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POSITIVE SOLUTIONS FOR SECOND-ORDER MULTI-POINT
BOUNDARY-VALUE PROBLEMS AT RESONANCE IN BANACH

SPACES

WEIHUA JIANG, BIN WANG

Abstract. In this article, we study the existence and multiplicity of positive
solutions for a nonlinear second-order multi-point boundary-value problem at
resonance in Banach spaces. The arguments are based upon a specially con-
structed equivalent equation and the fixed point theory in a cone for strict set
contraction operators.

1. Introduction

The theory of ordinary differential equations in Banach spaces has become a new
important branch (see, for example, [2, 6, 7, 12] and references cited therein). In
1988, Guo and Lakshmikantham [8] discussed the existence of multiple solutions
for two-point boundary value problem of ordinary differential equations in Banach
spaces. Since then, nonlinear second-order multi-point boundary value problems
at non-resonance in Banach spaces have been studied by several authors (see, for
example, [5, 13, 14, 18] and references cited therein). Recently, the existence of
solutions for boundary value problems at resonance have been studied by many
papers, (see, for example [3, 4, 9, 10, 11, 15, 16, 19]). Using the Krasnolsel’skii-Guo
fixed point theorem, Han [9] studied a second order three-point BVP at resonance
by rewriting the original BVP as an equivalent one. Motivated by their results, in
this paper, we will discuss the existence of positive solutions for the second-order
m-point boundary value problem at resonance

y′′(t) = f(t, y), 0 < t < 1, (1.1)

y′(0) = θ, y(1) =
m−2∑
i=1

kiy(ξi) (1.2)
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in a real Banach space E, where θ is the zero element of E, 0 < ξ1 < ξ2 < · · · <
ξm−2 < 1, ki > 0, i = 1, 2, . . . ,m− 2,

∑m−2
i=1 ki = 1.

The boundary value problem (1.1)-(1.2) is at resonance when
∑m−2

i=1 ki = 1; that
is, the corresponding homogeneous boundary value problem

y′′(t) = 0, t ∈ [0, 1],

y′(0) = 0, y(1) =
m−2∑
i=1

kiy(ξi)

has nontrivial solutions.
To the best of our knowledge, no paper has considered the existence of positive

solutions for the boundary value problems at resonance in Banach spaces. We shall
fill this gap in the literature. The organization of this paper is as follows. We shall
introduce a theorem and some notations in the rest of this section. In Section 2,
we provide some necessary background. In particular, we state some properties of
Green’s function associated with the equivalent problem of (1.1)-(1.2). In Section
3, the main results will be stated and proved.

Theorem 1.1 ([1, 17]). Let K be a cone of the real Banach space X and Kr,R =
{x ∈ K|r ≤ ‖x‖ ≤ R} with R > r > 0. Assume that A : Kr,R → K is a strict set
contraction such that one of the following two conditions is satisfied

(i) Ax 6≤ x for all x ∈ K, ‖x‖ = r and Ax 6≥ x for all x ∈ K, ‖x‖ = R.
(ii) Ax 6≥ x for all x ∈ K, ‖x‖ = r and Ax 6≤ x for all x ∈ K, ‖x‖ = R.

Then A has at least one fixed point x ∈ K satisfying r < ‖x‖ < R.

Let the real Banach space E with norm ‖ · ‖ be partially ordered by a normal
cone P of E; i.e., x ≤ y if and only if y − x ∈ P , and P ∗ denotes the dual cone
of P ; i.e., P ∗ = {ϕ ∈ E∗ : ϕ(x) ≥ 0, x ∈ P}. Denote the normal constant
of P by N ; i.e., θ ≤ x ≤ y implies ‖x‖ ≤ N‖y‖. Take I = [0, 1]. For any
x ∈ C[I, E], evidently, (C[I, E], ‖·‖c) is a Banach space with ‖x‖c = maxt∈I ‖x(t)‖,
and Q = {x ∈ C[I, E] : x(t) ≥ θ for t ∈ I} is a cone of the Banach space C[I, E].
A function y ∈ C2[I, E] is called a positive solution of the boundary value problem
(1.1)-(1.2) if it satisfies (1.1)-(1.2) and y ∈ Q, y(t) 6≡ θ.

