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OSCILLATION OF SOLUTIONS TO ODD-ORDER NONLINEAR
NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS

TONGXING LI, ETHIRAJU THANDAPANI

Abstract. In this note, we establish some new comparison theorems and
Philos-type criteria for oscillation of solutions to the odd-order nonlinear neu-
tral functional differential equation

[x(t) + p(t)x(τ(t))](n) + q(t)xα(σ(t)) = 0,

where 0 ≤ p(t) ≤ p0 < ∞ and α ≥ 1.

1. Introduction

This paper is concerned with the oscillation and asymptotic behavior of solutions
to the odd-order nonlinear neutral differential equation[

x(t) + p(t)x(τ(t))
](n) + q(t)xα(σ(t)) = 0, (1.1)

where n ≥ 3 is an odd integer, α ≥ 1 is the ratio of odd positive integers, p(t), q(t) ∈
C([t0,∞)) and

(H1) q(t) > 0, 0 ≤ p(t) ≤ p0 < ∞;
(H2) τ(t) = a + bt, with b > 0, σ(t) ∈ C([t0,∞)), τ(t) ≤ t, τ ◦ σ = σ ◦ τ ,

limt→∞ σ(t) = ∞.

We set z(t) = x(t)+p(t)x(τ(t)). By a solution of (1.1), we mean a function x(t) ∈
C([Tx,∞)), Tx ≥ t0, which has the property z(t) ∈ Cn([Tx,∞)) and satisfies (1.1)
on [Tx,∞). We consider only those solutions x(t) of (1.1) which satisfy sup{|x(t)| :
t ≥ T} > 0 for all T ≥ Tx. We assume that (1.1) possesses such a solution.
A solution of (1.1) is called oscillatory if it has arbitrarily large zeros on [Tx,∞)
and otherwise, it is said to be nonoscillatory. Equation (1.1) is said to be almost
oscillatory if all its solutions are oscillatory or convergent to zero asymptotically.

Since the differential equations have important applications in the natural sci-
ences, technology and population dynamics, there is a permanent interest in ob-
taining sufficient conditions for the oscillation or nonoscillation of the solutions of
various types of even-order/odd-order differential equations; see references in this
article, and their references.
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For the oscillation of odd-order neutral differential equations, see e.g., [3, 4, 5,
6, 7, 10, 11, 12, 13, 20, 21, 24, 25, 27, 29]. They studied the oscillatory behavior of
odd-order neutral differential equations

[x(t) + p(t)x(τ(t))](n) + q(t)x(σ(t)) = 0,

[x(t) + p(t)x(t− τ)](n) + q(t)h(x(t− σ)) = 0,

and established some oscillatory and asymptotic criteria for the case when −1 ≤
p(t) ≤ 1.

To the best of our knowledge, the study of oscillatory behavior of odd-order
neutral differential equations has not been sufficient. In this paper, we try to obtain
some new oscillation results for (1.1). To prove our results, we use the following
definition and remarks.

Definition 1.1. Consider the sets D0 = {(t, s) : t > s ≥ t0} and D = {(t, s) : t ≥
s ≥ t0}. Assume that H ∈ C(D, R) satisfies the following assumptions:

(A1) H(t, t) = 0, t ≥ t0; H(t, s) > 0, (t, s) ∈ D0;
(A2) H has a non-positive continuous partial derivative with respect to the second
variable in D0.

Then the function H has the property P .

Remark 1.2. All functional inequalities considered in this paper are assumed to
hold eventually, that is, they are satisfied for all t large enough.

Remark 1.3. Without loss of generality we can deal only with the positive solu-
tions of equation (1.1).

2. Main results

The Kiguradze’s lemma is stated below, the readers may find this result in
[14, 15], which plays an important role in the oscillation of higher-order differential
equations.

Lemma 2.1 (Kiguradze’s lemma). Let f ∈ Cn([t0,∞), R) and its derivatives up
to order (n− 1) are of constant sign in [t0,∞). If f (n) is of constant sign and not
identically zero on a sub-ray of [t0,∞), then there exist m ∈ Z and t1 ∈ [t0,∞)
such that 0 ≤ m ≤ n− 1, and (−1)n+mff (n) ≥ 0,

ff (j) > 0 for j = 0, 1, . . . ,m− 1 when m ≥ 1

and
(−1)m+jff (j) > 0 for j = m,m + 1, . . . , n− 1 when m ≤ n− 1

hold on [t1,∞).

