c)− u(a) ≤ 0 as the other case could
be treated analogously. We define the approximate solution ỹε(t) of (1.1), (1.2) by

ỹε(t) =
1
2

(αε(t) + βε(t)) = u(t) + vε(t) +
v
(corr)
ε (t)

2
. (5.1)

Taking into consideration the conclusions of Theorem 2.1, in both cases we obtain
the following estimate for the solution yε of problem (1.1), (1.2)

|yε(t)− ỹε(t)| ≤ v̂ε(t) +
v
(corr)
ε (t)

2
+

ε

m
max{|u′′(t)|, t ∈ [a, b]}.

Example 5.1. Consider the nonlinear differential equation

εy′′ + ky = y2 + g(t), k < 0, g ∈ C([a, b]) (5.2)

subject to the boundary conditions (1.2). The assumptions of Theorem 2.1 are
satisfied if and only if there exists w > 0 such that

1
4
(
k2 − (w − k)2

)
< g(t) <

1
4
(
k2 − (w + k)2

)
on [a, b], (5.3)

|g(c)− g(a)| < 1
8
(
w − k − ζ(a)

)(
ζ(a) + ζ(c)

)
, (5.4)

|g(b)− g(d)| < 1
8
(
w − k − ζ(b)

)(
ζ(b) + ζ(d)

)
, (5.5)

|g(c)− g(a)| < 1
8
(
w + k + ζ(a)

)(
ζ(a) + ζ(c)

)
, (5.6)

|g(b)− g(d)| < 1
8
(
w + k + ζ(b)

)(
ζ(b) + ζ(d)

)
, (5.7)

where ζ(t) =
√
k2 − 4g(t).

As an illustrative example we consider the problem (5.2), (1.2) with k = −2,
g(t) = t, a = 0, b = 1/2, c = d = 1/4. It is not difficult to verify that the solution
u(t) = −1+

√
1− t of the reduced problem satisfies conditions (5.3)–(5.7) for every

w ∈
(

2√
2+
√

3
+2−

√
2, 2

)
. Thus, on the basis of Theorem 2.1, there exists ε0 = ε0(w)

such that for every ε ∈ (0, ε0] the problem εy′′ − 2y = y2 + t, (1.2) has a unique
solution which is O(ε) close to approximate solution (5.1); i.e.,

ỹε(t) = −1 +
√

1− t+ vε(t) +
v
(corr)
ε (t)

2
.
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