In this paper, we denote α(·) the Kuratowski measure of non-compactness of a
bounded set in E and C[I, E]. The closed balls in spaces E and C[I, E] are denoted
by Tr = {x ∈ E : ‖x‖ ≤ r}(r > 0) and Br = {y ∈ C[I, E] : ‖y‖c ≤ r}(r > 0),
respectively.

Define

F (t, y) := f(t, y) + β2y,

where β ∈ (0, π
2 ). Obviously, y(t) is a solution of the problem (1.1)-(1.2) if and only

if it is a solution of the problem

y′′(t) + β2y(t) = F (t, y(t)), 0 < t < 1, (1.3)

y′(0) = θ, y(1) =
m−2∑
i=1

kiy(ξi), (1.4)

and the problem (1.3)-(1.4) is at non-resonance.
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For convenience, we set

a0 =
m−2∑
i=1

ki cos βξi − cos β, a1 = (a0 + 1) sinβ +
m−2∑
i=1

ki sinβξi,

a2 = 1−
m−2∑
i=1

ki cos β(1− ξi).

In this paper, we assume the following conditions hold.
(H1) ki > 0, i = 1, 2, . . . ,m− 2, 0 < ξ1 < ξ2 < · · · < ξm−2 < 1,

∑m−2
i=1 ki = 1.

(H2) P is a normal cone of E and N is the normal constant; F : I × P → P ,
F (t, θ) = θ for all t ∈ I; for any r > 0, F (t, x) is uniformly continuous and
bounded on I × (P ∩ Tr) and there exists a constant Lr with 0 ≤ Lr <
(βa0)/(2a1) such that

α(F (I ×D)) ≤ Lrα(D), ∀D ⊂ P ∩ Tr.

2. Preliminary lemmas

Lemma 2.1. Assume
∑m−2

i=1 ki = 1, then for h(t) ∈ C[I, E], the problem

y′′(t) + β2y(t) = h(t), 0 < t < 1, (2.1)

y′(0) = θ, y(1) =
m−2∑
i=1

kiy(ξi) (2.2)

has a unique solution

y(t) =
1
β

∫ t

0

sinβ(t− s)h(s)ds +
cos βt

βa0
[
∫ 1

0

sinβ(1− s)h(s)ds

−
m−2∑
i=1

ki

∫ ξi

0

sinβ(ξi − s)h(s)ds]

=:
∫ 1

0

G(t, s)h(s)ds,

(2.3)

where

G(t, s) =


1
β sinβ(t− s) + cos βt

βa0
[sinβ(1− s)−

∑m−2
j=i kj sinβ(ξj − s)],

if ξi−1 ≤ s ≤ min{t, ξi}, ; i = 1, 2, . . . ,m− 1;
cos βt
βa0

[sinβ(1− s)−
∑m−2

j=i kj sinβ(ξj − s)],
if max{ξi−1, t} ≤ s ≤ ξi, i = 1, 2, . . . ,m− 1.

The proof of the above lemma is easy, so we omit it.

Lemma 2.2. There exist c1, c2 > 0 such that

c1(1− s) ≤ G(t, s) ≤ c2(1− s), t, s ∈ [0, 1].

Proof. Take H(t, s) = c(1−s)−G(t, s). We will prove that H(t, s) ≥ 0, t, s ∈ [0, 1],
when c is sufficiently large. For t, s ∈ [0, 1], we have

H(t, s) ≥ c(1− s)− 1
β

sinβ(t− s)− cos βt

βa0
sinβ(1− s)

≥ c(1− s)− 1
β

sinβ(1− s)− sinβ(1− s)
βa0
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= c(1− s)− 1
β

[1 +
1
a0

] sinβ(1− s)

≥ (c− 1− 1
a0

)(1− s).

Take c2 ≥ 1 + 1
a0

, then H(t, s) ≥ 0, t, s ∈ [0, 1].
Now, we prove H(t, s) ≤ 0, t, s ∈ [0, 1], when c is sufficiently small. For t ∈ [0, 1],

s ∈ (ξ1, 1], we have

H(t, s) ≤ c(1− s)− cos βt

βa0
[sinβ(1− s)−

m−2∑
j=i

kj sinβ(ξj − s)]

≤ c(1− s)− cos β

βa0
[sinβ(1− s)−

m−2∑
j=2

kj sinβ(ξj − s)]

≤ c(1− s)− k1 cos β

βa0
sinβ(1− s).