Lemma 2.2 ([1, Lemma 2.2.3]). Let f be a function as in Lemma 2.11. If
limt→∞ f(t) 6= 0, then for every λ ∈ (0, 1), there exists tλ ∈ [t1,∞) such that

|f | ≥ λ

(n− 1)!
tn−1|f (n−1)|

holds on [tλ,∞).

Lemma 2.3 ([22]). Let f be a function as in Lemma 2.11. If

f (n−1)(t)f (n)(t) ≤ 0,
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then for any constant θ ∈ (0, 1) and sufficiently large t, there exists a constant
M > 0, satisfying

|f ′(θt)| ≥ Mtn−2|f (n−1)(t)|.

Lemma 2.4. If x is a positive solution of (1.1), then the corresponding function
z(t) = x(t) + p(t)x(τ(t)) satisfies

z(t) > 0, z(n−1)(t) > 0, z(n)(t) < 0 (2.1)

eventually.

Due to Lemma 2.1, the proof of the above lemma is simple and so is omitted.

Lemma 2.5 ([13, Lemma 3]). Let f and g ∈ C([t0,∞), R) and α ∈ C([t0,∞), R)
satisfies limt→∞ α(t) = ∞ and α(t) ≤ t for all t ∈ [t0,∞); further suppose that
there exists h ∈ C([t−1,∞), R+), where t−1 := mint∈[t0,∞){α(t)}, such that f(t) =
h(t) + g(t)h(α(t)) holds for all t ∈ [t0,∞). Suppose that limt→∞ f(t) exists and
lim inft→∞ g(t) > −1. Then lim supt→∞ h(t) > 0 implies limt→∞ f(t) > 0.

Lemma 2.6. Assume that α ≥ 1, c, d ∈ R. If c ≥ 0 and d ≥ 0, then

cα + dα ≥ 1
2α−1

(c + d)α. (2.2)

Proof. (i) Suppose that c = 0 or d = 0. Then we have (2.2). (ii) Suppose that
c > 0 and d > 0. Define the function f by f(x) = xα, x ∈ (0,∞). Then f ′′(x) =
α(α − 1)xα−2 ≥ 0 for x > 0. Thus, f is a convex function. By the definition of
convex function, we have

f
(c + d

2
)
≤ f(c) + f(d)

2
;

that is,

cα + dα ≥ 1
2α−1

(c + d)α.

This completes the proof. �

Next, we establish our main results. For the sake of convenience, let

Q(t) = min{q(t), q(τ(t))}. (2.3)

Theorem 2.7. Assume that ∫ ∞

t0

tn−1Q(t)dt = ∞. (2.4)

Further, assume that the first-order neutral differential inequality(
y(t) +

p0
α

b
y(τ(t))

)′
+

Q(t)
2α−1

( λ

(n− 1)!
σn−1(t)

)α

yα(σ(t)) ≤ 0 (2.5)

has no positive solution for some λ ∈ (0, 1). Then (1.1) is almost oscillatory.

Proof. Assume that x is a positive solution of (1.1), which does not tend to zero
asymptotically. Then the corresponding function z satisfies

z(σ(t)) = x(σ(t)) + p(σ(t))x(τ(σ(t)))

≤ x(σ(t)) + p0x(σ(τ(t))),
(2.6)

where we have used the hypothesis (H1). On the other hand, it follows from (1.1)
that

z(n)(t) + q(t)xα(σ(t)) = 0 (2.7)
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and moreover taking (H1) and (H2) into account, we have

0 =
p0

α

τ ′(t)
(z(n−1)(τ(t)))′ + p0

αq(τ(t))xα(σ(τ(t)))

=
p0

α

b
(z(n−1)(τ(t)))′ + p0

αq(τ(t))xα(σ(τ(t))).
(2.8)

Combining (2.7) and (2.8), we are led to

[z(n−1)(t) +
p0

α

b
z(n−1)(τ(t))]′ + q(t)xα(σ(t)) + p0

αq(τ(t))xα(σ(τ(t))) ≤ 0, (2.9)

which in view of (2.2), (2.3) and (2.6) implies

[z(n−1)(t) +
p0

α

b
z(n−1)(τ(t))]′ +

1
2α−1

Q(t)zα(σ(t)) ≤ 0. (2.10)

Next, we claim that z′(t) > 0 eventually. If not, then limt→∞ z(t) = a > 0
(a is finite) due to Lemma 2.5. From (2.1), we obtain limt→∞ z(k)(t) = 0 for
k = 1, 2, . . . , n− 1. Integrating (2.10) from t to ∞ for a total of (n− 1) times and
integrating the resulting inequality from t1 (t1 is large enough) to ∞, we obtain∫ ∞

t1

(s− t1)n−1

(n− 1)!
Q(s)zα(σ(s))ds < ∞,

which yields ∫ ∞

t1

sn−1Q(s)ds < ∞.

This contradicts (2.4). Hence by Lemma 2.2 and Lemma 2.4, we obtain

z(t) ≥ λ

(n− 1)!
tn−1z(n−1)(t) for every λ ∈ (0, 1).

Thus, it follows from (2.10) that

[z(n−1)(t)+
p0

α

b
z(n−1)(τ(t))]′+

Q(t)
2α−1

(
λ

(n− 1)!
σn−1(t)z(n−1)(σ(t))

)α

≤ 0. (2.11)

Therefore, setting z(n−1)(t) = y(t) in (2.11), one can see that y is a positive solution
of (2.5). This contradicts our assumptions and the proof is complete. �

Remark 2.8. In the comparison principle in Theorem 2.7 we do not assume that
the deviating arguments is either delay or advanced type, and hence this result
is applicable to all types of equations. Further, the comparison principle estab-
lished in Theorem 2.7 reduces oscillation of equation (1.1) to find conditions for the
first-order neutral differential inequality (2.5) has no positive solution. Therefore,
applying the conditions for equation (2.5) to have no positive solution, one can
immediately get oscillation criteria for equation (1.1).

Theorem 2.9. Assume that (2.4) holds. If the first-order differential inequality

w′(t) +
Q(t)

2α−1(1 + p0α

b )

( λ

(n− 1)!
σn−1(t)

)α

wα(τ−1(σ(t))) ≤ 0 (2.12)

has no positive solution for some 0 < λ < 1, then (1.1) is almost oscillatory.
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Proof. Assume that x is a positive solution of (1.1), which does not tend to zero
asymptotically. Then y(t) = z(n−1)(t) > 0 is a decreasing solution of (2.5). We
denote

w(t) = y(t) +
p0

α

b
y(τ(t)).

It follows from τ(t) ≤ t that

w(t) ≤ y(τ(t))
(
1 +

p0
α

b

)
.

Substituting this into (2.5), we obtain that w is a positive solution of (2.12). A
contradiction. This completes the proof. �

Corollary 2.10. Assume that (2.4) holds, and α = 1 and σ(t) < τ(t). If

lim inf
t→∞

∫ t

τ−1(σ(t))

σn−1(s)Q(s) ds >

(
1 + p0

b

)
(n− 1)!

e
, (2.13)

then (1.1) is almost oscillatory.

Proof. According to [17, Theorem 2.1.1], the condition (2.13) guarantees that (2.12)
with α = 1 has no positive solution. Hence by Theorem 2.9, equation (1.1) is almost
oscillatory. This completes the proof of Corollary 2.10. �

Now, we shall establish some Philos-type oscillation criteria for the oscillation of
(1.1).

Theorem 2.11. Assume that (2.4) holds and σ(t) ≥ τ(t)/2. Further, assume that
the function H ∈ C(D, R) has the property P and there exist functions h ∈ C(D0, R)
and ρ ∈ C1([t0,∞), (0,∞)) such that

− ∂

∂s
H(t, s)−H(t, s)

ρ′(s)
ρ(s)

= h(t, s), (t, s) ∈ D0. (2.14)

If

lim sup
t→∞

1
H(t, t0)

∫ t

t0

K1(t, s)ds = ∞ (2.15)

for all constants M > 0, L > 0 and for some β ≥ 1, where

K1(t, s) :=
(L

2
)α−1

H(t, s)ρ(s)Q(s)−
(
1 +

p0
α

b

) βρ(s)h2(t, s)
2bMH(t, s)τn−2(s)

,

then (1.1) is almost oscillatory.