Since

g(x) =

{
sin x

x , 0 < x ≤ π/2,

1, x = 0

is continuous on [0, π/2]. So, we obtain

min
x∈[0,π/2]

g(x) := m0 > 0;

i.e., sinx ≥ m0x, x ∈ [0, π/2]. Therefore,

H(t, s) ≤ c(1− s)− m0k1 cos β

a0
(1− s)

= (c− m0k1 cos β

a0
)(1− s).

For t ∈ [0, 1], s ∈ [0, ξ1], we obtain

H(t, s) ≤ c(1− s)− cos βt

βa0
[sinβ(1− s)−

m−2∑
j=1

kj sinβ(ξj − s)]

≤ c(1− s)− cos β

βa0
2

m−2∑
j=1

kj cos
β(1 + ξj − 2s)

2
sin

β(1− ξj)
2

≤ c− 2 cos β

βa0

m−2∑
i=1

ki cos
β(1 + ξi)

2
sin

β(1− ξi)
2

.

Take

0 < c1 ≤ min
{m0k1 cos β

a0
,
2 cos β(

∑m−2
i=1 ki cos β(1+ξi)

2 sin β(1−ξi)
2 )

βa0

}
.

Then we have c1(1− s) ≤ G(t, s), t, s ∈ [0, 1]. The proof is complete. �

Lemma 2.3. Assume (H1) holds. If h ∈ Q, then the unique solution y of (2.1)-
(2.2) satisfies y(t) ≥ θ, t ∈ I and y(t) ≥ γy(s) for all t, s ∈ I, where γ = c1/c2.
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Proof. Obviously, y(t) ≥ θ for all t ∈ I. By Lemma 2.2, we obtain

y(t) ≥ c1

∫ 1

0

(1− s)h(s)ds =
c1

c2

∫ 1

0

c2(1− s)h(s)ds ≥ γy(r), ∀t, r ∈ I.

The proof is complete. �

Define an operator A : Q → C[I, E] as follows

A(y(t)) :=
1
β

∫ t

0

sinβ(t− s)F (s, y(s))ds +
cos βt

βa0
[
∫ 1

0

sinβ(1− s)F (s, y(s))ds

−
m−2∑
i=1

ki

∫ ξi

0

sinβ(ξi − s)F (s, y(s))ds].

(2.4)
By Lemmas 2.1 and 2.3, we obtain that A : Q → C2[I, E]∩Q, and y(t) is a positive
solution of (1.1)-(1.2) if and only if y(t) ∈ C2[I, E]∩Q and y(t) 6≡ θ is a fixed point
of the operator A.

Lemma 2.4. Assume (H1), (H2) hold. Then, for any r > 0, the operator A is a
strict set contraction on Q ∩Br.

Proof. Since F (t, x) is uniformly continuous and bounded on I × (P ∩ Tr), we see
from (2.4) that A is continuous and bounded on Q ∩ Br. For any S ⊂ Q ∩ Br, by
(2.4), we can easily get that functions A(S) = {Ay|y ∈ S} are uniformly bounded
and equicontinuous. By [12], we have

α(A(S)) = sup
t∈I

α(A(S(t))), (2.5)

where A(S(t)) = {Ay(t) : y ∈ S, t ∈ I is fixed}. For any y ∈ C[I, E], g ∈ C[I, I],
by

∫ t

0
g(s)y(s)ds ∈ co({g(t)y(t)|t ∈ I} ∪ {θ}) ⊂ co({y(t)|t ∈ I} ∪ {θ}), we obtain

α(A(S(t)))

= α({ 1
β

∫ t

0

sinβ(t− s)F (s, y(s))ds +
cos βt

βa0

[ ∫ 1

0

sinβ(1− s)F (s, y(s))ds

−
m−2∑
i=1

ki

∫ ξi

0

sinβ(ξi − s)F (s, y(s))ds
]

: y ∈ S})

≤ sinβ

β
α(co({F (s, y(s)) : s ∈ I, y ∈ S} ∪ {θ}))

+
sinβ

βa0
α(co({F (s, y(s)) : s ∈ I, y ∈ S} ∪ {θ}))

+
∑m−2

i=1 ki sinβξi

βa0
α(co({F (s, y(s)) : s ∈ I, y ∈ S} ∪ {θ}))