Proof. Assume that x is a positive solution of (1.1), which does not tend to zero
asymptotically. Proceeding as in the proof of Theorem 2.7, we obtain (2.10) and
z′(t) > 0. Define

w(t) = ρ(t)
z(n−1)(t)

z
( τ(t)

2

) , (2.16)

then w(t) > 0, and

w′(t) = ρ′(t)
z(n−1)(t)
z
(
τ(t)/2

) + ρ(t)
z(n)(t)z

(
τ(t)/2

)
− b

2z(n−1)(t)z′
(
τ(t)/2

)
z2

(
τ(t)/2

) . (2.17)

It follows from Lemma 2.3 and Lemma 2.4 that there exists a constant M > 0,
such that

z′
(
τ(t)/2

)
≥ Mτn−2(t)z(n−1)(τ(t)) ≥ Mτn−2(t)z(n−1)(t), (2.18)
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which in view of (2.16) and (2.17) yields

w′(t) ≤ ρ(t)
z(n)(t)

z
(
τ(t)/2

) +
ρ′(t)
ρ(t)

w(t)− bM

2
τn−2(t)

ρ(t)
w2(t), (2.19)

Define another function

v(t) = ρ(t)
z(n−1)(τ(t))
z
(
τ(t)/2

) , (2.20)

then v(t) > 0, and

v′(t) = ρ′(t)
z(n−1)(τ(t))
z
(
τ(t)/2

)
+ ρ(t)

bz(n)(τ(t))z
(
τ(t)/2

)
− b

2z(n−1)(τ(t))z′
(
τ(t)/2

)
z2

(
τ(t)/2

) .

(2.21)

It follows from (2.18), (2.20) and (2.21) that

v′(t) ≤ ρ(t)
z(n)(τ(t))
z
(
τ(t)/2

) +
ρ′(t)
ρ(t)

v(t)− bM

2
τn−2(t)

ρ(t)
v2(t). (2.22)

In view of (2.19) and (2.22), we obtain

w′(t) +
p0

α

b
v′(t) ≤ ρ(t)

z(n)(t) + p0
αz(n)(τ(t))

z
(
τ(t)/2

) +
ρ′(t)
ρ(t)

w(t)

− bM

2
τn−2(t)

ρ(t)
w2(t) +

p0
α

b
[
ρ′(t)
ρ(t)

v(t)− bM

2
τn−2(t)

ρ(t)
v2(t)].

It follows from (2.10) that there exists a constant L > 0, such that

w′(t) +
p0

α

b
v′(t) ≤ −

(L

2
)α−1

ρ(t)Q(t) +
ρ′(t)
ρ(t)

w(t)− bM

2
τn−2(t)

ρ(t)
w2(t)

+
p0

α

b
[
ρ′(t)
ρ(t)

v(t)− bM

2
τn−2(t)

ρ(t)
v2(t)].

(2.23)

Multiplying (2.23), with t replaced by s, by H(t, s) and integrating from T to t
,with T ≥ t1, we have∫ t

T

(L

2
)α−1

H(t, s)ρ(s)Q(s)ds

≤ −
∫ t

T

H(t, s)w′(s)ds +
∫ t

T

H(t, s)
ρ′(s)
ρ(s)

w(s)ds−
∫ t

T

bM

2
H(t, s)

τn−2(s)
ρ(s)

w2(s)ds

− p0
α

b

∫ t

T

H(t, s)v′(s)ds +
p0

α

b

∫ t

T

H(t, s)
ρ′(s)
ρ(s)

v(s)ds

− p0
α

b

∫ t

T

bM

2
H(t, s)

τn−2(s)
ρ(s)

v2(s)ds.

It follows from the above inequality and (2.14) that∫ t

T

(L

2
)α−1

H(t, s)ρ(s)Q(s)ds

≤ H(t, T )w(T )−
∫ t

T

h(t, s)w(s)ds−
∫ t

T

bM

2
H(t, s)

τn−2(s)
ρ(s)

w2(s)ds
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+
p0

α

b
H(t, T )v(T )− p0

α

b

∫ t

T

h(t, s)v(s)ds

− p0
α

b

∫ t

T

bM

2
H(t, s)

τn−2(s)
ρ(s)

v2(s)ds.

Thus, for any β ≥ 1,∫ t

T

(L

2
)α−1

H(t, s)ρ(s)Q(s)ds

≤ H(t, T )w(T ) +
∫ t

T

βρ(s)h2(t, s)
2bMτn−2(s)H(t, s)

ds

−
∫ t

T

[√bMτn−2(s)H(t, s)
2βρ(s)

w(s) +

√
2βρ(s)

4bMτn−2(s)H(t, s)
h(t, s)

]2

ds

−
∫ t

T

(β − 1)bMτn−2(s)H(t, s)
2βρ(s)

w2(s)ds

+
p0

α

b
H(t, T )v(T ) +

p0
α

b

∫ t

T

βρ(s)h2(t, s)
2bMτn−2(s)H(t, s)

ds

− p0
α

b

∫ t

T

[√bMτn−2(s)H(t, s)
2βρ(s)

v(s) +

√
2βρ(s)

4bMτn−2(s)H(t, s)
h(t, s)

]2

ds

− p0
α

b

∫ t

T

(β − 1)bMτn−2(s)H(t, s)
2βρ(s)

v2(s)ds.

(2.24)

From the above inequality, we obtain∫ t

T

[(L

2
)α−1

H(t, s)ρ(s)Q(s)−
(
1 +

p0
α

b

) βρ(s)h2(t, s)
2bMH(t, s)τn−2(s)

]
ds

≤ H(t, T )
(
w(T ) +

p0
α

b
v(T )

)
≤ H(t, t0)

(
w(T ) +

p0
α

b
v(T )

)
,

which yields

1
H(t, t0)

∫ t

t0

[(L

2
)α−1

H(t, s)ρ(s)Q(s)−
(
1 +

p0
α

b

) βρ(s)h2(t, s)
2bMH(t, s)τn−2(s)

]
ds < ∞.

This contradicts condition (2.15). The proof is complete. �

As a consequence of Theorem 2.11, we obtain the following corollary.

Corollary 2.12. Let condition (2.15) in Theorem 2.11 be replaced by

lim sup
t→∞

1
H(t, t0)

∫ t

t0

H(t, s)ρ(s)Q(s)ds = ∞,

lim sup
t→∞

1
H(t, t0)

∫ t

t0

ρ(s)h2(t, s)
H(t, s)τn−2(s)

ds < ∞.

Then (1.1) is almost oscillatory.

It may happen that assumption (2.15) in Theorem 2.11 fails to hold. The fol-
lowing result provide an essentially new oscillation criterion for (1.1).
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Theorem 2.13. Assume that (2.4) holds and σ(t) ≥ τ(t)/2. Let H,h, ρ be as in
Theorem 2.11 and

0 < inf
s≥t0

[
lim inf
t→∞

H(t, s)
H(t, t0)

]
≤ ∞. (2.25)

Moreover, suppose that there exists a function m ∈ C([t0,∞), R) such that for all
T ≥ t0 and for some β > 1, one has

lim sup
t→∞

1
H(t, T )

∫ t

T

K1(t, s)ds ≥ m(T ) (2.26)

for all constants M > 0 and L > 0, where K1 is defined as in Theorem 2.11. If

lim sup
t→∞

∫ t

t0

τn−2(s)m2
+(s)

ρ(s)
ds = ∞, (2.27)

where m+(t) := max{m(t), 0}, then (1.1) is almost oscillatory.

Proof. Assume that x is a positive solution of (1.1), which does not tend to zero
asymptotically. Proceeding as in the proof of Theorem 2.11, we obtain (2.24), which
implies

1
H(t, T )

∫ t

T

[(L

2
)α−1

H(t, s)ρ(s)Q(s)−
(
1 +

p0
α

b

) βρ(s)h2(t, s)
2bMH(t, s)τn−2(s)

]
ds

≤ w(T )− 1
H(t, T )

∫ t

T

(β − 1)bMτn−2(s)H(t, s)
2βρ(s)

w2(s)ds

+
p0

α

b
v(T )− p0

α

b

1
H(t, T )

∫ t

T

(β − 1)bMτn−2(s)H(t, s)
2βρ(s)

v2(s)ds.