=
a1

βa0
α({F (s, y(s)) : s ∈ I, y ∈ S})

≤ a1

βa0
α(F (I ×B)),

where B = {y(s) : s ∈ I, y ∈ S} ⊂ P ∩ Tr.
By (H2), we obtain

α(A(S(t))) ≤ a1

βa0
Lrα(B). (2.6)
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For any given ε > 0, there exists a partition S = ∪l
j=1Sj such that

diam(Sj) < α(S) +
ε

3
, j = 1, 2, . . . , l. (2.7)

Now, choose yj ∈ Sj , j = 1, 2, . . . , l and a partition 0 = t0 < t1 < · · · < tk = 1 such
that

‖yj(t)− yj(t)‖ <
ε

3
, ∀t, t ∈ [ti−1, ti], j = 1, 2, . . . , l, i = 1, 2, . . . , k. (2.8)

Obviously, B = ∪l
j=1 ∪k

i=1 Bij , where Bij = {y(t) : y ∈ Sj , t ∈ [ti−1, ti]}. For any
y(t), y(t) ∈ Bij , by (2.7) and (2.8), we obtain

‖y(t)− y(t)‖ ≤ ‖y(t)− yj(t)‖+ ‖yj(t)− yj(t)‖+ ‖yj(t)− y(t)‖

≤ ‖y − yj‖c +
ε

3
+ ‖yj − y‖c

≤ 2 diam(Sj) +
ε

3
< 2α(S) + ε,

which implies diam(Bij) ≤ 2α(S)+ε, and so, α(B) ≤ 2α(S)+ε. Since ε is arbitrary,
we obtain

α(B) ≤ 2α(S). (2.9)
It follows from (2.5), (2.6) and (2.9) that

α(A(S)) ≤ 2a1

βa0
Lrα(S), ∀S ⊂ Q ∩Br.

By (H2), we obtain that A is a strict set contraction on Q ∩Br. �

3. Main results

Let K = {y ∈ Q : y(t) ≥ γy(s), ∀t, s ∈ I}. Clearly, K ⊂ Q is a cone of C[I, E].
By Lemmas 2.1 and 2.3, we obtain AQ ⊂ K. So, AK ⊂ K.

For convenience, for any x ∈ P and ϕ ∈ P ∗, we set

F 0 = lim sup
‖x‖→0

sup
t∈I

‖F (t, x)‖
‖x‖

, F∞ = lim sup
‖x‖→∞

sup
t∈I

‖F (t, x)‖
‖x‖

,

Fϕ
0 = lim inf

‖x‖→0
inf
t∈I

ϕ(F (t, x))
ϕ(x)

, Fϕ
∞ = lim inf

‖x‖→∞
inf
t∈I

ϕ(F (t, x))
ϕ(x)

and list the following assumptions:

(H3) There exists ϕ ∈ P ∗ such that ϕ(x) > 0 for any x > θ and Fϕ
0 > β2a0

γa2
.

(H4) There exists ϕ ∈ P ∗ such that ϕ(x) > 0 for any x > θ and Fϕ
∞ > β2a0

γa2
.

(H5) F 0 < β2a0
N(1+a0)(1−cos β) .

(H6) F∞ < β2a0
N(1+a0)(1−cos β) .

(H7) There exists r0 > 0 such that

sup
t∈I, x∈P

γr0/N≤‖x‖≤r0

‖F (t, x)‖ <
β2a0

N(1 + a0)(1− cos β)
r0.

(H8) There exist R0 > 0 and ϕ ∈ P ∗ with ϕ(x) > 0 for any x > θ such that

inf
t∈I,x∈P

γR0/N≤‖x‖≤R0

ϕ(F (t, x))
ϕ(x)

>
β2a0

γa2
.
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Theorem 3.1. Assume (H1), (H2) hold. If one of the following conditions is
satisfied:

(i) (H4) and (H5) hold.
(ii) (H3) and (H6) hold.

Then the problem (1.1)-(1.2) has at least one positive solution.