Therefore, for t > T ≥ t1, sufficiently large,

lim sup
t→∞

1
H(t, T )

∫ t

T

[(L

2
)α−1

H(t, s)ρ(s)Q(s)−
(
1 +

p0
α

b

) βρ(s)h2(t, s)
2bMH(t, s)τn−2(s)

]
ds

≤ w(T ) +
p0

α

b
v(T )

− lim inf
t→∞

1
H(t, T )

∫ t

T

(β − 1)bMτn−2(s)H(t, s)
2βρ(s)

(
w2(s) +

p0
α

b
v2(s)

)
ds.

It follows from (2.26) that

w(T ) +
p0

α

b
v(T )

≥ m(T ) + lim inf
t→∞

1
H(t, T )

∫ t

T

(β − 1)bMτn−2(s)H(t, s)
2βρ(s)

(
w2(s) +

p0
α

b
v2(s)

)
ds,

for all T ≥ t1 and for any β > 1. Consequently, for all T ≥ t1, we obtain

w(T ) +
p0

α

b
v(T ) ≥ m(T ), (2.28)

and

lim inf
t→∞

1
H(t, t1)

∫ t

t1

H(t, s)τn−2(s)
ρ(s)

(
w2(s) +

p0
α

b
v2(s)

)
ds

≤ 2β

(β − 1)bM

(
w(t1) +

p0
α

b
v(t1)−m(t1)

)
< ∞.

(2.29)
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Now we claim that ∫ ∞

t1

τn−2(s)
(
w2(s) + p0

α

b v2(s)
)

ρ(s)
ds < ∞. (2.30)

Suppose to the contrary that∫ ∞

t1

τn−2(s)
(
w2(s) + p0

α

b v2(s)
)

ρ(s)
ds = ∞. (2.31)

By (2.31), for any positive number κ, there exists a T1 ≥ t1 such that, for all t ≥ T1,∫ t

t1

τn−2(s)
(
w2(s) + p0

α

b v2(s)
)

ρ(s)
ds ≥ κ

ρ
.

Assumption (2.25) implies the existence of a ρ > 0 such that

inf
s≥t0

[lim inf
t→∞

H(t, s)
H(t, t0)

] > ρ. (2.32)

From (2.32), we have

lim inf
t→∞

H(t, s)
H(t, t0)

> ρ > 0,

and there exists a T2 ≥ T1 such that H(t, T1)/H(t, t0) ≥ ρ, for all t ≥ T2. Using
integration by parts, we conclude that, for all t ≥ T2,

1
H(t, t1)

∫ t

t1

H(t, s)τn−2(s)
ρ(s)

(
w2(s) +

p0
α

b
v2(s)

)
ds

=
1

H(t, t1)

∫ t

t1

[−∂H(t, s)
∂s

]
[ ∫ s

t1

τn−2(u)
(
w2(u) + p0

α

b v2(u)
)

ρ(u)
du

]
ds

≥ κ

ρ

1
H(t, t1)

∫ t

T1

[−∂H(t, s)
∂s

]ds =
κH(t, T1)
ρH(t, t1)

.

(2.33)

It follows from (2.33) that, for all t ≥ T2,

1
H(t, t1)

∫ t

t1

H(t, s)τn−2(s)
ρ(s)

(
w2(s) +

p0
α

b
v2(s)

)
ds ≥ κ.

Since κ is an arbitrary positive constant, we obtain

lim inf
t→∞

1
H(t, t1)

∫ t

t1

H(t, s)τn−2(s)
ρ(s)

(
w2(s) +

p0
α

b
v2(s)

)
ds = ∞,

which contradicts (2.29). Consequently, (2.30) holds. Thus, we obtain∫ ∞

t1

τn−2(s)w2(s)
ρ(s)

ds < ∞,

∫ ∞

t1

τn−2(s)v2(s)
ρ(s)

ds < ∞,

and, by (2.28),∫ ∞

t1

τn−2(s)m2
+(s)

ρ(s)
ds

≤
∫ ∞

t1

τn−2(s)w2(s) +
(

p0
α

b

)2
τn−2(s)v2(s) + 2p0

α

b τn−2(s)w(s)v(s)
ρ(s)

ds

≤
∫ ∞

t1

τn−2(s)w2(s) +
(

p0
α

b

)2
τn−2(s)v2(s) + p0

α

b τn−2(s)[w2(s) + v2(s)]
ρ(s)

ds < ∞,
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which contradicts (2.27). This completes the proof. �

Now, we establish some oscillation criteria for equation (1.1) when σ(t) ≤ τ(t).

Theorem 2.14. Let σ(t) ∈ C1([t0,∞)) and σ′(t) > 0. Assume that (2.4) holds and
σ(t) ≤ τ(t). Furthermore, assume that the function H ∈ C(D, R) has the property
P and there exist functions h ∈ C(D0, R) and ρ ∈ C1([t0,∞), (0,∞)) such that
(2.14) holds. If

lim sup
t→∞

1
H(t, t0)

∫ t

t0

K2(t, s)ds = ∞ (2.34)

for all constants M > 0 and L > 0 and for some β ≥ 1, where

K2(t, s) :=
(L

2
)α−1

H(t, s)ρ(s)Q(s)−
(
1 +

p0
α

b

) βρ(s)h2(t, s)
2σ′(s)MH(t, s)σn−2(s)

,

then (1.1) is almost oscillatory.

Proof. Define w and v by

w(t) = ρ(t)
z(n−1)(t)
z
(
σ(t)/2

) , v(t) = ρ(t)
z(n−1)(τ(t))
z
(
σ(t)/2

) ,

respectively. The rest of the proof is similar to that of Theorem 2.11 and so is
omitted. �

From Theorem 2.14, wiht a proof similar to the one of Theorem 2.13, we obtain
the following result.

Theorem 2.15. Let σ(t) ∈ C1([t0,∞)) and σ′(t) > 0. Assume that (2.4) holds
and σ(t) ≤ τ(t). Let H,h, ρ be as in Theorem 2.11 such that (2.25) holds. Further,
suppose that there exists a function m ∈ C([t0,∞), R) such that for all T ≥ t0 and
for some β > 1,

lim sup
t→∞

1
H(t, T )

∫ t

T

K2(t, s)ds ≥ m(T ) (2.35)

for all constants M > 0 and L > 0, where K2 is defined as in Theorem 2.14. If

lim sup
t→∞

∫ t

t0

σ′(s)σn−2(s)m2
+(s)

ρ(s)
ds = ∞, (2.36)

where m+(t) := max{m(t), 0}, then (1.1) is almost oscillatory.

Remark 2.16. From Theorems 2.11–2.15, we can derive different conditions for
the oscillation of equation (1.1) with different choices of ρ, H and m.

For an application of our results, we give the following example.

Example 2.17. Consider the odd-order delay differential equation

[x(t) + p0x
(
t/τ

)
](n) +

q0

tn
x
(
t/σ

)
= 0, t ≥ 1, (2.37)

where p0 ∈ [0,∞), q0 ∈ (0,∞) and σ > τ ≥ 1.
Let q(t) = q0/tn and v(t) = 0. Then Q(t) = q0/tn. Moreover, we have∫ ∞

t0

sn−1Q(s)ds = q0

∫ ∞

1

1
s
ds = ∞.
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Hence by Corollary 2.10, equation (2.37) is almost oscillatory if

q0 >
(n− 1)!(1 + τp0)σn−1

e ln(σ/τ)
.

If p0 ∈ [0, 1), then by [13, Example 1], equation (2.37) is almost oscillatory provided
that

q0 >
(n− 1)!σn−1

e(1− p0) ln σ
.

We find that our results improve that of in [13] for some cases. For example, we
let σ = e2 and τ = e. If we set p0 = 7/8 or 15/16, we see that

1
2(1− p0)

> 1 + ep0.

Further our results hold for p0 ≥ 1.
One can construct examples easily to illustrate other results, and the details are

left to the reader.

Summary. We have established criteria for the oscillation of solutions to (1.1).
Our technique permits us to relax restrictions usually imposed on the coefficients
of equation (1.1). So our results are of high generality, and are easily applicable as
illustrated with a suitable example.

Acknowledgements. The authors thank the anonymous referres for their sugges-
tions which improve the content of this article.
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