Proof. (i) By (H4), we obtain that there exist constants M > β2a0
γa2

and r1 > 0 such
that

ϕ(F (t, x)) ≥ Mϕ(x), ∀t ∈ I, x ∈ P, ‖x‖ > r1. (3.1)

For any R > Nr1/γ, we will show that

Ay 6≤ y, ∀y ∈ K, ‖y‖c = R. (3.2)

In fact, if not, there exists y0 ∈ K, ‖y0‖c = R such that Ay0 ≤ y0. By

y0(t) ≥ γy0(s) ≥ θ, ∀t, s ∈ I, (3.3)

we have
‖y0(t)‖ ≥

γ

N
‖y0‖c > r1, ∀t ∈ I. (3.4)

By (2.4), for any t ∈ I, we have

A(y0(t)) =
1
β

∫ t

0

sinβ(t− s)F (s, y0(s))ds +
cos βt

βa0

[ ∫ 1

0

sinβ(1− s)F (s, y0(s))ds

−
m−2∑
i=1

ki

∫ ξi

0

sinβ(ξi − s)F (s, y0(s))ds
]

≥ cos βt

βa0

m−2∑
i=1

ki

∫ 1

ξi

sinβ(1− s)F (s, y0(s))ds.

This inequality, (3.1), (3.3) and (3.4), imply

ϕ(Ay0(0)) ≥ 1
βa0

m−2∑
i=1

ki

∫ 1

ξi

sinβ(1− s)Mγϕ(y0(0))ds

=
a2

β2a0
Mγϕ(y0(0)).

Considering Ay0 ≤ y0, we obtain

ϕ(y0(0)) ≥ γa2

β2a0
Mϕ(y0(0)). (3.5)

It is easy to see that ϕ(y0(0)) > 0 (In fact, if ϕ(y0(0)) = 0, by (3.3), we obtain
ϕ(y0(0)) ≥ γϕ(y0(s)) ≥ 0 for all s ∈ I. So, we have ϕ(y0(s)) ≡ 0 for all s ∈ I. That
is, y0(s) ≡ θ. This is a contradiction with ‖y0‖c = R). So, (3.5) contradicts with
M > β2a0

γa2
. Therefore, (3.2) is true.

On the other hand, by (H5) and F (t, θ) = θ, we obtain that there exist constants
0 < ε < β2a0

N(1+a0)(1−cos β) and 0 < r2 < R such that

‖F (t, x)‖ ≤ ε‖x‖, ∀t ∈ I, x ∈ P, ‖x‖ < r2. (3.6)

For any 0 < r < r2, we now prove that

Ay 6≥ y, ∀y ∈ K, ‖y‖c = r. (3.7)
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In fact, if not, there exists y0 ∈ K, ‖y0‖c = r such that Ay0 ≥ y0. Since (2.4)
implies

Ay0(t) ≤
a0 + cos βt

βa0

∫ 1

0

sinβ(1− s)F (s, y0(s))ds, ∀t ∈ I. (3.8)

So, we have

θ ≤ y0(t) ≤
a0 + cos βt

βa0

∫ 1

0

sinβ(1− s)F (s, y0(s))ds, ∀t ∈ I.

This, together with (3.6), imply

‖y0(t)‖ ≤
N(1 + a0)ε

βa0

∫ 1

0

sinβ(1− s)‖y0(s)‖ds =
N(1 + a0)(1− cos β)ε‖y0‖c

β2a0
,

for all t ∈ I. Therefore, we obtain ε ≥ β2a0/N(1 + a0)(1 − cos β). This is a
contradiction. So, (3.7) is true.

By (3.2), (3.7), Lemma 2.4 and Theorem 1.1, we obtain that the operator A has
at least one fixed point y ∈ K satisfying r < ‖y‖c < R.

(ii) By (H3), in the same way as establishing (3.2) we can assert that there exists
r2 > 0 such that for any 0 < r < r2,

Ay 6≤ y, ∀y ∈ K, ‖y‖c = r. (3.9)

On the other hand, by (H6), we obtain that there exist constants r1 > 0 and ε,
with 0 < ε < β2a0

N(1+a0)(1−cos β) , such that

‖F (t, x)‖ ≤ ε‖x‖, ∀t ∈ I, x ∈ P, ‖x‖ > r1.

By (H2), we obtain
sup

t∈I, x∈P∩Tr1

‖F (t, x)‖ =: b < ∞.

So, we have
‖F (t, x)‖ ≤ ε‖x‖+ b, ∀t ∈ I, x ∈ P. (3.10)

Take

R > max
{
r2,

Nb(1 + a0)(1− cos β)
β2a0 −Nε(1 + a0)(1− cos β)

}
,

we will prove that
Ay 6≥ y, ∀y ∈ K, ‖y‖c = R. (3.11)

In fact, if there exists y0 ∈ K, ‖y0‖c = R such that Ay0 ≥ y0. Then, by (3.8) and
(3.10), we obtain

‖y0(t)‖ ≤
N(a0 + cos βt)

βa0

∫ 1

0

sinβ(1− s)(ε‖y0(s)‖+ b)ds

≤ N(1 + a0)(1− cos β)
β2a0

(ε‖y0‖c + b), ∀t ∈ I.

So, we have

‖y0‖c ≤
Nb(1 + a0)(1− cos β)

β2a0 −Nε(1 + a0)(1− cos β)
< R.

A contradiction. Therefore, (3.11) holds.
By (3.9), (3.11), Lemma 2.4 and Theorem 1.1, we obtain that the operator A has

at least one fixed point y ∈ K satisfying r < ‖y‖c < R. The proof is complete. �
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Theorem 3.2. Assume (H1), (H2) hold. If one of the following conditions is
satisfied:

(i) (H3), (H4), (H7) hold.
(ii) (H5), (H6), (H8) hold.

Then (1.1)-(1.2) has at least two positive solutions.

Proof. (i) By (H3), (H4) and the proof of Theorem 3.1, we obtain that there exist
r, R with 0 < r < r0 < R such that

Ay 6≤ y, ∀y ∈ K, ‖y‖c = r,

Ay 6≤ y, ∀y ∈ K, ‖y‖c = R.

Now, we prove that
Ay 6≥ y, ∀y ∈ K, ‖y‖c = r0. (3.12)

In fact, if there exists y0 ∈ K, ‖y0‖c = r0 such that Ay0 ≥ y0. By (3.8) and (H7),
we obtain

‖y0‖c <
N(1 + a0)

βa0

∫ 1

0

sinβ(1− s)
β2a0

N(1 + a0)(1− cos β)
r0ds = r0.

A contradiction. So, (3.12) is true. By Lemma 2.4 and Theorem 1.1, we obtain
that the operator A has at least two fixed points y1, y2 ∈ K satisfying r < ‖y1‖c <
r0 < ‖y2‖c < R.

(ii) By (H5), (H6) and the proof of Theorem 3.1, we obtain that there exist r, R
with 0 < r < R0 < R such that

Ay 6≥ y, ∀y ∈ K, ‖y‖c = r,

Ay 6≥ y, ∀y ∈ K, ‖y‖c = R.

On the other hand, by (H8) and the same way as used in the proof of (3.2), we can
prove that

Ay 6≤ y, ∀y ∈ K, ‖y‖c = R0. (3.13)
By Lemma 2.4 and Theorem 1.1, we obtain that the operator A has at least two
fixed points y1, y2 ∈ K satisfying r < ‖y1‖c < R0 < ‖y2‖c < R. The proof is
complete. �

Similar to the proofs of Theorem 3.1 and Theorem 3.2, we can easily get the
following corollaries.

Corollary 3.3. Assume (H1), (H2) hold. If one of the following conditions is
satisfied:

(i) (H4), (H5), (H7), (H8) hold with R0 < γr0/N .
(ii) (H3), (H6), (H7), (H8) hold with r0 < γR0/N .

Then (1.1)-(1.2) has at least three positive solutions.

Corollary 3.4. Assume (H1), (H2) hold. If one of the following conditions is
satisfied:

(i) (H5)–(H7) hold, and there exist Ri > 0, ϕi ∈ P ∗ with ϕi(x) > 0 for x > θ,
i = 1, 2 such that

inf
t∈I, x∈P, γRi/N≤‖x‖≤Ri

ϕi(F (t, x))
ϕi(x)

>
β2a0

γa2
, i = 1, 2,

where R1 < γr0/N , r0 < γR2/N .
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(ii) (H3), (H4), (H8) hold, and there exist r1, r2 > 0 such that

sup
t∈I, x∈P, γri/N≤‖x‖≤ri

‖F (t, x)‖ <
β2a0

N(1 + a0)(1− cos β)
ri, i = 1, 2,

where r1 < γR0/N , R0 < γr2/N .

Then (1.1)-(1.2) has at least four positive solutions.

We can prove easily the existence of multiple positive solutions for (1.1)-(1.2).
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